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Abstract 

In this paper we present a new unstructured spectral el- 
ement method for use on triangular and tetrahedral sub- 
domains. The algorithm maintains the accuracy and ef- 
ficiency of standard quadrilateral/hexahedral spectral el- 
ement methods but offers greater adaptivity. Standard 
unstructured meshes can be used and the order of the 

polynomial expansion can be varied within each triangu- 
lar/tetrahedral sub-domain. To determine the time step 
restrictions when explicitly solving a convectively dom- 
inated flow we numerically analyse the linear advection 
equation. The formulation is then applied to the incom- 
pressible Navier-Stokes equations in the new spectral ele- 
ment code 
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1 Introduction 

The current generation of spectral elements uses quadrilat- 
erals and hexahedral elemental subdomains for discretiza- 

tion. As the complexity of the geometries we want to dis- 
cretise increases the quadrilateral and hexahedral mesh de- 
sign becomes notably more difficult. This issue has been 
partly addressed by using a non-conforming, mortar, dis- 
cretisation [1, 2]. This technique has been implemented on 
quadrilateral domains but until recently had not been im- 
plemented on hexahedra due to its complexity. The mor- 
tar method also allows the polynomial order to be varied 
in each elemental domain by using a projection operator 
at the interface. Another non-conforming mesh approach 
is the modal hp finite element discretisation on quadrilat- 
eral domains [3, 4]. In this approach the polynomial ex- 
pansion can also be varied but unlike the mortar method 
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the expansion is conforming over elemental edges. The 
nature of the modal discretisation also allows the poly- 
nomial order to be varied in each elemental domain in 

a more implicit fashion. The trend of both the spectral 
element and hp finite element methods has been towards 
greater adaptivity. Both these methods have adopted non- 
conforming discretisations allowing greater mesh adaptiv- 
ity and they both permit variable order polynomial order 
discretisations. This requirement for greater adaptivity is 
motivated by recognition that for many practical problems 
the solution has a localised structure. An alternative ap- 
proach to achieve this adaptivity is to use an unstructured 
discretisation. 

In this paper we present an unstructured spectral ele- 
ments basis which can be applied to triangular and tetra- 
hedral domains. The construction was motivated by theo- 
retical work by Dubiner [5] in two-dimensions, and can be 
considered as a triangular/tetrahedral extension of the hp 
finite element modal approach. An important property of 
this new expansion is that it maintains a tensor product 
type form allowing the use of sum factorisation to main- 
tain efficiency. The algorithms have an operation count 
of O(L •)+•) where L is the expansion order and D is the 
space dimension. As is demonstrated by a numerical in- 
vestigation of the linear advection equation the new basis 
has an explicit time step restriction which scales as O(L 2) 
which is similar to the standard spectral and spectral el- 
ement method. Both these characteristics have allowed 

an efficient implementation of the incompressible Navier- 
Stokes equations in the new unstructured spectral element 
code Af•Tar. 

The paper is organized as follows: In the next section we 
present the tetrahedral expansion basis which is reduced to 
the two-dimensional basis as a degenerate case. In section 
3 we present a review of the basic operations, in matrix 
form, applied to the new basis. In section 4 we elaborate on 
the linear advection equation, and in section 5 we present 
numerical results. 
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2 Tetrahedral expansion basis 

•Ve wish to formulate a tetrahedral expansion basis for 
the solution of the Navier-Stokes equations extending the 
two-dimensional expansions proposed by Dubinet [5]. A 
detailed description of this formulation in two-dimensions 
is given in [6] and the three-dimensional basis formulation 
can be found in [7]. Here we outline the basic formulation 
by introducing the co-ordinate system and describe various 
properties of the tetrahedral expansion. 

2.1 Co-ordinate system 

To introduce the co-ordinate system we must first consider 
a basic mapping as illustrated in figure 1. Here we see the 
mapping of a rectangular domain in the ((I), 9) space to a 
triangle in the (6, •) space. Although the expansion is not 
associated with any specific set of nodes, the co-ordinate 
mapping shown in figure I forms a more convenient set of 
co-ordinates from the computational viewpoint. 

We define the standard triangle and rectangle as: 

T • = {(o,•:)l-l_<,•,•;•,+•:_<o} 
= 

The rectangular domain R • can be mapped into the trian- 
gular domain T 2 by the following transformation: 

(1+ (I))(1 - •) 
•b -- -1, 

2 

and similarly the triangular domain T • can be mapped into 
the rectangular domain R ø' by the inverse transformation: 

Figure 1: Rectangle to triangle transformation. 

As indicated in figure 1, within T • the co-ordinate (I) has 
a value of -1 along the line •b -- -1 and a value of I along 

the line •b + • = 0 except at the point (p = -1,• = 1) 
where (I) is multi-valued. W•e know that (I) is bounded in 

R • and the same is true in T •. It might appear strange 
to use a co-ordinate system which has a singular point but 
it should be noted that the singularity in the co-ordinates 
does not imply that the expansion is singular. We also re- 
call that both cylindrical and spherical co-ordinate systems 
have multi-valued co-ordinates at the origin. 

Figure 2: Transformation from hexahedral co-ordinate sys- 
tem to tetrahedral co-ordinate system. 

This mapping is the foundation for constructing a co- 
ordinate system in the tetrahedral domain T 3 starting 
from a co-ordinate system in the hexahedral domain R 3. 
To achieve this, we repeatedly apply the two-dimensional 
transformation ((I), 9) *• (P, •) in three steps. Schemati- 
cally this transformation is shown in figure 2: In the first 
step we map R 3 into a triangular prism. Here the Cartesian 
coordinates (a,b,c) define the domain R 3 = {(a,b,c)l-1 _< 
a, b, c < 1}. In the second step, we map the prism into a 
square based pyramid and finally, we map the pyramid into 
the tetrahedron, T 3. The local coordinates (r, s, t) define 
the space T 3 = {-1 _< r, s, t; r + s + t _< -1}. The three- 
dimensional basis can be expressed via the initial set of 
coordinates (a, b, c) as we demonstrate in section 2.2. In 
summary, we can write the hexahedral co-ordinates (a, b, c) 
in terms of the tetrahedral co-ordinates (r, s, t) by repeat- 
edly applying the inverse transformation to arrive at: 

(1 + r) (1 + s) 
a=2(_s_t) 1, b=2(l_t ) 1, c=t. 

For t = -1 we recover the two-dimensional mapping. 
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t 

a= - 1 a=O a= 1 

t t 

constant 'a' planes constant 'b' planes constant 'c' planes 

Figure 3: Constant planes of the co-ordinates a, b and c on 
the standard tetrahe&on. 

The constant planes represented by (a, b, c) in the tetra- 
hedral space T 3 space are shown in figure 3. We note 
the degeneracy of the coordinate system in the T a space. 
Planes of constant 'a' remain planes as the coordinate 
varies from a - -1 to a - 1 and are dependent on all 
of the basic coordinates r, s and t. However, planes of con- 
stant :b' degenerate to a line as this coordinate varies from 
b = -1 to b = 1 although these planes only depend on 
the basic coordinates s and t. Finally, planes of constant 
'c' degenerate to a point as this coordinate varies from 
c -- -1 to c -- 1 and these planes only depend on the basic 
coordinate t. 

2.2 Expansion basis 

•¾• define a polynomial basis, denoted by glm,•(r, s, t), so 
that we can approximate the function f(x, y, z) by a C o 
continuous expansion over 'K' tetrahedra by the form: 

f(X,y,Z) : • •-• •-• •-•f•mng•mn(I',8, t ). 
k I m n 

Here fp•n is the expansion coefficient corresponding to the 
expansion polynomial k kth glmn in the tetrahedron; (x, y, z) 
are the global spatial co-ordinates and (r, s, t) are the local 
co-ordinates within any given tetrahe&on. 

Vertices Edges Faces 

Figure 4: Tetrahedron notation 

Having defined the co-ordinates (a, b, c) in the previous 
section we can now describe the expansion basis. Using 
the notation given in figure 4 the basis is described by: 

ß Vertex modes 

gvert-A 1-a 1--b 1--c 
100 = 

g vert- B __ ( l +a ) (1-b ] (1-c • 100 -- 2 \ 2 
vert-C 

g010 = 
gvert-D 
001 --- ( 1--•'2 c), 

ß Edge modes (2_< l; 1_< m,n [ I < L; l+m < M' 
l+m+n(N) 

gedge-1 
100 

gedge-2 
lmO 

gedge-3 
lmO 

gedge-4 
10n 

gedge-5 
10• 

edge-6 
gOln 

ß Face modes (2 _< I; 1 _< ra, n [1 < L: I+ ra < M: 
l+m+n < N) 

g face-- 1 
lmO --- 

g face--2 __ IOn -- 

g face-3 
lmn --- 

g face-4 
lmn -- 

ß Interior modes(2 _• I;1 _• ra, n [ I < L;I + m < AI;I + 
m+n < N) 

ginterior 
lmn l•a•(1--a 1,1 l+b 1-b I 21-1,1 2 l+c •l+m•21+2m--l,1 • x 

where the indices 'Iran' in glmn refer to the order of the 
principal polynomial in r, s and t respectively, and L, M, N 
define the total number of modes. We note that when 
I = m + I = n + I the edge and face modes have the 
same shape which allows the basis to be combined into 
a C O expansion by matching the expansion coefficients of 
these modes. However, expansion coefficients of odd order 
modes may need to have their sign changed to ensure this 
continuity. 
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to include the Jacobian, (1--•)[i-c]2 in the quadrature \21' 

weightsß This is advantageous since it avoids explicit 
evaluation of this Jacobian and miniraises the order of 

1.0 

the quadrature required for exact evaluation of the inte- 
gral. Therefore we choose to use a quadrature rule with 0.s 
a = 0,/• = 0 in the 'a' direction, a quadrature rule with 
a = 1, • = 0 in the 'b' direction and a quadrature rule s0.c 
with a = 2, • = 0 in the 'c' direction. The integration rule 
therefore becomes: -o.• 

where 
1.0 

_ 2 ' wj' -- 4 
Here qa, qb, qc are the number of quadrature points in 

the a, b and c directions respectively. The two-dimensional 
rule is shown in curly brackets. 

Unlike standard quadrilateral spectral elements we are 
free to choose any type of quadrature rule (i.e. Gauss, 
Gauss Lobatto or Gauss Radau) with the same cost. 
Gauss-Lobatto is convenient as it has zeros at the ends 

of the integration domain allowing the boundary condi- 
tions to be easily evaluated and imposed. Nevertheless, 
this means that we have multiple quadrature points at ver- 
tex C and D as well as along edge 6 (see figure 4). This 
is undesirable because of the redundancy of quadrature 
points and the fact that it is more difficult to evaluate the 
derivative at these points. To circumvent this problem we 
choose to use Gauss-Radau quadrature in the 'b' and 'c' 
directions. 

The quadrature points for the standard triangle T 2 and 
tetrahedron T 3 are shown in figure 6. The Gauss-Radau 
quadrature we are using includes a zero at s = -1 and 
therefore we do not have any quadrature points at vertices 
C and D or along edge 6. We choose to use Gauss-Lobatto 
integration in the 'a' directions and thus have quadrature 
points along the boundaries of T •and T 3 except at vertices 
C,D and along edge 6. 

3.2 Local projection and notation 

In order to define the forward and backward transforma- 

tions and thereby describe the projection operator we wish 
to introduce some notation to help simplify the descrip- 
tion. To this end, we consider the collocation evaluation 

-1.0 

Figure 6: Quadrature points in the standard triangle and 
tetrahedron space. In the 'a' direction a Gauss-Lobatto 
distribution is used and in the 'b' and 'c' directions a 
Gauss-Radau distribution is used. 

of a function f(a, b, c) at the quadrature points ai, bj, ck. 
Note that we have dropped the superscripts which denote 
the form of the quadrature as explained in the previous 
section. We shall use the notation f to represent a vector 

-- 

of the function evaluation f(ai, bj, ck) at the quadrature 
points where we will assume that the i index runs fastest 

followed by the j index and then k. Similarity we shall 
let je denote a vector of expansion coefficients fimn. Here 
we shall use the convention that the vertices are initially 
stored followed by the edges, then the faces and finally 
the interiorß In each group we assume that the index n 
runs fastest followed by ra and then 1. This convention is 

necessary for the sparsky of the expan•sion to be evident. 
To complement the vectors f and f we introduce the 

matrices lAY and G. lAY is a diagonal matrix containing 
the quadrature weights required to integrate f over T 3. G 
is a matrix whose columns are the discrete values of the 

expansion modes at the quadrature points. These matrices 
have the form: 

Wo •o •o 
ß 

0 0 o,o •,o •2,o 

G • 

gxoo (ao, 0o, co) .-. gt..• (ao, 0o, co) 

gloo(aq,• -1, bo, co) '-- glmn (aqa -1, bo, co) 

gloo(aqa--1, bqb-1, Cqc-1) ''' glmn(aqa-1, bqb-1, Cqc-1) 

Given f, •, W and G we can now define the discrete for- 
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ward and backward transformations. The discrete back- 

ward transformation is very simple as given a set of ex- 
pansion coefficients fi•,m the function at the quadrature 
points is evaluated by the summation: 

(2) u(ai,bj,ck) = Z fi_.tmnglmn(ai,bj,ck). 
Iron 

This summation can be written in matrix notation as: 

u=G•. 
-- _ 

To define the forward transformation we first introduce the 

discrete inner product in matrix notation (recalling that W 
is symmetric): 

b, c), v(a, b, c))T3: = 

This operation is exact if the functions u(a, b, c), v(a, b, c) 
lie within the polynomial expansion space and the quadra- 
ture order is consistent with the approximation. Similarly, 
the discrete inner product of the expansion basis g•m• with 
a function u(a, b, c) can be written: 

,(a, b, 
To determine the expansion coefficients and thus define 
the forward transformation we take the inner product of 
equation (2) with respect to the expansion basis. This 
gives us the matrix equation 

GT[Vu = G•WGfi. 
-- _ 

Since the matrix GTWG is square and invertible we define 
the forward transformation by: 

5 = (G•WG)-IGTWu. 

The discrete projection operator, P, is the projection of 
a given function into the expansion space and is simply a 
forward and backward transformation so 

The projection operator can be interpreted as a collocation 
operator, which is used to evaluate the function at the 
quadrature points, followed by a Galerkin projection. 

The matrix notation describes the above operations 
at the quadrature points; however it should be appreci- 
ated that the approximation of the function is a contin- 
uous polynomial and not a discrete representation at the 
quadrature points. Nevertheless, we frequently only re- 
quire the values of our approximation at the quadrature 
points and therefore find it convenient to consider most 
operations in this matrix formulation. 

3.3 Differentiation 

Differentiation may be performed in either the transformed 
or physical space. However, when dealing with terms 
like the quadratic convection operator that appears in the 
Navier-Stokes equation it is efficient to perform the deriva- 
tive in physical space and then evaluate the convection 
operator in a collocation manner. Differentiation in phys- 
ical space is possible since the space defined by Lagrange 
polynomials through the quadrature points contains the 
expansion space Pc. A function in Pc can therefore be 
represented as: 

u(a,b,c) = • u(ai,bj,c•)hiqa-•(a)hJb-•(b)h•c-•(c) 
ijk 

where h/• is the N th order Lagrange polynomial which has 
a unit value at the i th quadrature point and is zero at the 
other quadrature points. Due to the Kronecker Delta prop- 
erty of the Lagrange polynomial (i.e h•(aj) = 5•j) differ- 
entiation at the quadrature points is very efficient, taking 
O(q) operations to evaluate the derivative one point where 
q is the one-dimensional quadrature order. The local gra- 
dient operator in terms of (r, s, t) can then be recovered by 
use of the chain rule since 

4 O 

•r (1--b)(1-c) Oa 

•ss 2(1+a) 0 •7 --- = (1-b)(1-c) aa 

•t 2(l+a) 0 (1--b)(1--c) Oa 

where 

2 0 

(i--c) Ob 

(•+b) a 
(l--c) Ob 

(l+r) (l+s) 
a=2(_s_t) 1 b-2(l_t ) 1. 

There is potentially a problem when b = 1 or c -- 1 since 
i i become infinite. This was the factors, (1-•)(1-•), (•-b), 

part of the motivation for using Gauss Radau quadrature 
in the b and c directions since this means that we do not 

need to evaluate the derivatives at these points. However, 
the derivatives are well defined in this region but not in 
this co-ordinate system. To evaluate the derivative, one 
can take the derivative of the expansion basis in (r, s, t) 
and multiply it by the expansion coefficients. 

We can represent the partial differentiation with respect 
to a, b and c at the quadrature points by the matrix oper- 
ations: 

Ou Ou Ou 

These matrices are fairly sparse and, from an implemen- 
tation point of view, are most efficiently evaluated as a 
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series of one-dimensional operations. If we use the nota- 
tion A[ijk]•vqr] to represent the matrix entry A[i + qa j + 
(qa qb)k][p+qa q+(qa qb)r] then the form of these matrices 
is given by ß 

dh(a.) D•[ijk]•vqr] = da 
D•[ijk]•vqr] - hi(a,) dhj(bq) hk(c•) db 

dhk(c) 
Dc[ijk]•vqr] - hi(a,)hj(bq) dc 

where we recall that the i and p indices run fastest. We 
can represent the partial differentiation with respect to r, s 
and t using these matrices as: 

( 4 ) D• = A (•_•)(•_c) 

Ds = A (•_•(•_•) D•+A (Wz-•-•) 

(-•(•+•) ) f(•+•)• Dt = A (•_•)(•_•) D• + A D• + D•. 

Here we have adopted the nomenclature that A(f(a,b,c)) 
is a diagonal matrix whose components are the values of 
f(a. b, c) evaluated at the quadrature points. 

4 Linear advection equation 

The three-dimensional linear advection equation for the 
scalar quantity, u(x, y, z; t), can be written: 

Ou 

(3) 0--•- + Lu = •- + (V. V')u = 0 
v - [a, b, z; 0) = u0(, z). 

The initial condition u0(x, y, z) is considered smooth. The 
propagation velocity V is real and will typically be taken 
as constant and divergence free (i.e. V'. V = 0). The 
equation is also supplemented with appropriate boundary 
conditions. 

We will discretise this equation in a Galerkin fashion 
by considering the weak form of equation (3). Therefore, 
if we take the inner product with respect to the function 
v(x, y, z) we obtain: 

(4) + Lu) = 0 

4.1 Discretisation 

We consider the solution in an finite domain 12 which is 

fixed in space and has a boundary 012. The domain is as- 
sumed to be split into K tetrahedral subdomains denoted 

by T• each of which has a local boundary OT•. The union 
of the K sumdomains T• is equal to 12, i.e. 

K 

and the domain boundary, 012, is a subset of the union of 
all the local boundaries, 

K 

If we initially consider a single element and let 
v(x,y,z) = g•,•=(x,y,z) then equation (4) becomes: 

gz,•, •- + (g•,•, Lu) = 0 V(lmn). 
Since the solution is approximated as a polynomial func- 
tion we can represent the solution at the quadrature points 
by u and write the previous equation in matrix form (see 
section 3.2) •: 

(5) GT B•t + GT BL• = O, 
Ou 

where •t = • and that B = WJ (J being a diagonal 
matr• containing the value of the Jacobian at the quadra- 
ture points). Finally we can represent the solution vector 
in terms of the expansion coe•cients since • = G•(t). 
Substituting this into equation (5) and noting that 

Ou Gd• 
ot dr' 

we obtain the Galerkin approximation to equation (3) 
within an element in terms of the expansion coe•cients, 

G• BG + G• BLG• = O. 

If this equation w• to be solved on a local element then 
boundary conditions would need to be imposed. This 
would involve condensing the system of any Dirichlet 
boundaries. However at present, we are interested in con- 
structing the global system for multiple elements. We can 
represent the local approximation to equation (3) over all 
elements as ß 

(6) (a•a) • (a•za)• o, •+ = 

where •t denotes a vector containing all the expansion co- 
e•cient from every element •. The underlined matrix 
denotes a block diagonal system made from the K local 
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matrices. In order to define the global expansion as a 
union of C O continuous expansions we need to construct 
the global matrix systems. The operation of expressing 
the local non-unique expansion coefficients, •, in terms of 
the global unique expansion coefficients, 4a, can be repre- 
sented by the mapping matrix Z (see [6,'•0]) i.e, 

= Zg. 

Substituting this relation into equation (6) and premul- 
tiplying the whole equation by Z r we obtain the global 
matrix system: 

r r d•g Zr(GrBLG.)Z_•g O. z (a = 
If •ve invert the global mass matr• (ZT(GTBG)Z) -• we 
obtain the semi-discrete system for the solution of the 
global expansion coefficients: 

(7) • - (z•(a*•a)z) -•z*(a•a)•gz•. dt '- - 

The complete discretisation involves the solution of this 
system of ordinary differential equations in time. The tem- 
poral discretisation we have adopted is the Adams B•h- 
forth multi-step scheme. 

The system may be solved with a range of appropriate 
boundary conditions. Dirichlet boundaries are imposed by 
performing a local boundary transformation (see [10]) on 
any modes which have a non-zero component along the 
Dirichlet boundary and then condensing these modes out 
of the global mass matrix Zr(GrBG)Z. 

To complete the discretisation we need to describe the 
form of the operator L • (V. V). The differential com- 
ponent of the operator acts on the expansion b•is which 
is in the polynomial space, Pt. Therefore, it can be eval- 
uated exactly by differentiating the La•ange polynomials 
through the quadrature points as explained in section 3.3. 
The operator in full is defined: 

o o Oz' 
If we express the partial derivatives in •, F and z in terms 
of partial derivatives in r, s and t using the chain rule we 
obtain: 

L = (aar ba r + c ø'• 0 as+ Oz)+(aO s bOS ) o •+ a• O• 

+ (aat ba t cO t 0 as + ay + az)•' 
Therefore, the discrete version of the L operator acting at 
the quadrature points can be written as: 

L = RDr + SDs + TDt 

where 

and Dr, Ds, Dt as well as A() were as in section 3.3. For 
straight-sided tetrahedral elements the geometric factors 
Or Os Ot 
Ox, oz, Ox,'" are constants and so if a(x,y,z), b(x,y,z) 
and c(x, y, z) are also constants, then R, S and T are sim- 
ply scalars. 

4.2 Spectrum of the weak advection oper- 
ator 

The main purpose of this investigation is determining what 
time step restrictions are imposed by explicit treatment of 
the advection terms. Considering the semi-discrete form 
of the weak advection equation as given in equation (7) we 
note that for a time stepping scheme to be stable we require 

the eigenvalues of At. (ZT(GTBG)Z) -• ZT(GrBLG)Z 
lie within stability region of the time stepping scheme. 
Here At is the time step and clearly this must decay at 
the same rate that the largest eigenvalue grows in order 
for the spectrum to remain within the stability region. 

The matrix GrBLG represent the discrete form of the 
inner product of the expansion basis with the advection 
operator acting on the expansion basis i.e (gt,•n, Lgpqr). 
Now since we have assumed that the propagation velocity 
V is divergence-free, we can write: 

Lg•n = (V. V)g•,• = V. (Vgz•). 

Since glmn,gpqr are both scalar fields we can apply the 
vector identity (<bY. V = V. (•V) - V•. V) to show: 

(glran, Lgpqr) '-- --(Lglran,gpqr) q- /T a V' (glranVgpqr)•V. 
Applying the divergence theorem to the last term we arrive 
at: 

(gtran, Lgpqr) = -(Lgtmn,gpqr) + •o gzmngpqrV' nSA T • 

where n is the outward normal along the boundaries of a 
tetrahedron. This last result demonstrates that the oper- 
ator is skew symmetric if the surface integral is zero. As 
there is no approximation error in evaluating the L op- 
erator, the matrix representation of the discrete operator 
will also be skew symmetric. The surface integral is zero 
if either of the expansion modes glrnn or gpqr iS an interior 
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mode since interior modes are zero along the boundaries by 
design. We are also imposing C o continuity and assuming 
a conforming discretisation, so the surface integral along 
interfaces between two elements will be equal and oppo- 
site. When the system is globally assembled there will be 
zero net contribution from elemental interfaces. The only 
remaining contribution from the surface integral is there- 
fore along the boundaries of the solution domain. If the 
boundary conditions are skew symmetric (i.e. periodic or 
zero Dirichlet) then the global operator will be skew sym- 
metric. 

Since the global mass matrix (zT(GTBG)Z) is sym- 
metric when it premultiplies the weak advection op- 
erator zT(GTBœG)Z (with skew symmetric boundary 
conditions) the matrix (ZT(G T BG)Z) -• zT(G T BœG)Z 
will be skew symmetric. Therefore, the eigenvalues of 

(Zr(GtBG)Z) -• zT(GTBLG)Z must be purely imagi- 
nary. This means that we require a time stepping scheme 
with a stability region encompassing the imaginary axis. 
The third order Adams Bashforth scheme has a stability 
region which crossed the imaginary axis at: 

At. A•,•.• _• 0.723. 

where 3,,,,,,.• is the maximum permissible eigenvalue for the 
scheme to be stable. 

Figure 7: Periodic domain containing six tetrahedral ele- 
ments as shown on the left where the triangle and circle 
indicate vertices C and D respectively (see figure 4). For 
a range of propagation velocities at L = 10 the maximum 
eigenvalue of the matrix (ZT (G T BG)Z) -] ZT(G T BLG)Z 
was calculated and is shown on the right. The propaga- 
tion velocities have a unit magnitude and are parallel to 
the vector connecting the origin of the right plot to a point 
on the hemisphere. 

In order to determine the maximran eigenvalue of the 

matrix (Zr(G TBG)Z) -• ZT(GTBLG)Z we choose a pe- 
riodic domain formed from six tetrahedra as shown in fig- 
ure 7. The domain spans the space {-1 < x, y, z < 1} and 

as indicated by the circles in the plot, the vertex D of all 
tetrahedral elements is placed at point E (1,-1, 1). The 
triangles in this figure indicate the location of vertex A (see 
figure 4). Since the advection operator L is a function of 

the propagation velocity V the matrix (ZT(G TBG)Z) -• 
ZT(GTBLG)Z must also be a function of V. The varia- 
tion of maximum eigenvalues as a function of the propa- 
gation velocity is shown in figure 7. In constructing this 
plot we have assumed that the propagation velocity has a 
unit magnitude and is oriented in the direction given by 
a vector connecting the origin to a point on the surface 
of the hemisphere. It is only necessary to determine this 
range of propagation velocities since propagation in the 
[1, 1, 1] direction forms a matrix which is the negative of 
the matrix due to propagation in the [-1,-1,-1] direc- 
tion and so they will have the same maximum eigenvalues. 
Since we have restricted the propagation velocity to be of 
unit magnitude it is possible to describe any vector by two 
spherical angles o and 0 as shown in figure 8. In this figure 
we see the absolute maximum eigenvalues as shown in fig- 
ure ? parametrised with the spherical angles o and 0. We 
have reversed the direction of the 0 axis to make the plot 
consistent with figure 7. 

Figure 8: Definition of spherical angles 0 and 0 (left) and 
plot of absolute maximum eigenvalues for a unit propaga- 
tion vector (right). This is the same distribution as shown 
in figure 7. 

The values of 0 and 0 at the nearest calculated position 
to the extrema shown in figure 8 are given in table 1. The 
position and form of the extrema can be attributed to the 
structure of the tetrahedral domain shown in figure 7. For 
example the global minimum (extremum 1) corresponds to 
a unit propagation velocity in the [v/•,-X/•-V•] 
direction which is parallel to the diagonal bisector of the 
whole domain running from position C to E in figure 7. 
The triangular structure of this minimum is consistent with 
the directions in which the tetrahedra bisects the faces of 
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Type ½ (degrees) 0 (degrees) Eig. value 
1 minimum -45.3 56.2 12.35 
2 maximum 90.0 45.3 26.65 
3 maximum 45.3 90.0 26.65 
4 maximum 0.0 135.2 26.65 
5 maximum -90.0 135.2 26.65 

Table 1: Table of position and type of turning point in 
absolute maximum eigenvalue distribution shown in figure 
8. 

the domain. These bisectors run in the directions from 
B to E, C to F and G to E which correspond to the 
spherical angles ((b = -180,0 = 45), (•b = 0,0: 45) and 
(0 = -45, 0 = 180). Figure 8 demonstrates that these 
angles make a triangle of similar orientation to the region 
surrounding the minimum extremum at position 1. Let us 
now consider vectors which bisect the faces in the other 
directions i.e.; form A to F, G to B and D to B which 
correspond to the spherical angles (•5 - 90,0 -- 45), (C5 = 
0,0 = 135) and (0 -- 45,0 - 90). V•Te see from table 1 
these angles correspond to the maximum extrema 2, 4 and 
3. Maximum 5 corresponds to a propagation velocity of 
equal and opposite direction to maximum 2. Finally the 
local minima between the maxima 2-3, 3-4 and 4-5 can be 
attributed to the three remaining diagonal bisectors of the 
complete domain i.e. from D to F, H to B and G to A. 
We see that propagation velocities aligned with the ele- 
ment edges lead to minima in the eigenvalue distribution 
whilst maxima correspond to propagation in the orthogo- 
nal direction to those that lead to the minima. This type 
of behaviour has also been observed in the two-dimensional 

expansion [6]. 
We are now in a position to determine the maximum 

eigenvalue growth rate as a function of expansion order. 
The growth rate for three propagation directions is shown 
in figure 9. The most critical directions are those cor- 
responding to the maximum extrema of the eigenvalues in 
figure 8 and we see that the growth rate in the (•b = 45, 0 = 
90) direction is asymptotically faster than the other sam- 
pled directions but is still bounded by a slope of 2. If we 
consider the last three points of these curves we find that 
the slopes are 1.88, 1.79 and 1.82 for the propagation veloc- 
ities of (• = 45,0 - 90)[D - B], (•b - 45,0 = 56.2)[D - F] 
and (0- -45,0- 56.2)[C'- E] respectively. Therefore, 
the growth rate is bounded by L 2. 

4 5 6 7 8 9 10 

Expansion Order 

Figure 9: Growth of the maximum eigenvalue of the 
matrix (zT(GTBG)Z) -! zT(.•TBLG)Z as a function of 
expansion order for propagation velocities of magnitude 
IV[ = v/• with directions of (•b - 45,0 = 90)[D - B], ((p - 
45,0 = 56.2)[D - F] and (•b - -45,0 = 56.2)[C- El. 

5 Numerical examples 

Extensive numerical results that verify flexibility and ex- 
ponential convergence for the triangular and tetrahedral 
spectral elements can be found in [6], [7], and [10]. Here 
we include two examples: One on the elliptic Helmholtz 
equation, and the second one on a standard Navier-Stokes 
problem. 

The elliptic Helmholtz equation (V • - 1)u = f) was dis- 
cretized on the "helix" domain shown in figure 10. This 
domain is formed by rotating a circle with a triangle com- 
ing out of it about the axis through the center of the circle. 
Also included in the figure is the crossection that gener- 
ates the three-dimensional domain by propagation along 
the axis. This 3D mesh generation algorithm from 2D 
templates is described in [11]. The forcing is chosen so 
that the exact solution is 

1 
z) = 

+ 1 

= 
where R - 1 is the radius of the cylinder. The full domain 
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Figure 12: Growth rate as a function of Reynolds num- 
ber of the streamwise distance to the re-attachment point 
L and eddy center L2 from the expansion shoulder. Also 
shown in this plot is a comparison with a spectral element 
calculation in cylindrical co-ordinates [12] and experimen- 
tal data determined by Macagno & Hung [13]. 

can be seen our calculations are in good agreement with 
both the experimental data as well as the quadrilateral 
spectral element code. 

6 Acknowledgements 

We would like to thank T.C. Warburton of Brown Univer- 

sity for his assistance with the Helmholtz problem. This 
work was sponsored by AFOSR, ONR, and DOE. Compu- 
tations were performed at the Pittsburgh Supercomputing 
Center and at NCSA University of Illinois. 

References 

[1] C. Bernardi, Y. Maday, and A.T. Patera. A new con- 
forming approach to domain decomposition: the mor- 
tar element method. In Nonlinear Partial Differential 
Equations and Their Applications, Pitman and Wiley, 
1992. 

[2] R.D. Henderson and G.E. Karniadakis. Unstructured 
spectral element methods for simulation of turbulent 
flows. in press, J. Comp. Phys., 1995. 

[3] J.T. Oden W.Wu and V.Legat. An hp adaptive 
stratergy for finite element approximation of the 
navier-stokes equations. In Finite Elements in Flu- 
ids - New trends and applications, page 32. Pineridge 
Press, 1993. 

[4] L. Demkowicz, J.T. Oden, W. Rachowicz, and 
O. Hardy. Toward a universal h-p adaptive finite ele- 
ment strategy, Part 1. constrained approximation and 
data structure. Comp. Meth. Appl. Mech. Eng., 77:79, 
March 1989. 

[5] M. Dubiner. Spectral methods on triangles and other 
domains. J. Sci. Comp., 6:345, 1991. 

[6] S.J. Sherwin and G.E. Karniadakis. A triangular spec- 
tral element method; applications to the incompress- 
ible Navier-Stokes equations. in press, Comp. Meth. 
Appl. Mech. Eng., 1995. 

[7] S.J. Sherwin and G.E. Karniadakis. A new triangu- 
lar and tetrahedral basis for high-order finite element 
methods. in press, [nt. J. Num. Meth. Eng., 1995. 

[8] C. Canuto, M.Y. Husanini, A. Quarteroni, and T.A. 
Zang. Spectral Methods in Fluid Dynamics. Springer- 
Verlag, 1988. 

[9] A. Ghizzetti and A. Ossicini. Quadrature Formulae. 
Academic Press, 1970. 

[10] S.J. Sherwin and G.E. Karniadakis. Tetrahedral hp 
finite elements: Algorithms and flow simulations. in 
press, J.C.P., 1995. 

[11] T.C. Warburton, S.J. Sherwin, and G.E. Karniadakis. 
Extrusion of 3d meshes from 2d templates for compu- 
tational mechanics problems. in preparation. 

[12] D.J. Newman and G.E. Karniadakis. Navier-Stokes 
formulation in cylindrical co-ordinates of the prism 
code. 1994, Brown University, unpublished report. 

[13] E.O. Macagno and T. Hung. Computational and ex- 
perimental study of a captive annular eddy. J. Fluid 
Mech., 28:43, 1967. 

[14] G.E. Karniadakis, M. Israeli, and S.A. Orszag. High- 
order splitting methods for the incompressible Navier- 
Stokes equations. J. Comp. Phys., 97:414, 1991. 


