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Abstract 

Accurate and stable numerical methods are particularly 
important in viscoelastic flow simulations. Local h- and 
p-refinements are introduced in order to obtain very high 
rates of convergence, even in the presence of singularities. 
We present several adaptive strategies, based on an error 
estimator which is an extension of some rigorous results of 
Oden, \Vu and Ainsworth ([13, 1, 2]). For Navier-Stokes 
equations, error estimation and adaptivity have already 
been exploited in [14]. Numerical results obtained illus- 
trate both the validity of the error estimation technique 
and the efficiency of the adaptive procedure chosen. A 
comparison is made for each problem between different 
adaptive strategies. 

Key words: hp-finite element, error estimation, vis- 
codastic flows, boundary discontinuities. 
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1 Introduction 

Accurate and stable numerical methods are particularly 
important in viscoelastic flow simulations. More and more 
attention has been devoted to spectral ([4], [9], [16]) and 
high order methods ([17]). For smooth problems, those 
methods exhibit an exponential rate of convergence and 
an improved robustness when increasing the elasticity of 
the fluid. In order to extend these properties to practical 
applications with singularities, we describe an hp-adaptive 
finite element method. The particular choice of hierarchi- 
cal shape functions and the use of 1-irregular meshes allow 
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us to introduce an interesting combination of local h- and 
p-refinements ([8]). 

The element size h and the order of approximation p are 
adjusted by different adaptive strategies in order to obtain 
very high rates of convergence, even in the presence of sin- 
gularities. Our strategies, based on a priori and a poste- 
riori error estimates, produce hpofinite element meshes, so 
that the computer time required to achieve a target error 
is significantly reduced. 

Numerical results obtained with the classical Upper 
Convected Maxwell-B (UCM) fluid and the Modified Up- 
per Convected Maxwell (MUCM) fluid illustrate both the 
validity of the error estimation technique and the efficiency 
of the adaptive procedure chosen. A comparison is made 
for each problem between different adaptive strategies. 

2 Governing equations 

We consider the steady flow of an incompressible viscoelas- 
tic fluid in a domain f•. If we neglect inertia, the conser- 
vation equations are: 

-V.o- = f 
(1) 

V'u = 0 

where u is the velocity field, f the body force, • the 
Cauchy stress tensor. 

On the other hand, the MUCM constitutive equations 
(see [3, 5]), describing the viscoelastic properties of the 
fluid, are the following: 

• = •'N+•'v--pI 

(2) •'N = 2vND(u) 

•'v + A(tr(•'v)) •'v = 2r•vD(u) 

where p is the pressure, I the unit tensor, D(u) is the 
strain rate tensor. 

The Cauchy stress tensor is splitted into a Newtonian 
component •'N and a viscoelastic contribution •'v. qN 
and •7v are the associated dynamic viscosities. The symbol 
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• denotes the upper convected derivative and ,k is the 
relaxation time of the fluid, defined as follows: 

A0 

(3) = 
ß 

r/v 3'o 

xvhere % is a characteristic shear rate of the problem. 
Dirichlet boundary conditions are imposed on veloci- 

ties at inflow sections and along rigid walls (Of•D) while 
extra-stresses are imposed at inflow sections 0f•rnj'low only. 
Dirichlet and classical Robin conditions are imposed on the 
velocity field respectively at outflow sections 0f•o•uj, low C 
Of•D and along axis of symmetry 0f•R. 

Remark 1 Unlike classical Oldroyd-B model (F - 0) or 
Maxwell-B model (r/N = 0; F = 0), the MUCM model 
guarantees the well-posedness ([5]) of the boundary 
value problem, as the stresses rv remain square inte- 
grable at geometrical singularities. 

The problem can be characterized by the Weissenberg 
number which compares elastic and viscous forces in the 
fluid. Taking V as a typical velocity and R as a typical 
length of the problem, it is defined as: 

We = 

X weak formulation of (1),(2),(3) is built using a 
weighted residual method. The components of the solution 
vector (rv,u,p) are chosen inside the following spaces: 

s = = 

V (s, v, q) • T•P(f•) 

TnP(f•) is built in order to keep the discrete solution 
in Cø(•) when local refinements are applied. At the el- 
emental level, the solution is approximated using hierar- 
chical shape functions. The orders of approximation as- 
sociated with each field cannot be chosen independently. 
We use the Ladyzhenskaya-Brezzi-Babugka (LBB) condi- 
tion to select the pressure approximation and, from nu- 
merical experiments presented in [18], we take Pvelocity = 
P•tra-•tr•** - 1. As in [8], we restrict ourselves to 1- 
irregular meshes. Additional constraints are imposed along 
irregular interfaces in order to enforce the Cø-continuity. 
Local p-refinement of an element doesn't involve any ad- 
ditional constraints. Its neighbours are automatically en- 
riched by the addition of extra shape functions. 

The whole system is solved by a fully coupled Newton- 
Raphson scheme and a direct solver. 

4 Adaptive strategy 

First, we recall briefly our adaptive strategy which is a gen- 
eralized version of the procedure given in [12] and exploited 
in [10]. 

4.1 A priori error estimation 

From the definition of the approximation space ThP(•), 

V • 
the following local interpolation property holds for each 

{u • (H•(f•))•'u = i• on Of•D, u. n = 0 on Of•} scalar variable on element f•K(1 $ K _< N •) ß 

discretization of the Spatial 
problem 

We select a suitable finite dimensional subspace T•P(f•) 
inside S x V x Q • and rewrite the discrete form of the 
weak problem using the classical Galerkin's method. 

• 2•Iv D(uhP) ' 
o 

sdx 

Given body forces f • V*, 
find (•'•?, u •p, php) • ThP(•) such that 

(4) ('F i•P ' $ -•- ,• 'F CP ' $ ) dx -- 

D(v) - f .v = 
(6) jf• q V' . u •p dx = 0 

1A detailed description of ThP(•) is given in [18] 

kmin(p/< +1 -- s, r - s) 

(7) U--•hp s,f•K • C '•K IlUllr.•- 

where u • Hr(fi), r > s, •P is an appropriate approxima- 
tion of u, II is an usual Sobolev norm, h/c is the 
maximal diagonal length inside fi/c and p/c is the lowest 
order of approximation of •P inside 

As a well-known property in all viscoelastic flows, we ex- 
pect the extra-stresses to be mainly affected by errors. The 
convective term in the constitutive equations (2), stress 
concentration near geometrical singularities and the ap- 
pearance of very thin stress boundary layers due to the 
presence of normal stresses are the three main reasons for 
inaccuracies in viscoelastic flow simulation (see [6]). 

To extend the interpolation error (7) to our multivariable 
problem, an energy-like norm is defined on S x V x Q as 
the sum of the following quantities: 

N h 

II[(s'v'q)111•'= E/n K=I /• 

s ß s + 2r/•D(v) ß D(v) + q2dx 
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An a priori error estimator is therefore available by 
rewriting Equation (7): 

K 
(8) [11( 'reftør, uerrør, Perrør)[l[•C -• _-Yb-ff• A• 

where AK, •K, rK •e local unknown constants and the 
reference order of approximation p• is taken from the 
stress field interpolation. 

We assume that the actual error 

[[](•er•or, U•rror, pe•ror)[[[ K in Equation (8) is available to 
su•cient accuracy through an a poste•ori error estimator. 

4.2 A posteriori error estimation 

We use an error residual method developed in [11, 13, 1, 2]. 
We generalize here this approach for viscoelastic flows. 

The global a posterJori error estimate Oi for a given mesh 
7•i is defined as follows 

Oi 0 2 

where Oi.•: is the local error estimator computed on each 
element ft•:. •Ve have ß 

Oi.K = Ill(•r• t, u• t, P•t)IIIK 
where , •K , • SK x V• x QK is such that 

(9) • •.•t. s•cdx= 

(10) 

(11) 

2•¾D(•') ' D(•K)• = 

f• np np D(vK)dx ): 

/• f 'vKdx K 

p•t qK dx-- 

f.o. q•: V . u? dx K 

V SK • SK, V VK • VK, V qK • QK, i _• K •_ N •. 

where SK, VK and QK are the restrictions of S, V and 
o. est (,•hp hp hp Q to element f•K and (nK ß WK, UK, PK )) is a flux 

term appearing in the local problem, as the continuity con- 
straints have been relaxed at the interelement boundaries. 

Remark 2 Note that _½•t and p•t '• K are obtained straight- 
forwardly from Equations (9) and (11), while a small 
Poisson problem is required to find u• t. 

4.3 Adaptive strategy 

Let us start with an initial mesh •Pi (i - 0), where we 
solve an hp-discrete problem and we compute the a pos- 
teriori error estimator Oi,• on each element f•c. A new 
mesh •Pi+x is obtained by means of local h-refinements or 
p-enrichments in order to reach a given level of accuracy 
Otgt. Such modifications of both mesh size distribution and 

polynomial degree distribution are derived by taking ad- 
vantage of the a priori and the calculated a posteriori error 
estimates. If pure h-refinements are applied, the number 
nK of new subelements inside each element of •Pi has to 
satisfy 

(12) nK --' Nih+l 
J 

(13) N•n+• = 
K-----1 

A description of the pure p-refinements needed to reach 
a prescribed level 9t•t is obtained from the following ex- 
pression. 

(14) Pi+l,K -- [Ni h (Oi'K)2 
Remark 3 Several numerical experiments have shown 

that abrupt increase of the order of approximation 
between two neighbouring elements can be detrimen- 
tal for the accuracy of the solution. We will therefore 
prevent these jumps in the p-distribution by adding 
extra-elements to the list given by Equation (14). 

We now apply our method to two model problems: the 
flow around a sphere falling in a cylinder and the flow in 
an axisymmetric contraction. 

5 Numerical results 

The first implementation of hp-finite element methods was 
developed at TICAM by Demkowicz and Oden over a 7- 
year period [8, 11, 15]. In order to generalize such an 
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approach to viscoelastic flows, a new software has been 
developed here, with new and more efficient data struc- 
tures. 

5.1 Sphere problem 

For the first problem, we use the Maxwell-B fluid and we 
impose no-slip conditions along the sphere, failing at a con- 
stant velocity V. The radius of the sphere is half the radius 
of the cylinder and our calculation domain extends from 
-15R to 30R, with the sphere centered at the origin. The 
drag correction factor is defined by the ratio between the 
drag D exerted on the sphere and the drag D O exerted by 
a creeping NewtonJan flow on a sphere in an infinite space, 
given by D O = 67rrlvVR. 

5.8 C•assical 4X4 Finite Element Method ¸, P-Finite Element Method 

5.6 I •x•-Adaptive Finite Element Method 
5. 

4.6 

ß 

4.4 
4.2 ' ' ' ' ' ' 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 

Figure 1: Sphere problem (Re=O), Maxwell-B fluid. Drag 
correction factor vs We number. 

We compare the drag correction factors obtained at in- 
creasing We with several low- and high-order finite ele- 
ments. These results are reported on Figure 1. With a 
classical low-order method (taken from [7]), numerical in- 
accuracies developed during the calculations prevent the 
continuation scheme to reach We numbers larger than 0.8. 
The stresses are interpolated with 4 x 4 linear subelements, 
while velocities and pressure are, respectively, biquadratic 
and bilinear. A very fine mesh is used with 510 elements 
and 38644 degrees of freedom. 

A p-finite element method with 3 times less degrees of 
freedom, allow us to reach We = 0.9. The order of ap- 
proximation for stresses, velocities and pressure are set, 
respectively, to 6,5 and 4 throughout the mesh. 

Using a purely p-adaptive finite element method, local 
enrichments of the stress field up to order 7 bring the crit- 
ical 157e number to 1.1. Note that less than 5% extra 

degrees of freedom were needed for this computation, if 
compared with the p-method. 

In this smooth case, it is not optimal to apply local h- 
refinements. Global or local p-enrichements lead to im- 
pressive reductions of the number of degrees of freedom 
and to an increased robustness of the algorithm. 

0.06 

Estimated error ¸ 
Drag based error -[--- 

0.006 
3500 6000 

Figure 2: Sphere problem (Re=O), Maxwell-B fluid. Error 
index vs Number of degrees of freedom. 

Using the estimation technique described above, we com- 
pute the a posterJori error estimates obtained during a pure 
p-adaptive process. Although no analytical proof is avail- 
able for this estimator, comparisons can be made with a 
reference solution to validate the proposed procedure. It 
can be pointed out that the error estimator provides a 
similar evolution with mesh enrichments, as obtained if we 
compare the calculated drag with a reference value (given 
in [7]). The two curves are plotted on Figure 2. Such 
drag based error estimator is in fact unavailable in practi- 
cal problems, where we do not have any reference. 

5.2 Axisymmetric contraction problem 

The second problem considered is the steady motion of a 
viscoelastic fluid through an abrupt 4:1 contraction. We 
impose v = /• and 'rv = •'v on c9f•r,•ftow, assuming 
that these fields are fully developed. We suppose that the 
fluid sticks to the wall and we impose zero normal veloc- 
ity and zero tangential force along the axis of symmetry. 
Only velocities are imposed at the exit section, which is 
taken long enough to insure a fully developed profile. This 
profile is chosen to achieve global mass conservation in f•. 
The lengths of the entry and exit sections are equal to 20 
downstream radii. 

In the particular case of an Oldroyd-B fluid (F = 0, 
rlV/(ON +T]V) = 0.875), the particular form of Equation (2) 
may lead to non-integrable extra-stresses at the reentrant 
corner. We compare several adaptive strategies in order to 
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monitor the behaviour of 

singularits'. 

i i 

the solution in the presence of a 

I 2 3 4 5 6 7 8 

Figure 3: Abrupt 4:1 contraction (Re=0,We=2), Oldroyd- 
B fluid. Closeup view of the meshes. 

Pure h-refinements As in classical finite element meth- 

ods. convergence is obtained by splitting elements into 
smaller one. These refinements occur mainly at the 
vicinity of the singularity (see Figure 3), which lead 
to the convergence curve plotted in Figure 6. 

Figure 4:4:1 Contraction (Re=0,We=2), Oldroyd-B fluid. 
Closeup view of the meshes. 

Pure p-enrichments We know from approximation the- 
ory that p-enrichments only reduce the error with an 
algebraic rate of convergence in presence of a singu- 

larity. This is well observed for this viscoelastic prob- 
lem and the convergence rate of this p-finite element 
method is the same as the rate obtained with the clas- 

sical h-method (see Figure 6). The three successive 
meshes used are shown in Figure 4, where shaded el- 
ements reflect a non-uniform p-distribution. 

I 2 3 4 5 6 7 8 

Figure 5:4:1 Contraction (Re=0AX•=2), Oldroyd-B fluid. 
Closeup view of the meshes. 

Mixed h- and p-refinements In our hp-adaptivity. the 
first step consists of pure h-refinements. This h-refined 
mesh is then modified by pure p-refinements, leading 
to a higher global convergence rate of the method (as 
shown in Figure 6). Figure 5 presents the different 
meshes used in this approach. 

0.13 

0.04 

HP-Refinement Q 
Pure h Refinements - ',•--- 

.•j ...... Pure p Refinements --• .... -.. 

2200 4000 

Figure 6:4:1 Contraction (Re=0,We=2), Oldroyd-B fluid. 
Error index vs Number of degrees of freedom. 

Now using a MUCM model, Equation (3) leads to a 
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Newtonian behaviour of the fluid in singularity areas. The 
stresses remain square integrable and pure p-refinements 
give the highest rate of convergence, as shown in Figure 7. 

0.13 

0.04 
2200 

HP-Refinement ¸ 
Pure h Refinements q--- 

.•Pure p Refinements --•--- 

5100 

Figure 7:4:1 contraction (Re=0,We=6), MUCM fluid. Er- 
ror index vs Number of degrees of freedom. 

6 Conclusions 

An hp-adaptive finite element method has been proposed 
to solve viscoelastic flow problems in complex geometries. 
An a posterJori error estimation procedure has been set 
up. generalizing rigorous results of Oden et al. for Stokes 
and Navier-Stokes equations. Earlier experiments which 
illustrated the validity of the estimator on the 4:1 contrac- 
tion have been confirmed on the sphere problem, taking 
the drag correction factor as relevant parameter. 

Numerical results obtained on both test problems show 
how the domain geometry and the form of the constituve 
equations affect the rate of convergence. This allows us 
to select well-suited adaptive strategies and to save many 
degrees of freedom. The CPU time required to achieve a 
target error is therefore significantly reduced. 
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