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Abstract 

The h-p-version of finite-elements delivers a sub- 
exponential convergence in the energy norm. A step to- 
wards a full adaptive implementation is taken in the con- 
text of unstructured meshes of simplices with variable or- 
der p in space. Both assumptions lead to desirable prop- 
erties of shape functions like symmetry, p-hierarchy and 
simple coupling of elements. 

In a first step, it is demonstrated that for standard poly- 
nomial vector spaces on simplices not all of these features 
can be obtained simultaneously. However, this is possible 
if these spaces are slightly extended or reduced. Thus a 
new class of polynomial shape functions is derived, which 
is especially well suited for three dimensional tetrahedra. 

The construction is completed by directly minimizing 
the condition numbers of the arising preconditioned local 
finite element matrices. The preconditioner is based on 
two-step domain decomposition techniques using a multi- 
grid solver for the global linear problem p = 1, and direct 
solvers for local higher order problems. 

Some numerical results concerning an adaptive (feed- 
back) version of h-p finite elements are presented. 
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1 Introduction 

We choose the simplex as finite element for unstructured 
grids, which is a tetrahedron in three dimensions, and ap- 
proximate the solution by a polynomial on each element. 
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We use conforming finite elements in a (self-) adaptive code 
with efficient iterative solvers, a posteriori error estimators, 
globally varying polynomial degrees and h-p-adaptation. 

On the interval, the one dimensional case, say [-1, 1], 
the classic orthogonal Legendre polynomials are leading to 
a kind of optimal set of shape functions for the p- and h-p- 
version (see [3]) of finite elements for the Laplace equation. 
In spite of differing suggestions [2, 6, 8, 18, 21, 22], there is 
no canonical set of polynomials in higher dimensions. For 
the simplex one has to give up some of the nice character- 
istics of the Legendre polynomials and a more complicated 
approach has to be used. 

An Analysis leads to some useful properties of shape- 
functions on the simplex. Only some properties are com- 
patible with each other. Each version of finite elements 
differs in exploiting these properties for an efficient imple- 
mentation. This is the first part of the present paper. In 
the second part we construct vector spaces containing sets 
of polynomials well-suited for the p- and the h-p-version of 
finite elements. In the third part we construct shape func- 
tions within these spaces which are optimal in the sense of 
an optimal condition number of the preconditioned linear 
system. Finally, we present some other ingredients of an 
adaptive or feedback finite element code in the sense of [10] 
like error estimation and grid refinement control. 

2 Properties of shape functions 

2.1 The problem 

We consider a linear second order elliptic symmetrical 
boundary value problem. A suitable set of conforming 
shape functions V)i • H•(•2) has to be chosen (displace- 
ment functions). These shape functions are formed by lo- 
cal shape functions ½i on each finite element. 

We introduce the barycentric coordinates (b0, b•,..., 
in a d dimensional space with respect to a d-simplex, some- 
times called area or volume coordinates or homogeneous 
coordinates. They may be characterized by an arline trans- 
form with coordinates (0,..., 0, 1, 0,..., 0) corresponding 
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to a vertex of the simplex. Hence, coordinate •(1,..., 1) 
is the centroid of the simplex. Using multi index notation 
we define the vector space 72• of polynomials of degree p 
in d variables by the linear span of 

U 

Sometimes shape functions are written in terms of (x, y, 1- 
x- y} on a reference triangle. This is equivalent to a 
function in {b•, b2, b0}. 

2.2 Hierarchy and orthogonal polynomials 

V•e introduce the concept of p-hierarchy or p-extension. 

Definition 2.1 If we have a basis Bp of shape functions 
spanning the function space ]2p and we want to reach the 
space ]2p+•, we simply can add some shape functions to 

r•ext get the enhanced basis •pq-1 

•2p+l = (•p+l) • (•p) • (•p+l • •p) 

P-hierarchy is an integral part of an approximation with 
varying order p in space. If we choose the order p• on one 
finite-element and a different p2 on a neighboring element, 
we can achieve global continuity by linear constraints like 
[8] or by handling the p-hierarchic excess in a special way 
(setting it to zero). 

An example for p-hierarchic polynomials are the pre- 
viously mentioned Legendre polynomials. The Legendre 
polynomials fp (x) are orthogonal with respect to the scalar 
product (...) on [-1, 1]. They are hierarchical in their poly- 
nomial degree p and symmetrical to the origin. The sym- 
metry behavior is alternately odd and even. To exploit the 
orthogonality in the case of a one dimensional problem for 
the Laplace operator one has to use integrated polynomials 
as shape functions: f fj(t)dt [21]. Then, the bilinear form 
a(zt, v) - (•u,--dr) operates on the same terms as the dx 

scalar product does in the previous case. The integrated 
polynomials are orthogonal with respect to the bilinear 
form. 

Definition 2.2 Here, we associate the term 'orthogonal' 
polynomials with a sequence of nested sets of polynomials 
Bx C B• C ... for a specific bilinear form. The polynomials 
have to be linearly independent. A polynomial f • Bi is 
orthogonal with respect to this bilinear form on the vector 
space generated by the basis Bi-1 (no condition for B1). 
The vector spaces generated by •i are usually the vector 
spaces of polynomials T?+l. The polynomials in 13i • 13i_• 
need not be orthogonal onto themselves. [] 

Orthogonal polynomials are hierarchical in p by defi- 
nition. Orthogonal polynomials do not necessarily lead 
to local matrices with condition numbers equal to one, 
nj(A •øc) -- 1, like the Legendre polynomials. However, 
a basis with this desirable property can be constructed. 

2.3 Coupling 

We call the assembly of local finite-element-matrices into 
a global one coupling, sometimes called 'global assembly'. 
One line of interpretation is the representation of global 
FEM ansatz functions, each connected with an degree of 
freedom, by linear combinations of local shape functions 
on an element. Coupling means this linear combination, 
which ideally is a one-to-one relation (local permutation 
matrix, called 'simple'). This would be the case for so- 
called compatible shape functions. Many FEM codes use 
this simple form of global matrix assembly, assuming that 
the local shape functions are suited for it. 

Another bottom-up interpretation is that we have to 
guarantee we are dealing with globally continuous shape 
functions {•i}, which are formed by properly connected 
local shape functions {•bi}. We introduce two new terms: 
simple and minimal coupling. 

Definition 2.3 We call the coupling of the shape func- 
tions of two connected elements minimal, if the number of 
shape functions involved is minimal. [] 

This number n(E, E*) equals twice the dimension of the 
polynomial vector space on the intersection E • E* of both 
elements E, E*. Coupling coefficients zero corresponding 
to vanishing shape functions on the intersection do not 
contribute to n. 

We can express the coupling by an under-determined 
system of linear equations. Taking a coupling matrix C 
and the sets of shape functions {½i} and {½?}, we can 
write the constraints as 

C.(qS;, ½2, ..., •b•, •b•, ...)T=0 on EQ 

By eliminating columns containing only zeros, eliminat- 
ing linearly dependent rows and permuting we arrive at a 
reduced matrix C • R •X • of rank n. 

We introduce a stronger term of coupling by a special 
kind of minimal coupling which we call simple. The under- 
determined system of linear equations with (reduced) ma- 
trix C should facilitate the conversion between the coef- 

ficients of the functions {(•i} and {•j}. We reduce the 
matrix C to a smaller matrix • by leaving out columns 
which are linearly dependent or zero. 
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Definition 2.4 We define a coupling of shape functions 
(0i} and ( O? }~simple, if there exists a reduced and per- 
muted matrix C of maximal rank which has block-diagonal 
form with 1 x 2 non-zero blocks. [] 

The reduced matrix looks like this: 

•= •2 '. with• •R xx2. 
ß 

Examples 2.1 We look at the simple coupling of two el- 
ements E and E* with 2 x 2 local matrices A and B 

and shape functions {½1,02} and {½•,½•}. Function ½2 
equals function ½• on E 71 E*. No other shape functions 
of E and E* are correlated. This leads to a matrix C = 
( 0 1 -1 0 ), a reduced matrix • = •1 - (1 - 1) 
and to 

( all a12 ) a12 a22 

coupled with 

adds up to 

bll b12 ) b12 b22 

all a12 0 ) a12 a22 +bll bl2 . 
0 b12 b22 

Simple coupling may also appear as blocks of •i = (1 1), 
in general as •i = (1 A), A • 0 or as small blocks simply 
im'ertible. 

The Lagrange polynomials are interpolation polynomials 
on a set of equidistant points called 'control points' xi. The 
polynomials are defined by the orthogonality relation 

= 

The polynomials of degree p are defined on a d-simplex by 
the equidistant distribution of (P•) control points on the 
simplex, spanning the space 72p •. The set of Lagrange poly- 
nomials implements the interpolation property of the lin- 
ear shape functions p - i often used for conforming finite 
elements. Global continuity can be achieved for a uniform 
polynomial degree p, identifying shape functions of all el- 
ements sharing one geometric control point (coupling of 
element matrices). Implementation of Dirichlet boundary 
conditions is easy, too. Shape functions are symmetric/ 
affine invariant due to symmetry/affine invariance of the 
control points. 

Remark 2.1 We conclude that there are shape functions 
with minimal and simple coupling. Some are symmetrical, 
too. 

There are some slight modifications, moving the posi- 
tion of the control points and using points of the numeri- 
cal integration formula. There are other proposals for un- 
symmetric modifications of edge shape functions in the in- 
ner of a triangle like [11, 7], which are difficult to generalize 
for tetrahedra [20]. 

2.4 Symmetry 

Definition 2.5 We denote the group of permutations of 
d elements with S• and the subset of the alternating group 
with S•. [] 

Definition 2.6 We define the action of a group S c 
on a set of polynomials B in d variables by the set of poly- 
nomials resulting from permuting the input variables (by 
the permutations of the group) in barycentric representa- 
tion. This covers the definition of the action on a single 
polynomial and on a whole vector space of polynomials. 

ss: LJ 
f•B,s•S 

Definition 2.7 We call a polynomial f, a set of polynomi- 
als B and a vector space 12 of polynomials "S-symmetrical", 
if it is invariant with respect to the action of S 

f=Sf, B=SB and 12=S12. 

It immediately follows that 

ß a set of S-symmetrical polynomials is an S- 
symmetrical set of polynomials and 

ß a vector space generated by an S-symmetrical set of 
polynomials is S-symmetrical itself. 

Additionally, we introduce point-symmetry which is not 
covered by the previous definitions. 

Definition 2.8 We define a set of polynomials B to be 
S•+x-symmetrical in d variables by 

Vs • Sa+• and Vf • B holds sf • 13 or - (s f) • 13. 
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Remark 2.2 Defining symmetry by Vs E Sd+l and Vf 
13 3A • R • {0} with h(sf) • 13 leads to h = -4-1, too. 

Lemma 2.1 An Sñ-symmetrical set B of polynomials is 
S +-symmetrical. 

Remark 2.3 We conclude that there are S•- and S•t- 
symmetrical shape functions. 

2.5 Symmetry and coupling 

Finite Element methods often use a simple set of shape 
functions defined on a reference element. In the case of 

simplices, each shape function is transferred to a real el- 
ement using an affine transformation. There are different 
possibilities for realizing this transformation. The trans- 
formation is unique only modulo permutation of the corner 
points. Hence, one has to be able to couple any face of one 
element with any face of another one; where faces can be 
points, edges, triangles and so on. 

One can think of a completely oriented tessellation where 
the coupling is restricted to only some distinguished com- 
binations of faces. But, in general, there is no such orien- 
tation. 

Hence, there is no way out of having a deeper look into 
symmetry and coupling properties. 

Theorem 2.1 

A set of shape functions for a general conforming tessella- 
tion of d-simplices will permit a simple coupling with blocks 
•i - (1 - 1) if, and only if, the shape functions per- 
mit minimal coupling and are Sj+l-symmetrical on each 
j-dimensional face of a simplex. 

\Ve can relax this condition a little by requiring only 
•i - ñV;• on the common boundary which leads to addi- 
tion and subtraction of local matrices. 

Corollary 2.1 
A set of shape functions for a general conforming tessella- 
tion of d-simplices will permit a simple coupling with blocks 
• - (1 ñ 1) if the shape functions permit minimal cou- 
pling and are S•:+l-symmetrical on each j-dimensional face 
of a simplex. 

Remark 2.4 S•+l-symmetry is correlated with simple 
coupling of (1 - 1) and S•+l-symmetry is correlated with 
simple coupling of (1 ñ 1). 

2.6 Symmetry and hierarchy 

We now want to derive the correlation of symmetry and 
p-hierarchy. The Legendre polynomials for example are p- 
hierarchic and S•-symmetrical, which simply means point 
and axial symmetry in one dimension. For d dimensions 
we get the following main result: 

Theorem 2.2 

There is no p-hierarchical S•++•-symmetrical polynomial ba- 
sis on the d-simplex for d • 1. 

Proof We look at the p-hierarchical step from polynomial 
degree j(d+l) to j(d+l) +1with j • No. Note that 
the dimension of symmetrizations of the set {b0 - bx, b• - 
b2,..., bd-1 - b•}(b0 ß bx"' ba)J is at least d •- 1, but the 
vector space is of dimension d. [] 

Corollary 2.2 
There is no p-hierarchical S•+•-symmetrical polynomial ba- 
sis on the d-simplex for d • 1. 

Theorem 2.3 

There is no p-hierarchical Sa+•-symmetrical polynomial ba- 
sis on the d-simplex for d _• 1. 

Corollary 2.3 

There are no Sa++x-symmetrical orthogonal polynomials on 
the d-simplex for d • 1. 

Remark 2.5 Symmetry and simple coupling on the one 
hand and p-hierarchy for •pa on the other hand exclude 
each other. 

3 Construction of polynomial 
Spaces 

We want to construct a family of p-hierarchical shape func- 
tions for the d-simplex. It has to facilitate a simple cou- 
pling which implies symmetry (chapter 2.5). It should be 
suitable for a p- and h-p-version of finite elements with 
variable order p which means p-hierarchy, in some sense. 
Both properties are not possible at the same time (chapter 
2.6). 

We have to cope with the limitations of theorem (2.2). 
We shall enlarge the polynomial vector spaces •Pp• slightly 
and construct new Sd+•-symmetrical vector spaces which 
avoid the irreducible subspaces of the proof. 
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3.1 Symmetry Sd 

$Ve recursively construct a basis for the new vector space 
9Dd,syrn •d,sym by the span of the vector space --1 one degree ß p 

lower and additional functions. These functions are in- 

ternal functions formed by the product of the "bubble" 
d 

function l-Ij=0 bj with functions of degree (p - d - 1) and 
boundary functions defined on the faces. The boundary 
functions are Sd+l-permutations (symmetrizations) of such 
(lower-) /-dimensional functions ( p--i--1' X-Ij----O bj), i < d. 
The only difference to the standard polynomial spaces 'pp• 
is the beginning of the recursion. We start with {b0} for 
/•0 ø which actually has degree 1. If we want to get the stan- 
dard polynomial spaces 'pp•, we should have taken {1}. We 
have enlarged the vector space. This enlargement spreads 
to the higher dimensions and the higher degrees. 

Definition 3.1 We recursively construct a basis for the 
new vector space in barycentric coordinates based on lower 
dimensions and lower degrees using the group of permuta- 
tions Sd: 

o •o ø = {bo} 

o Bpø=O. p>0 

i 'bo'bl ..b,), d> 1. O •pd = U/d__0 Sd+l(]•p_i_l . __ 

Sometimes shape functions are written in a form like 
{x, y. 1 - x - y} on a reference triangle. This is equivalent 
to {bt, b2, bo}. 

Remark 3.1 In the previous definition we can substitute 
the action of Sa+l by the combinations without repetition 
of i + 1 elements of the set {bo, bl,..., ba}. 

Definition 3.2 We now define the new polynomial vector 
spaces as the span of the basis functions in d dimensions: 
'ppd.sym P = <Ui----O r/d) [] 

Remark 3.2 The vector spaces • Od'sym are ß p 

Sa+•-symmetrical. Their bases •d,sym are p-hierarchical, --p 

facilitate minimal and simple coupling with blocks (1 -1) 
and are enlarged 'pp• C •d,syrn C d -- ß p - 'P•+ I . 

These polynomial spaces are well-suited for the coupling 
(1 - 1), but they have got a high dimension (-- too many 
shape functions). If we relax the coupling to (1 ñ 1), we 
can reduce this high dimension, but we have to consider 
the group S•+ t (chapter 2.5). 

3.2 Symmetry S• 
Definition 3.3 We recursively construct a basis for the 

new S•+l-symmetrical vector space, taking the same 0- 
dimensional space and the action of the alternating group 
S• + otherwise, modifying the one dimensional basis: 

o r• ,+ = {bo}, r• ,+ = 0, p > o 

o •01're--{b0, bl}, rl i'm =0, rp 1'+ = {(bl-bo)P}, p> 
1 

o •pd, -I- d i,+ = Ui----0 S•q-1 ' bo' bl (Bp_i_ 1 '"bi), d 1. 

Remark 3.3 In the previous definition we can substitute 
the action of S•++x by the even combinations without repe- 
tition of i + i elements of the set {bo, bl,..., bd}. Watch 
out for a systematical interpretation of "even"! 

Definition 3.4 We now define the new polynomial vector 
spaces as the span of the basis functions in d dimensions: 
•Opd, + P = <U•=o r•'+> [] 

Examples 3.1 In zero dimension we get the following se- 
quence of polynomials, which are only useful for the con- 
struction of higher dimensional ones: 

'poO,+ o + o,+ ---- 'Pl' ---- 'P2 ..... 
Starting with the one dimensional S•-symmetrical poly- 

nomials we get the following sequence: 
'Po 1'+ : 'Pl •'+ -- < { bo, bl } > 
'P•'+ = <'Pl 1'+ U {(bx - bo)2}> 
pt,+ _ <'p21.+ U ((bl - bo)3}> 3 -- 

ß 

The spaces 'ppl,+ are equal to the former spaces 'P• for 
p > O. Thus they are smaller than the spaces •l.syrn The --p 

one dimensional basis is not enlarged any more. Insert- 
ing this into the definition for two dimensions we get a 
sequence of S•-symmetrical polynomials: 

= 
-- <{bo, hi, 
U {(bl-bo) 2, (b2-bl) 2, 

(bo - b2)2}> 
U ((bl-bo) 3, (b2-bl) 3, 

(bo-b2) a} U {bo(bobxb2), 
bl(bob•b•), b2(bob•b•)}) 

U ((bl-bo) 4, (b2-bl) 4, 
(bo - b2)4}> 

On the triangle the polynomial sets for a degree p which 
is not divisible by 3 are identical to 'pp•, all other vector 
spaces are generated by 'pp• and 2 additional polynomials. 
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•L 

Figure 1: Enlargement of 7•p •'+' values of (dira•p •'+ - 
d i rn 7•p• ) / ( d i ra 7•pa+ x - d i ra •p a) 

Remark 3.4 The usual linear Lagrange polynomials are 
contained in both 13• and 13• '+. The associated hierarchical 
quadratic polynomials are contained in 132 d'+ too. 

Remark 3.5 The linear Lagrange polynomials can be in- 
terpreted as symmetrization of the canonical basis of 72•d: 
{1} u 

Remark 3.6 The bases 13p d,+ are S•+t-symmetrical , p- 
hierarchical and facilitate minimal and simple coupling 
with blocks (1 4- 1). The spanned vector spaces 72p d'+ are 
only slightly enlarged (7•p • _C 7•p •,ñ _C ppd,syra __• 'ppd+l ) and 
have got an even lower dimension than •Dp d'syra. 

3.3 The enlargement 

We saw that the enlarged polynomial spaces fulfill 

which limits the enlargement of 72p d'm (note 3.6). Actually, 
we can show that with p --, oc this enlargement vanishes 
in the following sense: 

dim•pd+l _ di--•p d _• O(p -1) for fixed d 
We prove this also giving the dependence on d by 

Lemma 3.1 

Proof dira72p • may also be written by the recursive equa- 
tion of dira72p d'+ obtained from definition of 72• . The 
difference obeys the same equation. It can be majorized 
by a recursion of d ß dira72p •-2. [] 

dim 72• 
6 

21 

56 

126 

252 

462 

dim 72• '+ dim 72•o 
6 11 

21 66 

56 286 

130 1001 

276 3003 

546 8008 

dim 72• + 
11 

66 

294 

1045 

3192 

8757 

Table 1: Dimensions of 72p d and 79p a'+ 

reduced 

S+ + Ssurf 

4 4 4 

4 10 10 

16 16 16 

28 34 35 

44 56 56 

68 80 80 

104 116 120 

140 164 165 

original 

4 

10 

2O 

35 

56 

84 

120 

165 

extended 

+ S+ Ssurf S 

4 4 4 

10 10 16 

28 28 28 

35 38 44 

56 56 68 

92 92 104 

120 128 140 

165 168 192 

Table 2: Dimensions of 72p 3 in R 3, of extended and reduced 
spaces, S-symmetric, S+-symmetric and S•urf-symmetric 
on the surface of the tetrahedron only 

With dira7>p d = (p.q-d] the proof of formula (1) is com- 
pleted. Figure (1) shows the actual values of the quotient. 
72p •,+ is not enlarged and 72p 2'+ is enlarged by 2 polynomi- 
als only for every third p. It indicates, in conjunction with 
the actual numbers in table 1, that the values decrease 
asymptotically with p-x. 

In table 2 we have added the dimensions for extended 

and reduced symmetric polynomial spaces obtained by the 
recursion. Reduction in this context results in incomplete 
polynomial spaces due to the symmetrization analog of 
the previous extension of spaces. The spaces of polynomi- 
als with symmetry on the boundary of the element only 
do not differ much from symmetry for all polynomials, in- 
cluding the inner functions. The S+-symmetric reduced 
polynomials are an attractive lower dimensional counter- 
part of the S+-symmetric full polynomials 72p d'+ and the 
S-symmetric reduced polynomials are connected with full 
S-symmetric polynomials 72p d. We also remark the drop- 
out of full symmetric reduced polynomials at degree p = 2 
and via recursion inherited minor drop-outs. In the future 

we will use the polynomials 72? ñ only. 
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4 Construction of shape functions 

4.1 Preconditioning 

In the context of the iterative solution of the linear systems 
another tool comes into play. It is the convergence rate of 
the iteration. It can be estimated for some classic itera- 
tions like conjugate gradients and Richardson-iteration in 
terms of the condition number. But, for the sake of effi- 
ciency linear systems are often preconditioned, so we have 
to consider the condition number of the preconditioned 
matrix instead. There are two similar approaches for pre- 
conditioning linear systems of p-version [13, 1] and [17, 16], 
both leading to estimates independent from h and with a 
rather mild increase in log 2 p. 

It is well known from domain decomposition, that any 
construction of a preconditioner as splitting into a linear 
or piecewise constant global function space and several 
higher order local spaces leads to such an h-independence 
under the condition of rainiraa! coupling. Coupling comes 
into play localizing the global higher order function spaces. 
Hence we construct our preconditioner as the splitting into 
the global linear space and additional local spaces. To 
keep them local, we have to separate spaces for each edge, 
triangle, tetrahedron etc..Now we can interpret this pre- 
conditioner B as a block-diagonal version of the stiffness- 
matrix A. Calculating the preconditioned condition num- 
ber •(B-1A), we can see that it is majorized by the max- 

rnax)• • imum of the local condition numbers • (min•0J of the 
generalized eigenvalue problem Blocx = AAlocx. • is cal- 
culated from the generalized eigenvalues orthogonal to the 
common eigenfunction of the eigenvalue 0. This means 
that we only have to optimize and calculate local con- 
dition numbers and the condition number is independent 
from h with the aid of a good preconditioner for the linear 
h-version problem. 

4.2 Condition numbers 

x, Ve want to construct the final version of our shape func- 
tions by using the polynomial vector spaces 79p •,sym and 
7•p a,+ of chapter (2.5). The set of functions should main- 
tain the symmetry and coupling properties of the original 
basis/3p a and/3p a'+. P-hierarchy is guaranteed by the nest- 
ing of the vector spaces. The only missing property is a 
low condition number of the preconditioned system. 

•Ve make a general approach to optimization of the lo- 
cal condition numbers. The optimal polynomials are in a 
linear vector space ]2 - (fl, f2,...>. Every optimized 

d ] p=2 p=3 p=4 p=5 p=6 2 6.00 19.2 20.8 45.6 54.5 
3 12.3 125. 127. 194. 361. 
4 21.1 336. 467. 882. 

p=7 p=8 
56.2 57.4 

Table 3: Condition numbers of the preconditioned stiffness 
matrix for •Pp•,+ 

polynomial vk has a representation of 

Vk :-- • qki f i , k ---- 1,... 
i----1 

We have to determine the coefficients qki that v• has the 
desired properties. We used some direct procedures for 
minimization of the condition numbers. 

All optimization procedures have in common the neces- 
sity of a correct management of the polynomials, their 
symmetry and their coupling properties. This includes the 
construction of the appropriate basis functions for each 
optimized shape function set. The optimized shape func- 
tions are a linear combination of the basis functions. The 

combination itself depends on the optimization. The ac- 
tual basis functions fi are in some cases (optimized) shape 
functions v• of previous optimization steps, and in some 
cases symmetrizations of them. 

We now compare the resulting local condition numbers. 
We choose the Laplace operator on the equilateral simplex. 
The condition numbers shown in table 3 are evaluated nu- 
merically. 

We were not able to prove a special kind of asymptotics 
in p but we simply present the actual numbers of interest. 
We think that a hard prove would not only be intricated 
because of the structure of the function spaces •Pp•,+, but 
also of less practical worth for real-problem p. 

Nevertheless, we obtain low local condition numbers; 
hence, an additional acceleration of an iterative solver 
would be obsolete. But, our main result still is the new 
polynomial spaces •p•ym and •P•, including their proper- 
ties. 

5 FEM framework 

5.1 Error estimation 

Putting this new shape functions into a framework of an 
adaptive or feedback finite element code, we have to con- 
sider some other details. We use an a posterJori error es- 
timator to indicate those elements and regions to refine in 
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Figure 8: Computed displacement on refined grid 

Figure 6: Initial coarse grid 

Figure 7: Adaptively refined grid, h-version 

5.2 Feedback grid control 

The refinement decision uses a maximum criterion of ele- 

ment errors with a minimum percentage guaranteed [10]. 
Elements for refinement are marked. The3' are refined in 
adaptive h version and p version. For h-p version after- 
wards a decision for each element is made whether to re- 

fine in h-direction (subdivide element) or in p-direction 
(increase polynomial degree). This decision depends on 
the ratio of h-error/p-error which is compared to a thresh- 
old. The threshold is sometimes fixed for the whole com- 

putation or chosen as a fixed percentage of the maximum 
ratio. Some experiments with history of estimated errors 
(usually short) or measures of computational work spend 
for each decision were not convincing enough to justify 
the additional complexity of implementation and behav- 
ior. For other considerations about h-p grid generation see 
[12, 14, 191 . 

We present some numerical experiments concerning the 
performance of different finite element versions. Depicted 
is the error measured in energy norm versus the number of 
unknowns in the linear system of equations. The examples 
show that the uniform p-version is faster than the uniform 
h-version; different behavior of the adaptive versions and 
performance of the h-p adaption for some threshold pa- 
rameters is shown. For a detailed explanation see [3]. 

The first example is a nearly quadratic one. 

a(x) = 1, e [-1.1] 
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Figure 9: Adaptive FEM iteration counts for diagonal scal- 
ing, multigrid preconditioner and domain decomposition 
preconditioner (different final precision). 

with homogeneous Dirichlet boundary conditions. The re- 
suits are in figures 2 and 3 (computational domain only 
1/8). Figure 2 shows a comparison of h-versions with dif- 
ferent order p. For linear elements p = 1 adaptivity does 
not pay off whereas adaptivity is preferable for higher p. 
The solution is very well approximated by quadratic ele- 
ments and every linear approximation remains poor. Next, 
figure 3 shows the performance of the related h-p versions. 
The biggest part of p refined elements compared to h re- 
fined delivers best performance, approaching original p ver- 
sion. 

The next example is an analytic one, also preferring 
higher order approximations: 

/ktt(3?) = COS37 1COS372COS3•3, X • [--71'/2,71'/2] 3 

with homogeneous Dirichlet boundary conditions. The re- 
suits are contained in figure 4 (computational domain only 
1/8, different scaling). Different h-p versions are compared 
to an adaptive h-version and an adaptive p-version. The .8 
threshold h-p version performs best, whereas h-p versions 
with higher or lower hip ratio are better in a middle phase. 

5.3 Iterative solvers 

}Ve already have presented an iterative two-level domain 
decomposition solver while constructing an optimal set of 
shape functions similar to [13, 1]. We now compare it 
with another approach due to [9] only exploiting the his- 
tory of refined grids called ccg. Optimal convergence has 
been proven for linear elements in [4]. We choose a multi- 
grid 1/2,2 solver ;vith 3 x 3 block symmetric Gauss-Seidel 

smoother for the global system arising in domain decom- 
position and present some iteration counts and residuum 
reduction rates. The ccg algorithm is originally equipped 
with a diagonal scaling. 

The last example is from linear elasto mechanics. The 
Lam• equations are solved with a three dimensional dis- 
placement approach. A Poisson ratio of .29 is used. There 
are no interior forces and most of the surface is free. Only 
three outer squares have a prescribed displacement point- 
ing from the center to the outside. The elastic body and 
its initial grid are shown in figures 5 and 6. Figure 7 shows 
a h refined grid during computation and figure 8, finally, 
shows the deformed body. 

Figure 9 shows the behavior of both solvers for an adap- 
tive h-p version. For diagonal scaling it shows the typical 
behavior a of decreasing number of iterations after a high 
peak at a low number of unknowns. The total work adds 
up to a small constant depending on asymptotical behav- 
ior. Preconditioning leads to constant lower numbers of 
iterations, but each iteration itself is more expensive. Pure 
multigrid Gauss-Seidel, in conjunction with our optimized 
shape functions, seems to be faster than more additional 
domain decomposition with multigrid. 

6 Conclusion 

We have presented a framework for adaptive h-p finite ele- 
ment methods for second order boundary value problems. 
Aiming an efficient computational code with fully auto- 
matic control, we have chosen the h-p version of finite ele- 
ments ensuring (sub-) exponential convergence in contrast 
to the standard algebraic one. To generate the full con- 
vergence order, well-adapted grids had to be generated by 
the code. 

The demands for efficiency in conjunction with unstruc- 
tured grids (because of geometry constraints and adapta- 
tion), varying polynomial degrees (in space and in adap- 
tation history) and some concerns on robustness required 
new shape functions. The different polynomial degrees call 
for the concept of p-hierarchy of the shape functions. The 
easy assembly of the global stiffness matrix and the load 
vector on unstructured grids of simplices clearly lead to 
the requirements of symmetry of the shape functions on 
the boundary of each individual element. Finally, inde- 
pendence of orientation demands symmetry of the shape 
functions on the whole element. 

However, it was proved that no families of shape func- 
tions in dimensions higher than d = i could have both 
properties, p-hierarchy and symmetry, at once for stan- 
dard polynomial spaces. Hence, the spaces of polynomi- 
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als spanned by the shape functions were slightly modified 
and p-hierarchic and symmetric shape functions were con- 
structed. 

Therefore, a domain decomposition preconditioner for h- 
p grids based on a standard multilevel iterative solver for h 
grids was developed. This construction implied an orthog- 
onalization of shape functions by means of optimization of 
the resulting condition numbers of the preconditioner. The 
optimization procedure delivered the uniqueness (modulo 
symmetry) of the shape functions. 

With suitable error estimators and refinement strategies 
some numerical experiments were performed, demonstrat- 
ing the superior convergence properties of pre-asymptotic 
p-version and the global convergence of h-p-version finite 
elements, which agrees with the theory. This was shown 
both for the characteristic 3D singularities of the Laplacian 
and for some 3D examples of linear elasto mechanics. 
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