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Abstract 

Multigrid methods are among the fastest solvers for partial 
differential equations. Using the tamextrapolation princi- 
ple of Brandt, the multilevel structure can be used addi- 
tionally to obtain higher order approximations. 

In this paper we examine three different approaches with 
special emphasis on nonlinear partial differential equa- 
tions. In all cases, higher order is achieved by implicitly 
using the extrapolation principle, that is by exploiting the 
information between the grids with different discretization 
parameters. 
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I Introduction 

High accuracy solutions of differential equations can only 
be obtained efficiently when the smoothness of the solution 
is exploited by high order discretization. High order meth- 
ods may provide sufficient accuracy with a much smaller 
discrete system. On the other hand, in practical applica- 
tions, the discrete systems are often still large, and good 
overall efficiency requires fast solvers. For problems in two 
or three spatial dimensions multilevel and multigrid tech- 
niques are often used. Since these algorithms use a hierar- 
chy of successively refined meshes, it is obvious that meth- 
ods using such a mesh structure for both constructing a 
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fast solver and a high order discretization are particularly 
attractive. In this paper we will study three different but 
related approaches to such algorithms. 

The starting point of our consideration is a hierarchy of 
meshes, on each of which the differential equation 

(1) Au= f 

is discretized by a basic low order discretization. In the 
first part of the paper we will consider finite difference tech- 
niques; however, as shown later, the basic principle also 
applies to finite element discretizations. In the simplest 
case, we study just two mesh levels and denote the corre- 
sponding discrete systems by Aaua = fa and AHUH = fH, 
respectively. On uniform meshes, typically H - 2h, and 
thus ua involves about four times as many unknowns as 
u• in a 2D example. 

A multigrid algorithm uses the H-grid approximation to 
accelerate the convergence of iterative methods for the h- 
grid problem by using coarse grid corrections to a current 
fine grid iterate ua of the form 

(2) 

(a) 
(4) 

Solve 

The algorithm (2 - 4) is the core of a so-called multigrid 
full approximation scheme (FAS) (see Brandt [2]). The 
operators •H, RnH are restrictions from the fine to the 
coarse grid and P• is a prolongation (interpolation) from 
the coarse to the fine grid. The r-term can be interpreted 
as a correction to the level H equation to make its solution 
coincide with the equation on level h. 

r-extrapolation now uses this basic algorithm with a 
slight modification. In (2), r•(u•) is multiplied by an 
extrapolation parameter u• to become •rff(uh), thus the 
name r-extrapolation. In a finite difference setting, this 
modification is justified, when r•(u•) has a suitable 
asymptotic expansion. 
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With this assumption and the trivial modification, a 
straightforward multigrid algorithm can be shown to con- 
verge to a higher order approximation of the solution (see 
[4]), provided the components of the algorithm satisfy cer- 
tain compatibility conditions. These conditions will be 
explained in section 2 of this paper, where a number of 
experiments for finite difference discretizations will also be 
presented. 

In section 3 and 4 we will then study alternative ap- 
proaches to •--extrapolation. The method of section 3 is 
derived from the formulation of a differential equation as a 
minimization problem. The resulting algorithm turns out 
to be a special case of the algorithms in section 2; how- 
ever, the new derivation allows an extension to more gen- 
eral mesh structures, in particular to unstructured finite 
element meshes. This is similar to the approach developed 
in section 4, where the starting point is the observation 
that •--extrapolation can be interpreted as an implicit way 
to construct higher order finite element stiffness matrices. 
These two interpretations permit an application of the •-- 
extrapolation principle to a much wider class of problems; 
including those where sufficient smoothness is only present 
locally, and where a higher order discretization must be 
augmented xvith adaptive techniques to resolve local sin- 
gularities. 

In all these cases the •--extrapolation algorithm main- 
tains its structural simplicity. Higher order is obtained 
implicitly, without ever constructing complicated differ- 
ence stencils or high order finite elements. •--extrapola- 
tion is also naturally combined with the multigrid princi- 
ple so that it automatically provides a very efficient solver 
for the discrete systems. The combination of these fea- 
tures potentially makes •--extrapolation one of the most 
efficient approaches to the high accuracy solution of differ- 
ential equations. 

2 Classical --extrapolation 

In this section we will study the classical •--extrapolation 
algorithm introduced by Brandt [2]. Our presentation is 
based on the multigrid terminology and assumes a basic 
knowledge of multigrid principles. For a more detailed 
presentation see [1]. 

2.1 The basic idea for linear problems 

Let RH be a restriction operator projecting the right-hand 
side f of the differential equation (1) into the image space 

of the discretized operator AH, i.e. 

(5) fu -- -Ruf. 

The truncation error of the discrete problem is given by 
inserting a projection •uu* of the exact solution in the 
discrete equation: 

(6) wit(u*) -- AitkHU* -- fit: AHkitu* -- RHAu*. 
Operators Rt• and •t may coincide, if preimage and im- 
age of A coincide. 
The approximation order p of a discrete problem is defined 
by the relation 

•-H(U) : AHkitU-- RHAu = O(H p) for u ß C ø+p , 
where o is the order of the differential operator A. 
An approximation of ru(u*) up to order a > p can be used 
to improve the accuracy of the original discrete problem to 
order c•. 

Lemma 2.1 For the right hand side of Asu• = f• 
let fH = fH + •-H(U*) + O(H a) with c• > p 
and suppose (5), (6) and IIAHll -x • M, M = coast., 
Then it follows that IluH - •Hu*]l = O(H•) . 

Proof The difference of A•u• - 
and AHt•IH u* -- fH + rH(U*) 
gives AH(UH -- t•lHU *) -- O(H •) 
i.e. 

A direct application of Lemma2.1. presupposes 
I]•HU*--IHU*[I • O(H•), where IH is an injection. This 
can be fulfilled most easily by •H : IH. A correction of 
the right hand side fH, which estimates r•(u*) with an 
error of order a > p, improves the accuracy of the solution 
of AHUH = fH to the same order. 

In the full approximation scheme (FAS, see also (2 - 4)) 
the coarse grid problems can be written in the form 

(7) AHuH=fH+•(ua), 
The correction term on the right-hand side can be consid- 
ered as an estimate of the approximation error b•ed on 
the solution on the finer grid. If 

(8) 
one can show that the accuracy of the solution us on the 
coarse grid is the same as that of ua on the fine grid (see 
[1]). However, a higher order of accuracy can not be ob- 
tained in this way. Taking into consideration Lemma2.1. 
we need a correction term which is a better approximation 
to w• (u*). Such an approximation is given by 
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Lemma 2.2 Assume (7), H = 2h, and 

(At) •h = kh(u* + •), • = O(Hq), • • 
(A2) r•(u) = o(•tp) for u • c(o+•) 
(AS) n•r•(u*) = •(•*) + 0(•), • > p. 
Then it follows 

2 p 2•-• rff (ah) = rH(U*)+O(H •) with a = min(p+q,•). 

Proof Based on 

r#(k•*) : A.k•k•u*- n•Ah•u* 

1 TH(U* ) + O(H• ) = •(•*) - •(•*) = :u•*) - • 
_ 2'-•:u(•. ) + O(H •) 2p 

we obtain 

2P--1 / . : • •.• ) + o(s•) + o(s•+•). 

Lemma 2.1. and Lemma 2.2. together lead to the following 
improved formulation of the problem for the coarse grid 

(9) AHUH -- fH + 2p2•_P lr•H(•h) . 
Equation (9) gives a higher order approximation on the 
grid with the discretization parameter H = 2h: 

UH = I•HU* + O(H •) xvith a > p. 

Using the usual formulation (7) of the problems for coarser 
grids, the improved accuracy can be carried over up to the 
coarsest grid. 

In the correction step the solution on grid H can be 
transfered to grid h in such a way that the order a for the 
low-frequency part remains unchanged. 

Equation (9) implemented in a multigrid method is the 
classical form of ......... '•';^- ,-•*•*•i•*•,*•*'. It can be completed by 
a post-smoothing correction, and by a fine grid correction 
for the first smoothing step on a new finest grid in the full 
approximation scheme. 
These corrections, however, are not essential for the higher 
convergence order and can be omitted. 

Remark For the sake of simplicity, the idea of r-extra- 
polation was explained for linear problems only. The very 
same algorithm is applicable for nonlinear problems too, 
however. 

2.2 Conditions for the grid transfer oper- 
ators with respect to r-extrapolation 

A successful application of v-extrapolation requires a care- 
ful tuning of all multigrid components. Special attention 
must be paid to the grid transfer operators in the v-extra- 
polation step of the multigrid algorithm. 

2.2.1 Prolongation 

In the FMG-algorithm a prolongation is needed in two dif- 
ferent situations. In the correction step of the multigrid 
iteration the correction of a fine grid solution u• must be 
interpolated from the coarse grid, and the initial guess for 
the iteration on a new finest grid must be interpolated with 
a possibly different operator (FMG~prolongation). In both 
situations it is necessary to preserve the accuracy reached 
on the coarser grid and to avoid introducing large high- 
frequency errors on the finer grid. 

First, we consider the correction step (4). If the restric- 
tion operator is not an injection operator (//i• H • Ih H ), i.e. 
(1• H - Iff )uh = O(H s) the term //i•Huh causes an error; 
which, after the correction step, can be found in the low- 
frequency part of the error of u•. Operator Pp/ primarily 
produces high-frequency errors. These errors depend on 
the order of magnitude of the function to be interpolated 
and on the interpolation formula. The interpolation error 
of a smooth function by an interpolation polynomial of or- 
der (n- 1) is of order O(H r•) (the proof is given in [20]). 
Table I summarizes the order of prolongation errors and 
conditions for s and n which must be fulfilled. 

Multigrid- Low-frequency error of High-frequency 
method /•ffu•, Restriction by error of 

Averaging I Injection P•(u,-l•l•uh) (•<•) (•=•) ,, 
without p + s •c p + n 
r-extrapolation 
Conditions - - n •> o 

with p + s •c p + n 
r-extrapolation 
Conditions s •> a-p - n •> o 

Parameters: p - approximation order of the discrete operator, 
c• - order of accuracy of the MG-method with r-extrapolation 
s - order of accuracy of •n H, n - order of the error for polyno- 
mial prolongation with degree (n-l), o - order of the differential 
equation to be solved 

Table 1: Order of errors caused by prolongation and con- 
ditions for s and n 
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The FMG-prolongation Pff produces the initial solution 
for a MG-cycle on a new grid. The quality of this interpo- 
lation has a great influence on the accuracy of the whole 
method. An essential difference to the prolongation P• 
is that we have to interpolate the solution, i.e. a function 
with an order of magnitude O(1), and not a correction to 
the solution. 

If o is the order of the differential operator, the errors 
caused by the interpolation of the solution uh should be 
at least o orders smaller than the defects. This can be ob- 

tained by 

n-o>•p, i.e. n>•p+o 

in the case of the FMG-algorithm, with- 
out r-extrapolation; and in the case of r-extrapolation, 
without fine grid correction 

andby n - o >• a, i.e. n >• a + o 

in the case of r-extrapolation, with post-smoothing- and 
fine-grid correction. The conditions do not guarantee 
smooth defects after prolongation; but oscillations decrease 
with the same order as the defects, if the grids become in- 
creasingly finer. 

With the usual number of pre-smoothing steps oscillations 
in the defects can not be smoothed completely. If the 
restriction Ahuh in (7) is performed with an averaging 
operator the remaining wiggles can be tolerated because 
R•,4•uh operates like a filter which removes them. How- 
ever. if Rff is an injection operator, the conditions n >• p+o 
and n •> c• + o can be insufficient. In this case the inter- 

polation should be taken one or two orders higher. 

2.2.2 Combination of the restriction operators/•ff 
and Rff in the context of r-extrapolation 

In the MG-algorithm without r-extrapolation the two re- 
striction operators /•H and R• H can be chosen indepen- 
dently. For the restriction of u•, injection /• - Iff is 
sufficient, because u• is a smooth function. For the restric- 
tion of A•u•, however, an averaging operator is a better 
choice, because the defects are often less smooth. 
In the case of r-extrapolation the two restriction operators 
have an effect on the estimation of the truncation error (cf. 
Lemma 2.2). An inappropriate choice of/•H and R•H may 
destroy any effect of r-extrapolation. 
In the literature, the great majority of the articles use in- 
jection operators both for /•H and •H in the r-extrapo- 
lation step. Only in [17], [2], and [10] are some hints at 
other possibilities given. In the case of staggered grids, 
injection for •H and •H is excluded, for points of the 
courser grid are not collocated with points of the finer 

Case of restriction Conditions for 

•>•p-q-1 •>•p-1-2 c•>•4 if p--2 
A: (Injection-Injection) q >• 2 q >• 2 
•H = i ff , R• H = f ff r >• p + 2 r >• 4 
B: (Injection-Averaging) q >• 2 q >• 2 
• = Iff,R• =_3lift s•>p+l r >• p+ 2 r •> 4 

s>•p+2 s>•4 

q>•2 q>•2 
iff(s) •0: r >• p + 2 r >• 4 

s>•2 s>•2 

C: (Equal averaging) q •> 2,n >• 2 q >• 2, n >• 2 

t•I•H = M ff , R•H = M ff t >• p r >• p + 2 r >• 4 
linear Problems: s >• 2 s >• 2 

tCp+2 t ½4 

nonlinear Problems: see case B, upper part 

D: (Non-equal averaging) . 

lel• -- l•ff, R• = Mff •n general as case B, upper part 
Parameters: 

c• - approximation order of the multigrid method with r-ex- 
trapolation, q - approximation order of uh before application 
of r-extrapolation, p - approximation order of the discrete op- 
erator Ah, r - order of the second term of the approximation 
error rH(•) = c(x)H p +O(hr), n - order of accuracy of prolon- 
gation with a polynomial of degree (n-l), s - order of accuracy 
of the restriction operator R• = MH or minimal order if two 
different restriction operators are used, t - order of the second 
error term of the restriction, (MH--IH)(•) ---- d(x)H • q- O(H t) 

Table 2: Conditions in coherence with restriction and 

r-extrapolation 

grid. In this situation it is necessary to work with aver- 
aging operators. Such operators can also be favorable for 
non-staggered grids because they have a stabilizing effect 
on the r-extrapolation. 

Table 2 contains four combinations for the two restric- 

tion operators. The given conditions result from a careful 
analysis of assumption (A3) of Lemma 2.2, see [1]. 

The first choice for the restriction operators (case A) can 
be used for both linear and nonlinear problems without 
essential restraints. If the possible order of accuracy for 
the solution is not reached, the cause may be non-smooth 
defects in the r-extrapolation step. A higher order of the 
FMG-prolongation, or a higher number of smoothing steps, 
will give better results in this situation. 

Because of the averaging Mff in the restriction of A•u•, 
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Type R• is averaging operator Ra H is injection operator 

Multigrid algorithm of Pa H linear Pa • cubic Pa H linear I Pa• cubic Cycle (n - o) (n - o) 

MG-algori'thm V(1, 1) p -- 0.31 p = 0.10 p - 0.30 p - 0.10 
without v-extrapolation V(2, 2) p - 0.11 p -- 0.04 p -- 0.11 p - 0.04 

FMG-algorithm V(1, 1) 0.56E- 09 0.41E- 11 0.58E-09 0.28E- 10 
with •--extrapolation V(2,2) 0.73E-11 0.59E-11 0.16E-11 0.37E-11 

F(1, 1) 0.36E-11 0.34E-11 0.27E-10 0.27E-10 
F(2, 2) 0.59E- 11 0.59E- 11 0.16E- 11 0.32E- 11 

Table 3: Convergence rates and accuracy in dependence on restriction and prolongation 

•--extrapolation combined with the second choice of restric- 
tion operators (case B) is less sensible to the quality of 
smoothing and FMG-prolongation. 
The increased order of accuracy of the restriction Ra H 
(s •> p+ 1 or s •> p+2) in the case f(s) • 0 leads to 
some additional work. 

Restriction operators, according to case C for linear 
problems, give the advantage of case B without an in- 
creased accuracy of the restriction operators R• and/•. 
For nonlinear problems, higher order restriction operators 
are needed. 

Case D is the most obvious generalization of case A. The 
restriction operators are chosen independently as averaging 
operators with high accuracy (close to injection operators). 

2.3 One-dimensional test calculations 

Many properties of the multigrid method are independent 
of the dimension of the problem to be solved. Therefore, 
one-dimensional test problems are a useful tool to check 
theoretical results about multigrid algorithms; even though 
multigrid is usually used for higher dimensional problems. 
In [11 many tests are documented. At this place only a 
small selection can be given. 

We consider the linear boundary value problem 

(10) - u" = f(x): •.2 cos(•-x), u(-1) = u(1) -- 0 

with the solution u(x) = cosx 

and the nonlinear Burger's equation 

(11) uux-•uzz=O,u(-1)=tanh(•), u(1)=- tanh(•) 

with the solution u(x) = -tanh(•) for •--0.1, 0.005. 

The two problems axe discretized by standard central dif- 
ferences of second order. We use a sequence of non- 
staggered, equally spaced grids. 

Test I Influence of restriction and prolongation 

Table 3 refers to the linear problem with 1025 points on 
the finest grid. It shows convergence rates p for the nor- 
mal MG-algorithm with eight grids and the largest errors 
for the FMG-method. In the notation T(i,j) for the type 

V, V-cycle of the cycle we have T = F, F-cycle ; i,j are the 
numbers of pre- and post-smoothing iterations. To avoid 
any negative influence on the FMG-results, quintic FMG- 
prolongation was used. 

Remark: For the FMG-algorithm the headline "Rff is in- 
jection operator" in Table 3 is meant for the current finest 
grid only. On coarser grids the defects were restricted, 
as usual, by an averaging operator. To perform the •-- 
extrapolation, the restriction operator/•ff on the current 
finest level was chosen in agreement with Ra H (see Table 2, 
cases A and C). On coarser grids, and in the MG-algorithm 
without •'-extrapolation,/•a H = Ia H was used. 

The numbers in Table 3 can be explained in the following 
way: 

1. Taking into account that the discretization error of 
the original second order scheme on the finest grid is 
0.31E-05 all results with •--extrapolation in the table 
are much better than second order. Indeed, it can be 
shown that most of them are equal or close to fourth 
order. 

2. Table 3 shows that the condition n •> o (see Table 1) 
for the minimal accuracy of prolongation is correct. In 
fact, linear prolongation in the case o = 2 is possible; 
but in some situations the potential of the numerical 
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. 

algorithms is not treated fully in this way. The con- 
vergence rates of the MG-algorithm with cubic prolon- 
gation are better. In the case of v-extrapolation for 
the 1/(1, 1)-cycle the fourth order of accuracy occurs 
only on the first grids; on finer grids the order reduces 
to a value between two and three. However, this ef- 
fect can easily be removed by increasing the number 
of smoothing steps. 

For the accuracy of the FMG-algorithm with r- 
extrapolation, Table 3 shows the following behavior: 
If the amount for smoothing is small, restriction with 
averaging operators gives the better results. In the 
case of more smoothing iterations, restriction by injec- 
tion leads to more accurate solutions. An explanation 
of the observed effect can be given by the accuracy of 
the error estimation and by the low-frequency error, 
which is proceeded from a restriction with s = a -p 
(see Table 1). 

Test 2 r-extrapolation for nonlinear problems 

Apart from the fact that a combination of restriction op- 
erators according to case C is not favorable, the FMG- 
algorithm with •--extrapolation works in the nonlinear case 
too. The only problem is to find out the optimal structure 
of the multigrid cycle. 
For our test problem we have to pay attention to some spe- 
cialties: With t/>> 1 the transition from the left boundary 
value u(-1) m 1 to the right boundary value u(1) m -1 
takes place in a very narrow region. This excludes grids, 
which do not have enough grid-points in this region. As 
an orientation we can take the stability constraint for the 
difference scheme _Rea = -• < 2. For the number of grid- 
points this means n > b '-1, i.e. n,•i•, - 17 for t/-- 0.1 
and nmir• = 257 for •, = 0.005. 

Results for t/ -- 0.1 The numbers in Table 4 are the quo- 
tients of consecutive maximal errors. A 1/(1, 1)-cycle in the 
case of 6 grids (from 33 to 1025 points) has fourth order of 
convergence. If a 7th grid with 17 points is added, the or- 
der of convergence is not much larger than two. Even with 
a 1/(3, 3)-cycle the order of convergence is below three. A 
F(1, 1)-cycle is clearly superior for nonlinear problems. In 
the case of seven grids, it gives fourth order of convergence 
beginning with the third grid (65 points). If eight grids 
are used (the coarsest has 9 points only), fourth order is 
reached on the last four grids. 

Results for t/ -- 0.005 Table 5 presents results for some 
variants of the FMG-algorithm. Even in the case of the 
1/(3, 3)-cycle some additional MG-cycles on the finest grid 
reduced the error to a value of about 0.5E-5. However, 
the nonlinearity of a problem should be treated already on 

Number Type of MG-algorithm 

of grid- 1/(1,1) 1/(1,1) 1/(3,3) F(1,1) F(1,1) 
points 6 grids 7 grids 7 grids 7 grids 8 grids 

9 - 
17 - - - 1.5 
33 - 5.2 7.6 5.1 6.7 
65 19.8 4.8 6.0 26.4 7.3 

129 16.1 5.1 7.0 333.5 14.8 
257 20.5 5.0 6.8 5.1 22.6 
513 15.1 5.1 7.0 16.2 37.0 

1025 19.3 5.1 7.0 49.6 52.0 

Error 0.74E-8 0.40E-5 0.62E-6 0.37E-9 0.79E-8 

Table 4: Convergence of the FMG-method for different 
cycles 

coarser grids. This can be tried by using the F-cycle and 
by the modification described in remark 2 below, as the 
last two calculations show. 

Remarks on Table 5: 

1. Taking into consideration the structure of the solu- 
tion, three pre- and post-smoothing iterations were 
performed only in the small range, where the solution 
actually changes. Outside of this region, one iteration 
was sufficient. A better investigated variant of such a 
strategy can be found in [9]. 

2. If nonlinearity and/or the use of relative coarse grids 
cause a noticeable change of the solution from one grid 
to the next, then it is advantageous to perform ? > 1 
MG-cycles on each grid level of the FMG-method. On 
the last two grids, however, it was possible to work 
with 3' = 1 without loss of accuracy. 
Moreover, it is possible to perform the first MG-cycle 
on a new grid without r-extrapolation (see [19]). Ob- 
viously in the second MG-cycle the error can be es- 
timated more precisely than immediately after FMG- 
prolongation and pre-smoothing. During the two last 
calculations on grid2 and grid 3, the r-extrapolation 
was done only in the second F-cycle. 

2.4 Solution of Navier-Stokes equations 
with r-extrapolation 

The change from one-dimensional test problems to the case 
of the two-dimensional Navier-Stokes equations includes 
the increase of the space dimension and the change from 
one equation to a system of equations. 
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Maximal error on 

FMG-method grid 1 I grid 2 grid 3 grid 4 I grid 5, 2049 points 
F(3, 3)-cycle 

without 0.62E+0 0.67E-1 (9,2) 0.37E-1 (1.8) 0.49E-2 (7.6) 0.14E-2 (3.5) 
r-extrapolation 

V(3,3)-cycle 0.62E+0 0.24E+0 (2.5) 0.18E-1 (13.6) 0.17E-2 (10.7) 0.28E-3 (5.9) 
F(a,a)-cycle 0.62E+0 0.24E+0 (2.5) 0.43E-1 (5.7) 0.17E-2 (25.2) 0.33E-4 (51.6) 

F(3, 3)-cycle, ? > 1 MG-cycles on grids 2 - 4 
7=2inFMG: 0.62E+0 0.22E+0 (2.7) 0.12E-1 (19.2) o.16•3 (74.4) 0.63E-5 (24.6) 
v=3inFMG: 0.62E+0 0.53E-1 (11.5) 0.54E-2 (9.8) 0.13E-3 (42.O) 0.22E-5 (58.2) 
7 -- 2 in FMG, 
see remark2: 0.62E+0 0.11E+0 (5.5) 0.35E-2 (31.7) 0.22E-3 (16.5) 0.16E-5 (132.1) 

Table 5: Convergence of the FMG-method for Burgers equation with v - 0.005 

Examples of the use of r-extrapolation for scalar equations 
on multidimensional domains can be found in [18] for the 
Poisson equation over the unit square; or in [22] for the 
same equation on a three-dimensional domain, which is 
defined by three overlapping cylindrical grids. 
Besides the use for scalar equations (Poisson equation, non- 
linear potential equation - with special respect to Neu- 
mann boundary conditions) in [19], r-extrapolation is ap- 
plied to the solution of the shell problem for the calculation 
of stresses and deformations in weakly curved thin elastic 
shells. This problem leads to a system of four Poisson-like 
equations with nonlinear coupling. 
In most cases it was possible to improve the convergence 
order from two to four, or to a value close to four, by im- 
plementing the r-extrapolation. For smooth solutions this 
should be attainable for the Navier-Stokes equations too. 

2.4.1 Implementation of the r-extrapolation 

The Navier-Stokes equations are considered in the form 

(12) 

V'.uu-vAu+Vp = f in 
V'. u = 0 in 

u = up on 

over a rectangular domain fl. In these equations u stands 
for the velocity with components u and v, p denotes the 
pressure, v is the kinematic viscosity and f is an exter- 
nal force with components f• and fv' Equation (12) is 
discretized by a second order difference approximation on 
staggered grids. 
A detailed presentation of the MG-method, which was 

used for the Navier-Stokes equations is not intended at 
this place. Only components, which are related to the r- 
extrapolation are discussed in the following. At first we 
consider the calculation of the r-extrapolation terms. The 
system of discretized equations can be written in the form 

Ah(uh)uh +GRADhp• = f• 

DIVt, ua = g• 

where the first equation is a vector equation with two com- 
ponents. Right hand sides g• y• 0 are introduced by the 
MG-method. On the finest grid we have gh = O. Using 
r-extrapolation the problem on a coarser grid is 

AH(uar)uar + GRADs PH 

DIV• uH 

with 

rff (u•, p•) 

4 H = R• Hf•+•rh (u•,p•) 
H 4 H 

= R• g• + •ah (u•) 

AH(k•Hu•)k•uh + GRADH•Hpa 
-Rff Ah (u•)ua- R• H GRAD• pa 

2.4.2 Remarks on restriction and prolongation 

Outside the r-extrapolation step, linear restriction opera- 
tors can be used. In connection with the r-extrapolation 
the situation is more complicated: Because of the stag- 
gered grids for the velocity components only choices C and 
D from Table 2 are possible. 
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FMG - method with tauextrapolation without tau- 

Grid F(1, 1)-cycle - two times - three times extrapolation 
8 ß 8 0.28E-02 0.28E-02 0.28E-02 0.28E-02 

16.16 0.81E-02 0.34 0.83E-03 3.35 0.97E-03 2.68 0.97E-03 2.68 

32,32 0.17E-03 48.06 0.19E-04 44.36 0.74E-05 131.29 0.27E-03 3.62 

64,64 0.15E-04 11.35 0.11E-05 16.69 0.84E-06 8.79 0.68E-04 3.96 

128,128 0.40E-05 3.70 0.33E-06 3.43 0.51E-07 16.42 0.17E-04 3.99 

256,256 0.41E-06 9.68 0.13E-07 24.68 0.19E-08 26.48 0.42E-05 4.00 

additional 0.12E-06 33.71 0.46E-08 70.72 0.18E-08 28.31 

single cycles 0.28E-07 143.33 0.15E-08 216.93 

Table 6: Convergence for different FMG-cycles for the Navier-Stokes equations 

The restriction of uh and Ahu• for the momentum equa- 
tion can be performed by the same averaging operator 
/• =/{• with fourth order accuracy. 

For the pressure, again a fourth order restriction opera- 
tor (that means a bicubic interpolation) is needed; because 
the two restriction operators 7•ff and/{ff are not defined 
on the same grid. 

In the case of the continuity equation, linear restriction 
for DIV•u• is possible (operator Rail), independently from 
the cubic restriction of u. Taking into account the re- 
striction of the right hand side of the discrete continuity 
equation it must be warned of any "better" interpolation 
for DIVu. The components of g• have to fulfill a solvabil- 
ity condition (their sum must be zero) and this relation 
must be conserved by the restriction. This is done by lin- 
ear restriction, because the values from the finer grid are 
summed up in groups only. 
As in case B this linear restriction causes no errors, because 
the right hand side of the original problem vanishes. The 
cubic restriction for u leads to a fourth order error, if we 
compare it with injection. This has no influence on the 
•--extrapolation. 

The errors of prolongation in the MG-algorithm should 
be no larger than that of second order for the velocity 
components (n •> o, o = 2), and that of first order for the 
pressure (o = 1). With linear prolongation for u and p 
these conditions are fulfilled. 

In the case of FMG-prolongation according to 2.2.1 (con- 
dition n •> p + o), fourth order for the velocity (p = 2, o = 
2) and third order for pressure (p = 2, o = 1) is needed. 
This means cubic FMG-prolongation for u and quadratic 
or cubic prolongation for the pressure too. 

Unsymmetrical interpolation formulae at the boundaries 
cause laxger interpolation errors than symmetrical formu- 
lae of the same order in the interior. For this reason, near 
the boundary, interpolation of an order higher than three 
was used. 

2.4.3 Test calculations 

We consider a rotating flow 

u(x,y) = sin•rx cos7ry, v(x,y) = - cos•rxsin7ry 

in the square [0, 1] x [0, 1] with u = 0.01. 
Setting this solution in (12) we get the right hand side 

LO:,y) = sin=x (cosx + cosy) 
L(x, y) = = sin =y (cos W - cos 

At the boundary the normal components of the velocity 
are zero, while the tangential components are functions of 
x or y. 

Results On a sequence of grids with 8 ß 8 to 256 * 256 
meshes on each grid, one to three F-cycles with one pre- 
and one post-smoothing iteration were performed. On the 
current finest level, one additional pre-smoothing iteration 
was done; on the finest grid the post-smoothing step was 
suppressed. Table6 shows the maximal error for the v- 
component of the solution. The first use of z-extrapola- 
tion was done on the third grid, which caused a remarkable 
decrease of the error. A single F-cycle, however, can not 
exploit the possible increase of accuracy. To do this by 
additional cycles on the finest grid is inefficient; the better 
way is to use a larger number of F-cycles on the coarser 
grids. The solution on the 64 ß 64-grid, in this case, is 
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more accurate than a solution without r-extrapolation on 
a 256 ß 256-grid. 

2.5 Experience with classical --extrapola- 
tion 

The authors experience with classical r-extrapolation can 
be summarized as follows: 

1. The most reliable way to implement the r-extrapola- 
tion algorithm is to make use of injective restriction 
operators in the r-extrapolation step combined with 
an increased number of smoothing steps and a high 
order FMG-prolongation. 

2. The application of r-extrapolation combined with re- 
striction operators (which are averaging operators) is 
more complicated. This is caused by the fact that 
not all combinations of restriction operators are ap- 
plicable. However, with averaging operators the im- 
proved accuracy can be obtained with lower compu- 
tational work because no special requirements for the 
MG-algorithm must be fulfilled. 

3. In the case of nonlinear problems it is important to 
solve the problem on the coarsest grid with sufficient 
accuracy. The coarsest grid must not be too coarse. 

4. To exhaust the full potential of the r-extrapolation 
algorithm, it can be necessary to perform •y > 1 MG- 
cycles on each grid level. Before setting 'to a value 
of two or three, all other possibilities for a failure of 
the r-extrapolation should be excluded. Even in cases 
where • > 1 is convenient for the coarser grids, on the 
finer grids one MG-cycle can be sufficient. 

5. Besides a study of the behavior of the solution, an ex- 
perimental analysis of the r-extrapolation algorithm 
should include a study of the defects. Only a look at 
the behavior of the defects permits a deeper under- 
standing of some properties of the method. 

6. Staggered grids do not exclude the application of r- 
extrapolation. However, they make it's application 
more complicated and require the use of the most ex- 
pensive variant for the restriction operators in the r- 
extrapolation step. 

3 Energy extrapolation 

In the previous section, r-extrapolation for finite differ- 
ence approximations has been discussed. The theory there 

is based on a one term asymptotic expansion of the trun- 
cation error (r-term) of the form (AS.) in Lemma'•2.2. 

In this section we will study a different approach to ex- 
trapolation methods, which is based on the formulation 
of (symmetric) equations as minimization problems of the 
form 

(13) E(u) ---- min! 
u•V 

To focus ideas, we will explain the basic principle for 
one dimensional boundary value problems. Consider the 
simplest test case (10). This problem can be written in the 
form (13) with 

E(u) = ((u'(x)) 2- 2f(x)u(x)) dx for u • V, 
1 

where V = H01(-1, 1) denotes the Sobolev space of order 1 
on the interval (-1, 1) satisfying homogeneous boundary 
conditions. We introduce an equidistant grid xi = -l+ih, 
i = 0, 1, 2,..., N, with mesh width h = 2/N. The function 
u is represented by the N + 1 discrete values of the vector 
uh -- (uo, u•,u2,...,uN) T. The energy (13) can now be 
discretized directly by combining numerical differentiation 
and integration rules. For example, an approximation to 
E(u) may be chosen as 

Eh(Uh) = h • ui - ui-1 - fiui q- fi-lUi-1 h 2 ' 
i=1 

Note that here the first term involves central differences to 

approximate the derivatives of u on a shifted grid. These 
derivatives are then integrated by a midpoint quadrature 
rule. The second term is directly integrated by a trape- 
zoidal rule applied to the product u(x)f(x). 

When the normal equations for the quadratic minimiza- 
tion problem 

Eh(u•) = lu•A•u• - f•u• = min• 2 Uh•Vh' 

are constructed, where Vh is the finite dimensional vector 
space of grid functions, we recover the conventional dis- 
cretization of u" -- f by central differences 

ui-1 -- 2ui -]- Ui+l 
h2 =fi for i = 1,2,...,N- 1. 

The numerical approximation of the energy En(m,) can 
now be expressed in an asymptotic expansion of the form 

(14) Eh(Uh ) --' E(•) + h2e2 q- h4e4 q- ..., 
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where the coefficient functions e2, e4, ... are independent 
of h. For expansion (14) to be valid, we, of course; need 
sufficient regularity for u. However, the expansion does 
not depend on the uniformity of the mesh, and it can be 
generalized to higher dimensions. For the one-dimensional 
case the reader is referred to a classical paper by Lyness 
[8]. Two dimensional results for triangles first appeared in 
Rfide [12], and the general two-dimensional case is treated 
in Lyness and Riide [13]. 

Expansion (14) is the basis to consider extrapolatedfunc- 
tionals, like 

ih(uh) = 4/3Eh(u)- 

Note that here E•/ is applied to ua, which means that 
only every second value of ua is considered. Clearly, •;h 
also defines a quadratic functional, and a further analysis 
shows that the corresponding normal equations take the 
form 

(15) (4/3Aa- 1/3(l•u) TAI-zI•H)ua = fa 
where lff is the injection operator, and f• is constructed 
by the analogous extrapolation using fh and f•/. 

In principle it is possible to compute the system ma- 
trix in (15) explicitly, however; to construct more efficient 
solvers, we note that by introducing the z-term r•(ua) of 
(7). this equation can be written in the defect correction 
form (9). Therefore (15) can be solved iteratively by the 
the multigrid z-extrapolation algorithm, and our deriva- 
tion has led to a special case of the algorithms considered 
in the previous section. 

However, we have not only recovered a special case of 
z-extrapolation, but have also found a method to derive 
v-extrapolation algorithms on unstructured and possibly 
adaptively generated meshes. This has been discussed in 
Rfide [9] and several more variants of this method are ex- 
plored in Rfide [11]. 

In the further analysis of the energy extrapolation 
method (see [12]) the above analysis is applied in a finite 
element framework. In this context the above expansion 
is applied to u, being a finite element function which is 
smooth in construction. In consequence, the expansion 
and extrapolation technique can be used even when the 
original problem lacks sufficient regularity. Of course the 
final success of z-extrapolation is still dependent on how 
well higher order finite element functions can approximate 
the given problem, however; the analysis of the extrapola- 
tion method remains independent of regularity constraints 
from the differential equation. 

In the remainder of this section, we will study the appli- 
cation to a nonlinear problem. Since the approach is based 

on the formulation as a minimization problem, it cannot 
be applied directly to equations with convection terms; like 
the Burger's equation (11). (However, generalizations in 
this direction are presently under study and results will be 
published elsewhere). Here we will consider another prob- 
lem, a stationary reaction-diffusion equation in one spatial 
dimension 

(16) 2z.,2u" + (u a - u) = 0 in (-1, 1), 

with boundary conditions as in eq. (11) 

u(- 1) = - tanh(1/2v), u(1) = tanh(1/2v). 

The solution is u(x) = tanh(x/2v), just as for (11). Writ- 
ten as a minimization problem (16) becomes 

E(u)= •(u'(x)) 2- --•-u 2 dx. 1 

Fig. i shows the energy surface E(u,x) = u •- u4/2 and 

2 

Figure 1:-u4/2 + u 2 and trajectory u(x) 

visualizes an optimal u(x) trajectory on this surface. If y is 
small, the transition develops to an interior layer, the con- 
ditioning of the boundary value problem becomes worse, 
and higher order methods become increasingly important 
in locating the transition region correctly. 

In Fig. 2 we plot the L2-error of three extrapolation 
schemes (with respect to the correct solution) versus the 
number of grid points in a log-log scale. The different 
graphs correspond to the original discretization with cen- 
tral differences; one extrapolation step according to (15), 
and the method obtained by applying two extrapolation 
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Figure 2: Error for energy extrapolation with order 2,4,6 

steps to the energy, respectively. The latter approach cor- 
responds to solving 

64 

rain (•-•Eh(uh)- 20E •5 E4h (u•)) + . 

Each methods needs a minimal number of mesh points, 
before the transition is correctly resolved. From then on, 
the asymptotic behavior of the method develops and can be 
read off the slope of the error graph. Clearly, the higher or- 
der methods provide superior accuracy for the same num- 
ber of nodes. 

While the fourth order behavior is clearly visible in these 
results. the method constructed with extrapolation to sixth 
order does not show the expected accuracy fully, though 
it is clearly converging much faster than the fourth or- 
der method. This is caused by stability problems. While 
the consistency order of the discrete system is raised to 
sixth order, the solution tends to have small oscillations, 
which start to pollute the solution for very high accuracy 
computations. This can be compensated by introducing 
stabilizing terms as introduced in [3] or [11]. 

In general, the energy extrapolation approach is an inter- 
esting alternative derivation of v-extrapolation algorithms, 
because it naturally defines the different algorithmic com- 
ponents in a compatible form. Furthermore, it permits 
generalization to nonuniform meshes and adaptive tech- 
niques, and it shows how to generalize ,--extrapolation to 
a still higher order. 

4 Finite element methods and ex- 

trapolation 

4.1 Finite element discretizations of the 

boundary value problem 

In this section, we consider two-dimensional second order 
elliptic boundary value problems of the form 

(17) Find ueVo such that a(u, v) - (F, v) for all veVo 

holds, where V0 c Ht(•2), 

(18) 

and 

(19) 

a(u, v) = vv) 

(F,v) = jf•fvdx + fr g2vds. .¾ 

K(x) is a symmetric, positive definite (2 x 2)-matrix, 

(20) Vx--( o O) •' 021 022 ' 
as well as (., .) denotes the Euclidean scalar product in the 
space •2. 

Let us first describe some finite element discretizations of 

problem (17). The starting point of our investigations are 
two triangular finite element meshes Tsr and Tn, where we 
get the mesh Tn by dividing all triangles of the mesh 
into four congruent sub-triangles. Later we will suppose 
that the mesh Tsr is the finest mesh of a sequence of nested 
triangular meshes. 

Corresponding to the triangulations Tsr and T• we define 
the finite element subspaces 

(21) V]_/=span(p(/_? ' i= 1,2,...,NH} C Vo, 
and 

(22) V• = span{p? i= 1,2, Nh} C Vo, 

where the trial functions _(i) k - H, h, are piecewise lin- Pk , 

ear functions p(k ¸ which are linear in all triangles of 
continuous, and satisfy the relations p(k ¸ (x?), x? )) = 1 for 

•(i) [•.(j) x•j) ) N k. Here i=J,•k w• , =Ofori•-j,i,j= l,2,..., 
(x?),x• j)) denotes the coordinates of the node P(J) and 
Nk is the number of nodes belonging to •2 U FN, where FN 
is the part of the boundary 0•2 on which natural boundary 

conditions are given. The functions p(k ¸ i = 1,2, N• 
are called the nodal basis of piecewise linear functions. 
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Furthermore, we introduce piecewise quadratic func- 

tions q•). These functions are polynomials of degree 2 
in all triangles of TH, continuous, and satis• the relations 

4 = i = 4 = 0 i 
i,j = 1, 2,..., N h. Using these functions we define the 
finite element subspace 

(23) V• = span{q• ) i = 1,2, Nh}. 
with the quadratic nodal basis. 

By means of the finite element subspaces (21), (22), and 
(23) we get the finite element schemes: 

Find uk • Vk such that 

(24) a(uk,vk) = (F, vk) for all v• G V•, 

where Vk stands for V/•, V•, or V•, respectively. 

The determination of the unknown function uk is equiv- 
alent to the solution of the systems of the algebraic finite 
element equations 

(25) • z z • • = fq = Ahu h , q q A/_/•/_/ fH, = f• and Anu n n, 

respectively. 

The stiffness matrices A• and A• have a block structure 

Ah,vv Ah,vm ) Ah,mv Ah,mm ' 

where A6,•,• corresponds to the nodes of the triangulation 
Tn. Ah,,,,• corresponds to the new nodes in the triangu- 
lation T6, and Ah,,,:, Ah.•,• are the coupling blocks. 

Next we formulate an interesting relation between the 
matrices A•, A•, and A•, which is useful for the investiga- 
tion of the convergence properties of a multigrid algorithm 
with extrapolation. 

Lemma 4.1 Let A•4 , A•, and A• be defined by the bilin- 
ear form (18) using the finite element subspaces V]q, V•, 
and l/if, respectively. We suppose that the entries of the 
matrix K(x) in the bilinear form (18) are constant in each 
triangle 5? • 7-1_ 1. Then the relation 

3 H 

holds, where •n= ( A•4 O) 0 0 ' 

In Lemma 4.2 we formulate the corresponding property 
for the right-hand side. 

Lemma 4.2 Let ft•, fta, and f• be defined by the relation 
(19) using the finite element subspaces V}, V•, and V[, 
respectively. We suppose that f is a piecewise constant 

function, i.e. constant over all triangles 5? • T•, and g2 
a piecewise constant function, i.e. constant over OtS• ) •Of•. 
Then the following relation holds 

(27) 

A consequence of Lemma 4.1 and Lemma 4.2 is the fol- 
lowing Theorem. 

Theorem 4.1 Under the assumptions of Lemma 4.1 and 
Lemma J.2 the FE systems of algebraic equations 

(28) (4 • _ 1 ~ 1 
and 

(29) A•uh = f• 
have the same solution. 

The proofs of Lemma 4.1, Lemma 4.2, and Theorem 4.1 
are given in [6]. 

In [6] an analogous theorem is proved for finite element 
systems based on a two-level h-hierarchical and a two-level 
p-hierarchical basis. 

4.2 Multigrid algorithm with extrapola- 
tion 

In the following, we discuss a multigrid algorithm using 
FE discretizations with piecewise linear functions and an 
implicit extrapolation step. The iterates of this algorithm 
converge to the solution which we get by a FE discretiza- 
tion of problem (17) with piecewise quadratic functions. 

The smoothing procedures in our multigrid algorithm 
are defined in the following way: 

ß pre-smoothing ,•v, (J) A • flu): C•h (,•th , h, 

Let the initial guess u? ) • © u © •' be given. • [Uh,v' h,mJ 

Set u 0+1) - © and compute an approximate solution h,v • '•h,v 

•a,m of the system 

(30) A[mmznm , , 
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by means of an iterative method, starting with the zero- 
vector. 

- T Set U(h j+l) /it (j+l) • © q- Zh,rn ) --- k h,v ' 'tth,rrt ' 

We suppose that the error transmission operator of the 
method is of the type 

h,rn m • h,mrn ] ß 

post-smoothing GN (u ©, A[ , ft h\ h h): 

We use the same algorithm, however; we suppose that 
the error transmission operator of the iterative method 
for solving the system (30) is of the type Mh, m = (I•, m- 

-T l 
Ba.•Ah.,••), so that the overall multigrid iteration 
operator becomes symmetric. 

The step 

-- _ .c,_.h t• h ), 

i.e.. the computation of the defect in a usual multigrid, we 
replace with the following extrapolation step 

_ •l (k,•) 
3 

1 t at [Hu(k,1)• 

Here, the operator Rff denotes the restriction operator 
(which is the transposed to the operator of the linear in- 
terpolation), and Iff stands for the injection operator. 

The coarse grid system 

(31) a' • (k) = d•) •H•H 

we solve by means of/x iterations steps of a usual multi- 
grid algorithm without extrapolation, which starts with 
the zero-vector (see, e.g. [4]). 

Because of the equivalence of the matrices and right- 
hand sides in the systems of algebraic equations (28) and 
(29) as well as of the definition of the smoothing procedures 
we can interpret the multigrid algorithm with an extrapo- 
lation step as a multigrid algorithm without extrapolation 
for solving the system (29). Using a convergence theorem 
of Schieweck [14] for such a multigrid algorithm we get the 
following convergence theorem for our multigrid algorithm 
with extrapolation. 

Theorem 4.2 Let the smoothing procedures, the restric- 
tion, and the interpolation operators be defined as they are 
at the beginning of this Section and let the assumptions of 
Lemma J. 1 and Lemma J.2 be fulfilled. Then 

The iterates of the multigrid algorithm with an ex- 
trapolation step converge to the solution which we get 
by a FE discretization of problem (17) with piecewise 
quadratic functions. 

(ii) The convergence estimate 

holds, where I1.11, - .) and is the 
solution of the system of algebraic FE equations 

The convergence rate r] depends on the number of 
iteration steps for solving the systems (30), on the 
convergence rate of the multigrid algorithm used for 
solving the coarse-grid system (31), and on the con- 
stant in the strengthened Cauchy inequality 

la(vh, wH)l XIIv11 IIwHIt 

for all va • Ta - span{q• ) , i- NH + 1,...,N•}, 
for all w s • V}. 

The proof of this theorem is given in [6] 

4.3 Numerical results 

Now we want to demonstrate the iterates of the multigrid 
algorithm with extrapolation converge to the FE solution 
which we would obtain by a discretization of problem (17) 
with piecewise quadratic functions. 

Let us consider the problem: 

Find u • H0• (fl) such that 

(32) /n(KV:•u, V:•v) dx = • fv dx 
for all v • H0•(f•) holds, 

where 12 = (0,1)x (0,1) K = (4 4 ) and f = ' 4 5 ' 

•r2(9 sin 7rx sin •ry - 8 cos 7rx cos •ry). The exact solution of 
this problem is u = sin •rx sin •ry. 

We compare the discretization errors Ilu- u111 and 
Ilu- u111 in the SX-norm. Here denotes the FE so- 
lution obtained by means of the multigrid algorithm with 
extrapolation, and u• the FE solution by a discretization 
with piecewise quadratic functions. We remark that in our 
example the right-hand side f is not constant on triangles 
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57, which we had assumed in Theorem 4.1. Therefore, in 
our example the right-hand sides (4 I i ~ ) xfh -- gf H andf•are 
not identical. But the discretization errors are almost the 

same. 

Level/ [lu-u[][• Ilu-u[ll 
3 0.1306 0.1426 
4 0.3347-01 0.3481-01 

5 0.8426-02 0.8539-02 

6 0.2110-02 0.2118-02 

7 0.5278-03 0.5283-03 

Table 7: Comparison of the discretization errors 

Table 7 shows that the solution u• has a discretization 
error of the order O(h 2) in Ht(•2), which is typical for 
finite element solutions resulting from a discretization with 
piecewise quadratic functions. 

5 Conclusions 

Multigrid and multilevel techniques are generally consid- 
ered as fast solvers for a given discretization of a differen- 
tial equation. In this paper we have presented another as- 
pect of the multilevel principle. Using extrapolation in the 
natural hierarchical mesh structure of a multigrid solver, 
higher order approximations can be obtained simply and 
efficiently by r-extrapolation. 

In contrast to classical extrapolation for differential 
equations, this approach is implicit. Extrapolation is not 
applied to different approximations of the solution but to 
quantities like the truncation error, the energy, or the stiff- 
ness matrix in finite element computations. The higher or- 
der approximation is then obtained by an iteration similar 
to defect correction, which is integrated with the multilevel 
iteration. This algorithm avoids the explicit construction 
of higher order operators and can be derived easily from 
basic (low order) multilevel algorithms. Computationally, 
the modification from basic to higher order is simply a mul- 
tiplication of the r-correction by a suitable extrapolation 
factor. 

The method also avoids one of the main disadvantages 
of conventional extrapolation methods. The mathematical 
foundation is not the existence of global error expansions 
which depend on the global regularity of the solution. The 
implicit nature of the algorithm permits a local analysis 

and, therefore; justifies the local application of r-extrapo- 
lation - and even the combination of r-extrapolation with 
adaptive mesh structures. 

For all our algorithms, the basic multilevel structure au- 
tomatically provides an iterative solver with the typical 
multigrid convergence rates. Therefore, the higher order 
solution can be computed at a cost which is equivalent to a 
few relaxation sweeps for the basic low order discretization 
on the finest mesh. As is typical for multigrid, this relation 
is independent of the size of the problem. 

The paper has presented three different approaches to 
r-extrapolation like algorithms, giving some theoretical 
background and numerical examples for each of them. Any 
of these three different interpretations of the r-extrapola- 
tion principle may be useful in a particular application and 
together they provide a deeper understanding of the algo- 
rithm and its features. 

Our results clearly show the potential of r-extrapola- 
tion for many practical computations, including nonlinear 
ones, whenever the efficient treatment of the problem re- 
quires both a high order discretization and a fast algebraic 
solver. 
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