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Abstract 

A defect correction scheme with the first order upwind pre- 
conditioner is considered. By Fourier analysis the precon- 
ditioning properties for the second order upwind scheme, 
the central scheme and spectral methods are examined. 
Since the eigenvalues of the preconditioned operator are 
complex the GMRES iteration is used for the iterative so- 
lution. This procedure is applied to the Boussinesq flow 
problem in vorticity-streamfunction formulation. Numeri- 
cal results are presented for increasing Rayleigh numbers. 
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1 Introduction 

Here we consider convection-diffusion problems which can 
in its most general form be written as 

(1) --eAu + cu•: + duy = f in • = (-1, 1) 2, 
(2) u 

where e > 0 denotes a constant, c, d, f are functions defined 
in •, and g is defined on 0•. Such problems arise after 
a linearization of the Navier-Stokes equations (or Boussi- 
nesq flow problem). Here e correspondts to •7' The part 
--eAu denotes the diffusive part and cu• +duy denotes the 
convective part of the above equation. Here we axe mainly 
interested in convection dominated flows where e << h. 

Here h denotes the step size of the finite difference (FD) 
scheme. For the FD approximation of convection-diffusion 
problems one observes instability. For small e standard 
discretizations lead to a solution of the discrete problem 
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which has nothing to do with the solution of the original 
problem. For instance, the discretization of 

-eu" - 2u' = 0 in [0, c•), 
u(0): 1, u(c•): 0 

with central differences yields a discrete solution: 

uE,h(ih) = e- h i 

This is an O(h 2) discretization. For ih fixed and -• -• 0 
we obtain: 

with C independent of i, h and e. But the solution of the 
reduced equation is: 

Uo,•(ih) = lim u•.•(ih) = (-1) • 
e•O 

which means that for e << h the solution of the FD prob- 
lem has nothing to do with the exact solution 

u(x) =e 

For this special problem we further observe a boundary 
layer where the first derivative behaves as O(e -•) for e -• 0. 
One possibility to avoid the phenomenon of instability is 
to use upstream discretization for u'. Cleaxly, an obvious 
disadvantage of this scheme lies in the fact that the method 
now becomes only first order accurate. Hence it makes 
sense to use the first order upstream scheme only as a 
preconditioner for a higher order scheme. We analyze the 
preconditioning properties of this method for the following 
higher order schemes: 

ß second order upstream scheme 

ß central finite difference scheme 

ß Chebyshev pseudospectral scheme. 
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In the spectral scheme (see [5]) the solution is approxi- 
mated by Chebyshev polynomials of degree _< N. This 
space is denoted by P:v. By a Fourier analysis it can be 
shown that the eigenvalues of the preconditioned opera- 
tor are bounded but complex. Hence one has to employ 
a nonsymmetric matrix iteration for the solution. Here 
we recommend the GMRES iteration which belongs to the 
residual minimization methods. Clearly, for the general 
convection-diffusion problem (1), (2) the first derivatives 
us and u s have to be approximated according to the sign of 
the coefficients c and d, respectively. Therefore for the iter- 
ative solution we recommend flow directed schemes. Since 

the Chebyshev nodes are dense near the boundary it is 
necessary to use line Gauss-Seidel relaxation (in an alter- 
nating manner). Finally this iterative solver is applied to 
the Boussinesq flow problem in vorticity-streamfunction 
formulation. We obtained numerical results for increasing 
Rayleigh numbers up to Ra = 10 5. 

2 Preconditioning by the 
upstream scheme 

From the one-dimensional •nodel problem it can be seen 
that for e • 0 wb first have to find a good preconditioner 
for the derivative operator 

du 

Here we employ the first order upstream scheme (L•up) for 
preconditioning, i.e., 

or 

__ _._ 

dx 
a(x•+•)- u(xi) if xi+• < xi 

&'i+ 1 -- Xi 

du u(xi) - u(xi_i) if xi-t < xi. _ 
In the spectral discretization we have collocation points 
X i -- COS 0 z, 0 i = •, so that xi+• < xi, where• in the 
finite difference case we have grid points xi = ih, h = •, 
so that xi-• < xi for i = 1,...,N- 1. Now we were 
interested in the preconditioning properties of L•p for the 
following three higher order methods: 

ß second order upstream scheme: 
• (•(•_•)- 2•(•_•) + •(•)) L•pu : • 

ß second order central scheme: 

ß peuospeai ½ee 

Hence we are interested in the eigenvalues of the discrete 
operators: 

up, , 

Eigenvalue bounds are obtained by a Fourier analysis. It is 
well known (see [5]) that the Fourier analysis also yields a 
good prediction for the eigenvalues in the Chebyshev case. 

For (Llup)-I 2 the absolute values of the eigenvalues are Lup 
given by 

IA•Pl = 4-3cos 2•-• , p=l,...,N-1. 

For (L•up) -• L• they are given by: 
p•r 

[X;•l = cos•-•, p=l,...,N-1. 
Since cos • 6 (0, 1) we obtain 2N 

I),•Pl e (1,2) and I),;•1 e (0,1). 

Because zero is the lower bound for the eigenvalues of the 
preconditioned central scheme it is already clear that this 
method is not good. For the second order upstream scheme 
we observed that the imaginary parts are small compared 
to the real parts. Hence a simple Richardson iteration can 
be applied. By choosing one relaxation parameter we ob- 

• Clearly, the convergence rain a convergence factor of X. 
speed can be accellerated by using more parameters (non- 
stationary Richardson relaxation [14]). As shown in [14] 
the convergence factor pk for k relaxations is here given by 

p• -Ir•(3)l-%, 

where T• denotes the kth Chebyshev polynomial. In table 
I we present p• for k: 1,...,4. We recommend to use 
k = 3 since the improvement for increasing k is no more 
significant. For more informations on high order upstream 
schemes (/•-schemes) we refer to our paper [22]. Here also 
the 2D case and multigrid solvers are explicitely discussed. 

k pk 
1 O.3333 

2 0.2425 

3 0.2162 

4 0.2040 

Table I. p• for k = 1,...,4 
For the spectral Fourier operator (see [5, 5.2.2]) the eigen- 
values of the preconditioned spectral operator are 

X• p p•r/N -i• N N sin(p•r/N) 'P 2 ''"' 2 
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and hence 

p•r / N N N 
I'X•Pl - sin(p•r/X)'p - 2'"-•" 

This implies that 

I•;Pl • [1, •] • [1, 1.57]. 
Therefore the eigenvalues are bounded but complex. The 
iterative solver must be able to handle complex eigenval- 
ues. Here we recommend the GMRES iteration (see [a0], 
jail) which belongs to the residual minimization methods. 
Consider the general linear system 

By ---- g, 

where B is a large nonsymmetric matrix. If v0 is an initial 
approximation to the solution and ro- g - Bvo, we define 
the ruth Krylov subspace 

Km= span{ro, Bro, B2ro,...,Bm-lro}. 

Then the GMRES approximation v,• with 

(3) vm vo+K. 

is determined such that the ruth residual r,• fulfills 

(4) ll..,ll2 = minimum. 

An equivalent statement is the orthogonality condition 

(5) r,• 2_ BK,,. 

The GMRES iteration. is a robust implementation of (3)- 
(5) by means of an Arnoldi construction of an orthonormal 
basis for the Krylov space, which leads to an (m + 1) x m 
Hessenberg least-squares solution [31]. 

3 Stabilization techniques and it- 
erative solver 

Here we consider convection-diffusion problems which are 
in its most general form given by (1), (2). It is well known 
that these problems lead to instabilities for e << h in the 
FD case (see [9], [10], [13]) and for e << N -2 in the spec- 
tral case (see [3], [19]). Canuto [3] has shown that the 
spectral approximations are affected by spurious oscilla- 
tions which deteriorate the spectral accuracy. For instance, 
for the one-dimensional model problem 

(6) -eu" +u' = 0 in (-1,1), 
(7) u(-1) = 0, 1 

the exact solution is given by 

(8) u(x) = 
e; -1 

Hence the boundary layer exhibited near x = 1 when e -* 0 
has a width of order O(e). 

The pseudo spectral approximation uN • PN of (6), (7) 
is now defined by 

=0, = 

i• denote the Chebyshev collocation points. where xi = cos 
In [3] the spectral approximation is explicitly calculated 
and finally one obtains for 

,-• I 1 
oddN: u•v = .,+sTy, 

even N: UN ----- •to + •t.¾TN, I01 • O(eN2) -• 

as e --, 0, e << N -2. Here T• denotes the Nth Cheby- 
shev polynomial. 
Therefore in both cases UN is strongly oscillating but for a 
given e the oscillations created by the boundary layer are 
less pronounced if N is chosen to be odd. This shows that 
attention should be paid to the parity of the degree of poly- 
nomials to be used in a spectral approximation of bound- 
ary layer problems. This example further demonstrates 
the instability of the convection dominated problem. In 
particular, for even N we can read from the coefficients fro 
and ft.¾ that the approximation error is perturbed by an 
instability rate of O(eN2) -• 

The problem of instability is also well known for finite 
difference (or finite element) discretizations if central finite 
differences are used (see, e.g., [12]). Here also spurious 
oscillations are introduced by the discretization scheme. 
This problem is avoided by applying an upstream scheme 
where the first derivative is approximated by a one-sided 
finite difference star. Another possibility is to add an ar- 
tificial diffusion (or viscosity) term of the form -N-•Au 
to the convection-diffusion equation. Now these methods 
are stable and produce non-oscillating solutions but are 
only first-order accurate being based on solving a modified 
problem. Clearly such techniques are of no interest for 
spectral approximations since the high spectral accuracy 
is completely lost. 

Therefore we thought of other techniques of stabiliza- 
tion which maintain the high accuracy of spectral meth- 
ods. Together with Eisen [10] we obtained a stable scheme 
by adding one additional equation of collocation to the 
original system. Hence we obtain an overdetermined sys- 
tem of equations and the instability caused by the highest 
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mode is avoided. This is a certain kind of penalty method. 
We proved stability independent of e and present the nu- 
merically calculated condition numbers for several types 
of collocation points (Chebyshev Gauss or Gauss-Lobatto 
nodes). A drawback of this approach is that the method 
is not flow directed and therefore in our model problem 
for e • 0, e << N -2 the spectral solution approximates 
the straight line us(x) = 0.5(x + 1) (see [10, Figure 2]) 
instead of the boundary layer solution (8). Another draw- 
back is that for overdetermined systems no efficient itera- 
tive solvers like multigrid methods are available. For these 
reasons this is probably not the best way to go. 

A flow directed method is the streamline diffusion 
method which was introduced by Hughes and Brooks [24], 
[25] for a finite element discretization. This method is 
stable and no accuracy is lost. It is a Petrov-Galerkin 
modification of the standard Galerkin method where arti- 

ficial diffusion in the streamline direction is introduced by 
modifying the test functions from v to 

v + 6xcvx + 5•dvy, 

where 5x = 5• -- O(h) and h denotes the step size of the 
finite element scheme. Clearly, for the spectral method 
with Chebyshev Gauss-Lobatto points one has to choose a 
point dependent viscosity given by 6• = 5:•(x), 5• -- 6•(y), 
where 

5•(x•) = C• sin(--•)sin(/•r ß . •), i= 1,...,N- 1, 

= = 1 
with suitable constants C•, Cy. These formulas result from 
the finite difference discretization with central differences 

(see [14]). The constams C•, Cy can be chosen such that 
the resulting finite difference matrix yields an M-matrix 
(see [12]), i.e., its inverse has only nonnegative entries. For 
the practically more efficient pseudo spectral method the 
stabilization is achieved by adding the viscosity term to 
the right hand side f. Here f is replaced by 

and the corresponding differential operator is modified 
such that the new problem is equivalent to the original 
system (1), (2). In [19] we investigated this method in 
connection with a multi domain approach for the above 
boundary layer problem. Stability is shown and suitable 
multigrid components for the efficient solution of the sta- 
bilized problem are presented. Clearly, a drawback of this 
approach is that high order derivatives have to be com- 
puted which makes it quite expensive. 

For preconditioning of the original spectral system we 

recommend an upwind FD method, for which each of the 
first derivatives u• and uy is differenced according to the 
sign of the coefficients c and d, respectively. The Laplace 
operator is discretized by standard central finite differ- 
ences and the first derivatives u• and uy in (xi, yj), i, j = 
1,..., N- i are approximated as follows: 

C(Xi,yj) _> O' Ux(Xi,yj) •-- u(xi+l,Yj)--u(xi, yj), 
xi+ 1 -- x i 

c(xi,Yj) < O ' •x(Xi,Yj) • U(Xi,yj) -- U(Xi-l,Yj), 
xi -- xi- 1 

d(xi,yj)_>O' Uy(Xi,yj) •- u(xi,Yj+•)-u(xi, Yj), 
Yj+• -- yj 

u(x, u(x, 
< 0. 

Yj -- Yj- 1 

For the iterative solution we recommend flow directed 

schemes. Since the Chebyshev nodes are dense near the 
boundary it is necessary to use line Gauss-Seidel relax- 
ation. For smoothing it is recommended to use alternate 
iterations of FDHI (Flow Directed Horizontal Iterations) 
and FDVI (Flow Directed Vertical Iterations). In the liter- 
ature this combination is called FDHVI (see [9], [13]). The 
iterative scheme FDHI is a variant of line Gauss-Seidel re- 

laxation. Let Pi denote the mesh points on the vertical 
line x = xi. We divide Pi into two subsets: 

Pi,z := {(i,j) ' c(xi,yj) _> O}, 
Pi,w :: {(i,j) ' c(xi,Yj) <0}. 

The FDHI partitioning and ordering of the unknowns con- 
sists of the subsets Pi,• arranged in order of increasing 
i, followed by the subsets Pi,w, arranged in order of de- 
creasing i. The difference equations on each of the subsets 
P•,e or Pi,w are a collection of tridiagonal systems. By 
considering the mesh points P• on a horizontal line y - yj 
and dividing Pj into subsets Pj,•v, Pj,s we may construct 
the iterative scheme FDVI. Finally one alternates between 
FDHI and FDVI, resulting in FDHVI. For a more detailed 
description including numerical results we refer to [9] and 
[13]. Han et al. [13] describe a procedure based on directed 
graphs to partition and order the unknowns of the Gauss- 
Seidel process. This is performed by inspection of the co- 
efficient matrix. Nevertheless, this algorithm is expensive 
for non-linear problems, like those coming from the Navier- 
Stokes or Boussinesq equations, when the coefficients are 
solution dependent and require the reconstruction of the 
directed graph several times. The penalty for such a choice 
is proportional to the number of mesh points. In Section 4 
the FDHVI scheme is applied to the Boussinesq flow prob- 
lem. 
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4 The Boussinesq flow problem 

The problem specifically considered here is that of the two- 
dimensional flow of a Boussinesq fluid of Prandtl number 
Pr -- 0.71 (i.e., air) in an upright square cavity (see Ill, 
[7]). The walls are non-slip and impermeable. The hori- 
zontal walls are adiabatic and the vertical sides are at fixed 

temperatures. In addition to the Navier-Stokes equations 
we have one further equation for the temperature T. By 
Ra we denote the Rayleigh number. The Boussinesq flow 
problem in vorticity-streamfunction formulation reads as 
follows: 

As usual (v•, v2) t denotes the velocity. The scalar factors 
2 and 4 are due to the fact that we here define the problem 
in (-1.1) 2 instead of the original square cavity (0, 1) 2. 0 
fulfills homogeneous Dirichlet boundary conditions, i.e., 

o0 
0 -- -- 0 on 0f2 

and T fulfills mixed Dirichlet/Neumann boundary condi- 
tions 

T(-1,y)=l, T(1, y)=0 fory•(-1,1), 

aT (x,-1)= aT O--• •yy(X, 1) = 0 for x • [-1, 1]. 
The homogenous Neumann boundary conditions corre- 
spond to the fact that the horizontal walls are adiabatic. 

Now the equations are linearized by a Quasi-Newton 
method (see [21]), where the velocity from the previous it- 
eration is employed. Hence we have to solve a linear prob- 
lem. The linearized system is now approximately solved 
by a spectral multigrid (SMG) method (see [15], [16]). We 
first describe the pseudospectral discretization of the sys- 
tem. The functions 0 and co are spectrally approximated 
by polynomials ux+2 • PN+2, VN • PN. T is approxi- 
mated by a polynomial WN • PN. Hence vl, v2 are ap- 
proximated by the polynomials VLN , V2,N • PN+2, where 

O• N + 2 09'•N+2 
U1,N -- OF , V2,N -- OX ' 

and •,¾+2 • PN+2 corresponds to the polynomial uN+2 
from the previous iteration. Now the pseudospectral prob- 
lem reads as follows: 

Find u2v+2 • Px+2, VN • P•v, wN 6 PN such that 

[4Aux+• + v•](zi, y•) = 0 

for i,j = 0,...,N and 

0 0 

[-2PrAvN + •x (m,;vv;v) + •y (v2,•¾v;v)l(xi, y•) = 
r, ,• OWN 

= ttat'r--b--•x(Xi,Yj) , 

0 0 

[--2AWN q- •xx (Vl,NWN) q- •(V2,NWN)](Xi,•Ij) -- 0 
for i,j = 1,... ,N- 1. Since u has to fulfill two types of 
boundary conditions we choose UN+2 • PN+2 fulfilling the 
homogeneous Dirichlet boundary conditions. For VN there 
are no boundary conditions. The pseudospectral boundary 
conditions for WN • PN are given by 

w•(-1, y;)=l, w•v(1, y•)=0 forj=l,...,N-1, 

Ow:½ (xi,-1) = Ow•¾ {x,, Oy •-y, . 1)=0 fori=0,...,N. 
This system uniquely determines the spectral approxi- 
mations uN+2, vN, wN. In the linearized version the 
systems for determining u•;+2, VN and Wx can be han- 
dled separately. First, one solves the system for WN by 
a SMG method, then one calculates o•.,-;xi Ox • ,yj), i,j = 
1,..., N - 1, and finally one solves the last system by the 
SMG method introduced in [18] ,[20]. Here we employed 6 
V-cycles of SMG in order to get a nearly exact solution of 
the linear systems. 

Now we turn to a more precise description of the SMG 
method. We use the same components as already intro- 
duced in Section 3. A somewhat different treatment re- 

sults from the fact that the diffusive part is now perturbed 
by the first order derivatives o o For an increasing 
Rayleigh number the convective part becomes dominant. 
Hence in the defect correction step one has to use a FD 
approximation which remains stable also for an increas- 
ing Rayleigh number. Furthermore the FD problem has 
to be solved approximately by a suitable iterative method 
which also works for convection dominated flows. Here we 

employed the FDHVI iteration for preconditioning of the 
spectral system. In order to handle the complex eigen- 
values of the preconditioned spectral operator we employ 
nonsymmetric matrix iterations. Here we choose the GM- 
RES iteration. For a more detailed description of these 
components we refer to Section 3. 

By using these components we numerically calculated 
for various Rayleigh numbers and mesh sizes the following 
quantities: 

10[.•ia: absolute value of the streamfunction at the mid- 
point of the cavity, 
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maximum absolute value of the streamfunction. 

The local heat flux in a horizontal direction at any point 
in the cavity is given by 

OT 

Q = v•T - 20x. 
Let us further introduce the following Nusselt numbers: 

• f_• f_• Q(x,y)dxdy' average Nusselt number 
throughout the cavity, 

• f_• Q(0, y)dy' average Nusselt number on the Nuz = 5 • 2 

vertical mid-plane, 
- • f_• Q(-1, y)dy: average Nusselt number on Nuo - 5 • 

the vertical boundary. 

The above integrals in the definition of Nu, Nu« and Nuo 
are evaluated by the Clenshaw-Curtis quadrature (see [6, 
p. 68]). In the tables II - IV we present the numerical 
results for different Rayleigh numbers and N = 8, 16, 24. 
The numerical results are in good accordance with the re- 
suits obtained in [7]. However, for a larger Rayleigh num- 
ber or increasing N the above SMG method is no more 
convergent. The reason is that upstream preconditioning 
is not good enough. Here one has to find some better ways 
of preconditioning. At the moment we try to find improved 
preconditioners where the finite difference discretization is 
performed on staggered grids. 

N l•Imid tOlmax Nu Nu_• Nuo 
2 

8 1.1747 1.1747 1.1178 1.1173 1.1174 

16 1.1746 1.1746 1.1178 1.1178 1.1178 

24 1.1746 1.1746 1.1178 1.1178 1.1178 

Table II. Results for Ra = 10 a. 

N IOImax Nu Nu• Nuo 
8 5.0713 5.0713 2.2474 2.1946 2.1870 

16 5.0736 5.0736 2.2448 2.1946 2.1870 

24 5.0981 5.0980 2.2340 2.2350 2.2420 

Table III. Results for Ra = 10 4. 

N Ilmd 101max Nu Num N•o 
8 14.3409 18.8519 4.4140 4.7345 4.7590 

16 11.3720 12.3330 4.5030 4.5061 4.5313 

24 9.1600 9.6530 4.5100 4.5120 4.5231 

Table IV. Results for Ra = lO s. 

Extension to 3D problems and 
parallel computers 

As already noticed in [14], [15] and [16] the close spacing of 
the collocation points near the boundaries of the domain 
introduces a locally changing anisotropy into the prob- 
lem. Since the mesh point aspect ratios are large, multi- 
grid methods based on point relaxation are ineffective. In 
the two-dimensional (2D) case certain (alternating) line 
relaxation techniques are necessary for a good smoothing. 
In the three-dimensional (3D) case (alternating) plane re- 
laxation becomes necessary. These block-relaxation tech- 
niques are carried out in a suitable way, e.g., line relaxation 
using special direct solvers for the arising tridiagonal sys- 
tems, and plane relaxation using appropriate 2D multigrid 
methods. The tridiagonal systems can be efficiently solved 
on parallel machines by a variety of substructuring algo- 
rithms, which include Cyclic Reduction or Cyclic Elimina- 
tion. Johnson, Saad and Schultz [26] discuss the solution 
of tridiagonal systems on the hypercube architecture in the 
context of the ADI method. Often, it is advisable to invert 
the tridiagonal matrix once for all in a preprocessing stage 
and then solve the linear systems simply by a matrix-vector 
multiplication. In this case, the Nearest Neighbor Network 
[23], [28] provides the optimal communication scheme. For 
a more detailed information about suitable interconnection 

networks we refer to classical books on parallel computers 
such as [23], or to review papers such as [2], [4] or [28]. 

By using the standard Richardson iteration precondi- 
tioned by plane relaxation sweeps for the 3D FD system 
we obtain a method with a complexity of 

O(N a lnN) arithmetic operations 

if FFTs are used. The Perfect Shuffle interconnection net- 

work [23], [28] is the optimal communication scheme for 
this class of transforms. For a more precise description of 
the 3D SMG method we refer to [17]. Here also different 
kinds of boundary conditions in the different directions are 
discussed. Numerical results are presented which show the 
efficiency of our treatment. 

For parallel computers it is useful to employ plane re- 
laxation sweeps not in all three coordinate directions but 
only in one direction. The latter are known as "semi- 
coarsenlug" algorithms, since the grid is coarsened in only 
one coordinate direction (z-direction). That is, if the fine 
grid is an N x N x N grid, the next coarser grid will be an 
N x N x N/2 grid, the next coarser will be an N x N x N/4 
grid, and so on. Clearly, semi-coarsened algorithms are 
cheaper than plane relaxation algorithms with relaxation 
in all three coordinate directions, since plane relaxation is 
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needed in only one direction. They are very robust against 
anisotropies and grid stretchings (see [8]). The smoothing 
properties for the Chebyshev mesh were investigated by 
Overman and Rosendale [29]. Besides these numerical ad- 
vantages they are attractive for parallel computing, since 
the z-distribution allows the plane relaxations to be car- 
ried out with relatively little interprocessor communica- 
tions. However, an obvious disadvantage of this approach 
lies in the fact that the planes do not decrease as one goes 
to coarser grids, leading to very poor efficiency. In [11] this 
problem was solved by using concurrent iterations in which 
all grid levels are simultaneously relaxed. Combining con- 
current relaxation multigrid algorithms in the z-direction, 
with a standard semi-coarsening line relaxation algorithm 
in the xy-planes led to a robust and effective algorithm 
which is highly parallel and maps easily to distributed 
memory machines. This type of 3D SMG method was 
parallelized and implemented by Overman and Rosendale 
[29] on a 32 node iPSC/860 hypercube, for a 32 x 32 x 32 
Chebyshev grid. By using the semi-coarsening multigrid 
algorithm, and by relaxing all multigrid levels concurrently, 
relatively high efficiency of the processors were achieved. 
Typically, they obtained an efficiency of 60% on moderate 
sized problems. Hence spectral methods remain attractive 
on the current generation of distributed memory architec- 
tures. 

However, to achieve high efficiency on machines having 
thousands of processors will require several improvements 
in the algorithm. The semi-coarsening approach of dis- 
tributing the data in only the z-direction exacerbates the 
multigrid "idle processor" problem on coarse grids and in- 
creases total communication. Thus it may be better to 
use hybrid decompositions, in which some grid levels are 
decomposed in one way and others in other ways. Fur- 
thermore other new variants of multigrid (see [27]), based 
on the use of multiple coarse grids, yield satisfactory re- 
sults. They completely avoid the need of line and plane re- 
laxation, allowing much higher levels of parallelism. This 
algorithm combines the contributions from the multiple 
coarse grids via a local "switch", based on the strenght 
of the discrete operator in each coordinate direction. It 
is shown in [27] that the V-cycle convergence rate is uni- 
formly bounded away from one, on model anisotropic prob- 
lems. The new algorithm can be combined with the idea of 
concurrent iteration on all multigrid levels to yield a highly 
parallel algorithm for strongly anisotropic problems. We 
think that this is probably the most fruitful direction for 
future research in this area. 
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