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Abstract 

Uniform rectangular grids, which are used mainly in the 
academic environment, permit very simple high-degree el- 
ements and are the easiest grids to implement, but are lim- 
ited as far as local adaptation and approximation of bound- 
aries is concerned. Despite of the difficulty of matching 
triangular high-order elements, triangular unstructured 
grids dominate the world of engineering computing on the 
strength of their ability to approximate curved boundaries 
and to provide variable local resolution. However, the un- 
favorable rate of convergence of low-degree methods is a 
major drawback, especially in high-precision computing. 

Hierarchical recursire grids require more complex data 
structures but are attractive for use in dynamic adaptive 
algorithms. Recently, in his paper [6] the author inves- 
tigated properties of a subclass of recursire grids called 
"consistent" grids, which can be viewed in certain sense as 
an intermediate type between the two previous grid types, 
and developed a version of the finite element method suited 
for treatment of the interfaces between computational cells 
of different sizes. In our current presentation we propose 
an extension of this method to high-degree Hermite finite 
elements and discuss ways to treat curved boundaries when 
using recursire grids. In addition to their matching prop- 
erties. Hermite elements are uniquely suitable for creating 
general-purpose software, being uniformly extensible for 
any order and any number of space dimensions. 

In light of all their proved and potential advantages dis- 
cussed above, it appears that the main reason recursire 
grids are not widely used is the complexity of their im- 
plementation. This problem can be overcome by creating 
grid-handling program libraries and specialized develop- 
ment and visualization environments [5]. 
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1 Introduction 

The choice of grid type is one of the most crucial choices 
in numerical solution of partial differential equations. An 
eloquent, if perhaps slightly unfair towards approximation 
and solution methods, description of the importance of grid 
choice was presented by J.F. Thomson [10]: 

"The ultimate answer to numerical solution 

of partial differential equations may well be 
dynamically-adaptive grids, rather than more 
elaborate difference representations and solution 
methods. It has been noted by several authors 
that when the grid is right, most numerical solu- 
tion methods work well. Oscillations associated 

with cell Reynolds number and with shocks in 
fluid mechanics computations have been shown 
to be eliminated with adaptive grids. Even the 
numerical viscosity introduced by upwind differ- 
encing is reduced as the grid adapts to regions of 
large solution variation." 

Since the early days of the finite element method the 
two competing methods of choice were uniform rectangular 
grids and triangular non-structured grids. Gilbert Strang 
wrote in his classical book [9] 

"... it is not clear at this writing whether it is 
more efficient to subdivide the region into trian- 
gles or into quadrilaterals. Triangles are obvi- 
ously better at approximating a curved boundary, 
but there are advantages to quadrilaterals (and 
especially to rectangles) in the interior: there are 
fewer of them, and they permit very simple ele- 
ments of high degree." 

Uniform rectangular grids are widely used in the aca- 
demic world, probably because, in addition to the advan- 
tages described by $trang, they are easy to program using 
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Figure 1: An example of consistent recursive grid •vith contours of the solution superimposed. The solution represents 
the temperature distribution of a premixed flame propagating in a shear flow field. The grid results from a dynanfic 
adaptation process where the grid changes as the solution develops from an initial estimate to the state shown in the 
picture. 

the simplest data structure -- a Fortran array. In many 
acadenfic applications. be it testing of new numerical meth- 
ods. or using numerical solutions to investigate scientific 
phenomena. the computational domain is rectangular and 
local adaptivity is not crucial. By transforming the compu- 
tational domain it is possible to adapt a logically uniform 
rectangular grid to a non-rectangular computational do- 
main and to provide variable local resolution. However, 
this transformation requires a solution of a global prob- 
lem. for many particular geometrical configurations of the 
area to be refined, the resulting economy is small or non- 
existent (consider. for example. in two dimensions, a thin 
ring area to be refined, with diameter close to the diame- 
ter of the computational domain), and the numerical error 
caused by a large condition number of the transformation 
can be considerable. 

Unstructured triangular • (sometimes mixed with 
quadrilaterals) grids have unquestionably won the engi- 
neering world on the strength of their ability to approx- 
imate curved boundaries and, not less important, their 
ability to provide variable local resolution. Paradoxically, 
unstructured grids, when not dynamically modified dur- 

1Although we use two-dimensional case in our discussion here, it 
is relevant to three-dimensional case too. 

ing the computation process, fit almost as well into simple 
data structures, because their elements are uniformly re- 
lated to each other (they don't form a hierarchy). A no- 
table problem with these grids is the difficulty of matching 
high-order finite elements. Because the local geometry of 
the grid may differ at every node. each row of the stiffness 
matrix has to be computed separately, so the calculation of 
the stiffness matrix is generally more expensive compared 
with the rectangular grids. Geometrical searches on un- 
structured grids are more computationally expensive too, 
compared with the structured grids. 

Unlike the two classes of grids discussed above, hierar- 
chical recursive grids (see Figure 1) require more complex 
data structures [8] which are not straightforward to pro- 
gram in Fortran, and this retarded their use until the early 
'80s. The main reason for the interest in recursire grids was 
their use in adaptive algorithms. Recently, in his paper [6], 
the author investigated properties of a subclass of recur- 
sive grids called "consistent" grids and showed that they 
can be viewed as semi-structured grids, in the sense that 
the number of possible local geometrical configurations of 
the grid is limited (as compared to one configuration for 
uniform rectangular grids and infinity for non-structured 
grids). 
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The treatment of the interface between computational 
cells of different sizes is a major problem in using com- 
posite grids. For recursive grids, the standard nodal for- 
mulation of the finite element method can lead to an un- 

desirable unlimited increase in the number of nodes in the 

discretization stencil. This problem does not arise for finite 
element formulation with element-based parameters, how- 
ever the number of unknowns in this case is much greater 
than for the nodal formulation. To solve the problem of the 
discretization stencil increase, we developed a special ver- 
sion of the finite element method for consistent recursive 

grids. Our version uses discontinuous piecewise bilinear 
basis functions to simplify matrix generation on interfaces 
of computational cells of different sizes. The solution re- 
mains continuous due to additional constraints imposed on 
the unknowns. With our method, the number of possible 
discretization stencils is fixed and the stiffness matrix for 

constant coefficient operators can be preassembled. 
Returning to comparison of the main grid types, the 

major advantage of uniform rectangular grids was their 
ability to support high-degree finite elements. This abil- 
ity is of major importance for computing high-precision 
solutions, because an O(h) method in three dimensions re- 
suits in about O(e -3) unknowns, where e is the required 
accuracy of the solution. Given that the solution of im- 
plicit equations can rarely be accomplished in linear time, 
the real rate of growth in computational work versus ac- 
curacy is likely to be much higher than the rate quoted 
above. "High-performance" computing applied to meth- 
ods with such an unfavorable rate of convergence will not 
take us far. for •vith a 1000-fold increase in the computing 
power we can gain at most 10-fold increase in precision. 
This 10-fold increase in precision will require also 1000- 
fold increase in data volume with the associated increase 

in memory requirements. 
Another important criterion for grid comparison is their 

suitability for creating general purpose software. Undoubt- 
edly, for every grid type there are problems for which this 
particular type is the most efficient. Although it is dif- 
ficult to formalize, it is clear that some grid types are 
less suitable for use in general-purpose solvers, often be- 
cause of the global dependencies they introduce. Recursive 
grids possess a very important property of locality, mean- 
ing that local changes in the required resolution lead to 
local changes in the grid. This property greatly simplifies 
adaptive methods and, eventually, adaptive software. The 
locality property is especially important for dynamic grids, 
which change frequently as the solution develops. 

Composite or nested grids [31 are closely related to re- 
cursire grids. Recursire grids can be considered a limiting 
case of composite grids in which every higher level patch 

covers one cell of the lower level grid and contains exactly 
four cells. To the extent that they differ from recursive 
grids (as patches grow in size), composite grids lose the 
locality property that distinguishes recursive grids. The 
non-local nature of composite grids leads to the need for a 
pattern recognition algorithms to cluster refinement areas 
into large patches of fine grid [4]. While composite grids 
are superior for vectorization, it is not clear at present 
which type of grid is preferable on MIMD distributed mem- 
ory computers. We believe that the problem of discretiza- 
tion on the interface between coarse and fine grids has not 
been sufficiently addressed in the literature on composite 
grids. Many authors avoid this problem by solving their 
problem on the coarse grid and using the resulting solu- 
tion as the boundary condition for the fine grid. While 
this approach can work for demonstrating adaptive grid 
efficiency or for some selected problems, it is not suitable 
in the general case. A coarse grid solution obtained with- 
out taking into account the influence of the refined area 
may contain a large error, or make no physical sense at 
all. For example, in combustion problems [7] the flame 
front can "fall" between the grid nodes on the coarse grid 
and become "extinguished," leading to a completely wrong 
solution. 

In this paper we restrict our attention to building an ap- 
proximation space with any desired degree of local smooth- 
ness and its computer implementation. For discussion of 
grid refinement criteria and the choice of the local degree 
for the trial functions see [1, ?]. The approach we describe 
here for the two-dimensional case is trivially extensible to 
any number of dimensions. 

2 Dynamic recursive grids 

A dynamic recursive grid is based on a rectangular uniform 
grid (base grid) covering the computational domain. The 
grid cells can be refined by dividing them into four equal 
subcells with lines parallel to the lines of the base grid. 
This refinement process can be repeated recursively for 
any of the newly created subcells. The refinement of a cell 
can later be reversed provided none of its four subcells is 
currently refined. As can be seen in Figure 1, some of the 
nodes are surrounded by four cells, possibly of different 
size, and some by three cells, so that the node lies in the 
middle of a cell side. We will call the former r-nodes (r 
from regular) and the latter t-nodes (as suggested by the 
shape of the adjacent lines). The nodes on the ends of the 
cell side in the middle of which a t-node is located will be 

called controlling nodes for the t-node. 
We impose consistency requirement on the grid, that is, 
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Figure 2: Nontrivial local geometrical configurations 
around a grid node. The remaining configurations can be 
obtained by rotation. 

any two adjacent (including cells having a common ver- 
tex) nonrefined cells differ at most by a factor of two in 
their linear size. This requirement leads to some non- 
local dependencies in the grid. However, as we will see 
below, these non-local dependencies can be treated in a 
completely automatic way with negligible amount of com- 
putational work. In exchange, the consistency requirement 
brings an important advantage -- semi-regularity of the 
grid. meaning that the grid has only a limited number of 
local geometrical configurations around a grid node (see 
Figure 2). It is shown in [6] that for an internal terminal 
r-node in two dimensions this number is fifteen (sixty-three 
for a three-dimensional grid). 

Grid adaptation is done in steps that may be inter- 
spersed •vith numerical computations. One step of grid 
adaptation is a solution to the following problem. 

Definition 2.1 Grid adaptation problem. 
Given a grid G, a set of its cells • to be refined, and a 
set of its cells b/ which are allowed to be unrefined, find 
a minimal consistent grid in which all the cells of T4 are 
refined and all the cells not belonging to b/are preserved. 
A minimal grid is a grid from which no cells can be deleted 
without violating one of the above conditions. [] 

It is easy to see that because of the consistency require- 
ment and because a cell can be unrefined only if all of its 
four subcells are marked for deletion, the minimal grid may 
contain some cells of b/marked for deletion, and some cells 
not belonging to T4 will be refined. 

In [6] we prove that the minimal grid is unique and pro- 
vide a grid adaptation algorithm to construct it. The al- 
gorithm is optimal in the sense that no cell refined at its 
intermediate stage is later unrefined. The algorithm is im- 
plemented as part of the grid-handling library. We would 
like to stress that in our implementation grid adaptation is 
completely independent from the refinement/unrefinement 
criteria used by a user of the grid-handling library. The 
user only communicates the sets T4 and b/to the grid adap- 
tation routines. 

3 Finite element space 

We consider here the construction of a finite element ap- 
proximation (trial) space on consistent recursive grids. 
The trial space has variable local degree of approximation 
and smoothness. Such a space together with the dynamic 
recursive grid machinery described in the previous section 
can be used not only to solve partial differential equations 
by the h-p version of the finite element method, but also to 
solve problems in many other areas such as image process- 
ing and numerical integration, to name a few. A general- 
purpose computer implementation of this functional space 
would free people wishing to use adaptive approximation 
frown drudgery involved in working with adaptive grids for 
loftier tasks in their chosen fields of interest. 

A trial function over a recursive grid is taken to be a 
polynomial over each grid cell. Each polynomial depends 
on a number of parameters. These parameters may be 
coefficients of the polynomial, nodal values of the polyno- 
mial and its derivatives, or something else. If varying the 
parameters can produce the whole space of polynomials 
of degree m, we will say that the local degree of approx- 
imation over the corresponding cell is m. To be precise, 
by a polynomial of degree m of two variables we mean a 
polynomial in which the sum of the powers of both vari- 
ables in every monomial is less than or equal to m. In 
the two-dimensional case the number of dimensions (equal 
to the number of polynomial coefficients) of the space of 
polynomials of degree m is (m + 2)(m + 1)/2. 

3.1 Element matching problem 

A trial function defined above does not satisfy any smooth- 
ness requirements on the inter-element boundaries. Con- 
straining the parameter space in such a way that the trial 
function has continuous derivatives up to a certain order 
(the function itself is considered the 0-th order derivative) 
over inter-element boundaries is called matching the ele- 
ments. Problems of matching different kinds of elements 
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are discussed in [9]. Matching may be required by the na- 
ture of the problem to be solved, or it may be desirable 
because it reduces the number of unknowns under a nodal 

formulation, without diminishing the degree of approxima- 
ti,m. Following [9] we denote C q the class of functions with 
co•tinuous derivatives through order q. 

The nodal approach to the finite element formulation 
leads to substantial savings. For example, while for a 
uniform rectangular grid the number of elements is ap- 
proximately equal to the number of nodes, a bilinear finite 
element formulation with cell-based parameters requires 
keeping four parameters per element, but only one param- 
eter per node is required for node-based formulation. 

A convenient way to investigate matching of elements is 
to take as parameters nodal values of the polynomial and 
its derivatives. Then, matching the value and derivatives 
through order q at nodes is a necessary condition for the 
elements to match up to order q. However, this condi- 
tion is not sufficient in the general case. Strang [9] quotes 
the following (unpublished) result of Zenisek concerning 
the matching of triangular elements: To achieve piecewise 
polynomials of class cq on an arbitrary triangulation, the 
nodal parameters must include all derivatives at the ver- 
tices of order less than or equal to 2q. It is conjectured 
that the minimum possible degree of such an element in 
n dimensions is 2'•q + 1. On the other hand, matching 
Hermite elements on a uniform rectangular grid with the 
gridlines along the coordinate axis is very easy. It is suffi- 
cient to match the value and the derivatives up to order q 
at the nodes to have the polynomials match up to the same 
order along the whole inter-element boundary connecting 
the nodes. 

3.2 Choosing trial function support 

Nodal formulation on uniform rectangular grids has the 
following important properties: 

ß Under condition that a basis function is a single poly- 
nomial inside every element, its support is the smallest 
possible -- four elements surrounding the node. 

ß Inside every element only the basis functions based on 
its own vertices are non-zero. 

ß The discretization stencil includes only nodes of the 
elements adjacent to the central node. 

ß The smoothness of the trial space does not exceed the 
smoothness of the basis functions. 

An attempt to extend nodal formulation from uniform 
rectangular grids to consistent recursive grids leads to sev- 
eral possibilities to consider. 

() 

) ,• 

Figure 3: Discretization stencil example for the minimum 
rectangle basis function support. The central node is 
marked by a black disk, remaining nodes of the discretiza- 
tion stencil are marked by circles. Note that in this case 
the discretization stencil may spread outside of the rect- 
angular area on the picture. 

The simplest way is to take the smallest possible rect- 
angular area around an r-node as the support of a basis 
function (see Figure 3). There are no basis functions at 
t-nodes. Basis functions belonging to the class C q can be 
built exactly like for uniform grids. However, if we use the 
Galerkin formulation with the weight functions identical 
to the basis functions, the discretization stencil can grow 
unbounded, depending on the refinement pattern. The 
number of non-zero basis functions inside an element also 
becomes unbounded. 

The next approach is to reduce the support of a basis 
function to the smallest number of cells which allow the 

building of Cq basis functions that are piecewise polynomi- 
als inside every cell (we will show how to construct these 
functions later). Such basis functions are defined in r-nodes 
(see Figure 4). There still can be non-zero basis functions 
inside an element that are based at an outside node, but 
the number of such functions is limited. The discretization 

stencil can not grow unlimited, but there is an undesirable 
dependency on the refinement pattern outside of the im- 
mediate vicinity of the central node (see Figure 4). 

Finally, extending the approach described in [6] to ar- 
bitrary degree discontinuous Hermite finite elements, we 
reduce the support of the basis functions at r-nodes to the 
four cells adjacent to the node. Basis functions at t-nodes 
have their support at the two cells sharing vertices at the 
node (see Figure 6). The trial function inside every cell 
is then a linear combination of only the basis functions at 
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Figure 4: The minimal support of continuous basis func- 
tions for the principal geometrical configurations of the 
grid. The central nodes are marked by black disks. 

i 
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i 

Figure 5: An example of discretization stencil non-local 
dependence for continuous basis functions with minimal 
support. If the refinement shown by dashed lines is per- 
formed, the nodes marked by ¸ belong to the discretization 
stencil while the node marked by x does not. If the said 
refinement is undone, the node marked by x enters the 
discretization stencil and the nodes marked by ¸ leave it. 

the nodes of the cell. In the next subsection we develop 
this approach in detail and show how the smoothness of 
the trial function can be guaranteed despite the disconti- 
nuity of the basis functions. We also show that with proper 
choice of weight functions for the Galerkin formulation the 
propagation of the discretization stencil is prevented. 

3.3 Discontinuous trial functions with the 

minimal support 

Given local nodal degree of smoothness qr at every r-node 
r we shall seek an unknown function in the following form 

(1) ½ __ • ij - ij (•ij •.ij .... aq.rCq.r q- • q-a ), 
i,j,r i,j,t 

where indexes r and t run through the r-nodes and t-nodes, 
respectively; q•- = qt- and qt + = qt+ for a t-node t with the 
controlling r-nodes t- and t+; indexes i and j assume inde- 
pendently all the non-negative values less than or equal to 

.. 

the corresponding value of q; and •b• are piecewise poly- 
nomial basis functions which assume the following values 
on the grid nodes Pk = (xk, ye) 

•i' +j' .,qij { . (2) 
Ox i' Oyj' 0 otherwise 

Inside every grid cell of its support, the basis function ½iqj k is 
defined as the product of two one-dimensional polynomials 
i and j of degree 2q q- 1 Uqk Vqk 

i j (3) 

i is determined by the where, for example, polynomial 
following conditions specified for 0 _< i • _< q and k 
with fox being the node on the opposite side of the grid cell 
in question from the node k, along the x coordinate 

•i' i { i • k' (4) v Uqk (x•,) = 1 i= ,k= Ox i' 0 otherwise 

It is easy to verify that a basis function thus defined has 
q continuous derivatives everywhere, except at the sides of 
elements belonging to its support that start at the central 
node and pass through a t-node. 

As in [6] the required smoothness of the solution is as- 
sured by imposing additional conditions at the t-nodes. At 
every inter-element boundary, these matching conditions 
assure the continuity of qmin derivatives of the solution 
½, where qmin is the minimum of nodal continuity at all 
the nodes at the corners of the elements adjacent to the 
boundary 

where the nodes k- and k + are the controlling nodes of a 
t-node k. 

After a series of simple transformations using (3) and 
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mentioned in the previous section, the number of possi- 
ble local geometrical configurations for a two-dimensional 
grid is fifteen. This property allows to precompute rows of 
stiffness matrices for differential operators with constant 
coefficients. It should also simplify writing software for 
computing the stiffness matrix in more complicated cases. 

Figure 6: The support of discontinuous basis functions for 
the principal geometrical configurations of the grid. The 
central nodes are marked by black disks, the nodes of the 
discretization stencil for Galerkin formulation with min- 

imal support continuous weight functions are marked by 
circles. 

(4) we obtain a form suitable for computing 

i t i t 
O u 

i t i t where the coefficients 0 u_ (x•)/Ox i' and 
% k- 

oi'•t i' (Xk)/OX i' are constants that can easily be com- q•:•- 
puted at the moment the size of the base grid is known. 

Incidentally, taking the above basis function at an r-node 
and adding to it the basis functions at all the adjacent t- 
nodes with the coefficients defined by the matching con- 
ditions (7)-(8) we obtain the C q basis function with the 
minimal support (shown at Figure 4) discussed earlier. 

The above continuous basis functions can serve as weight 
functions for the Galerkin formulation using the minimal 
support discontinuous basis functions. After the matching 
conditions (7)-(8) are applied, the resulting solution will be 
equivalent to the solution obtained using continuous basis 
functions. The advantage of using the discontinuous basis 
functions is that the discretization stencil is reduced to the 

nodes marked by circles on Figure 6 (it has from 9 to 17 
nodes) and it is dependent only on the local geometrical 
configuration of the grid around the central node. As was 

4 Conclusions 

In this paper we have shown how to implement efficiently 
high-order finite elements on recursive grids, which opens 
a way to developing efficient and highly accurate adaptive 
finite element software. 

However, no matter how accurate a method is, it can 
not be successful in the engineering world if it does not 
treat curved boundaries as triangular grids do. It is fairly 
easy to see that a domain with curved boundaries can be 
covered by a rectangular grid and the boundary approxi- 
mated by means of special elements in the computational 
cells intersecting with the boundary. For uniform rect- 
angular grids this approach is wasteful, for the grid cells 
which fall outside of the computational domain are not 
used. The latter consideration is much less important for 
recursive grids, there a simple remedy is to keep the out- 
side cells unrefined and, therefore, few in number. The 
approach outlined above has been successfully used in [11] 
with trilinear finite elements. Its extension to high-order 
finite elements will allow to develop engineering finite ele- 
ment packages based entirely on the recursive technology. 

This recursive technology can be made viable only by 
developing software tools that will hide its complexity 
from the end user. These tools will include grid-handling 
program libraries, finite element libraries, and special- 
ized development and visualization environments. Object- 
oriented programming paradigm can be expected to be 
particularly helpful in treating the great variety of finite 
elements that will be required, especially for treating the 
boundary conditions. In [5] we present an interactive 
programming environment for developing adaptive grid 
solvers that can serve as a prototype for future software 
development in this area. 
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