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Abstract 

The three-dimensional, incompressible, unsteady Navier- 
Stokes equations are discretized by the spectral element 
method based on Legendre polynomials. High-order pro- 
jection methods and a subcycling method are constructed 
in such a way that third-order advancement in time can 
be obtained. The preconditioning of the pressure oper- 
ator is briefly discussed. The resulting iterative spectral 
element solver is implemented on the Cray T3D and on 
the Intel Paragon. Some issues related to parallelization 
are addressed. Finally, we will give some results for the 
numerical simulation of the three-dimensional backward- 

facing-step flow on the Cray T3D. 

Key words: Navier-Stokes equations, spectral element 
discretization, projection methods, iterative methods, 
parallelization. 

AMS subject classifications: 76D05, 65M70, 65F10, 
65Y05. 

1 Introduction 

Over the last decade, computer codes based on spectral el- 
ement discretizations (see e.g. Patera [16] and Maday and 
Patera [13]) have become an efficient tool for the numeri- 
cal simulation of fluid-flow problems (Fischer and R•nquist 
[6], Karniadakis et al. [9]). Numerous important develop- 
ments on the theoretical, algorithmical and computational 
level have made that the application of spectral methods 
is no longer limited to regular problems in simple geome- 
tries, but is extended to complex "real-life" flow problems. 
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The popularity of the spectral element method is due to 
the fact that it combines the practical advantages of the 
well-established finite element method with the "spectral" 
ability to reduce the number of degrees of freedom to ob- 
tain a prescribed level of accuracy. Another argument in 
favour of this method is that it is a domain decomposi- 
tion method, yielding a natural implementation on parallel 
computers. 

In this paper we will be concerned with the simulation 
of unsteady, incompressible fluid flows in three dimensions 
(described by the Navier-Stokes equations) on the current 
generation of parallel, distributed-memory computers. As 
an example, we will investigate the three-dimensional flow 
over a backward-facing step. The main numerical difficul- 
ties of such a flow lie in the computation of the recircu- 
lation zones just behind the step and the representation 
of the boundary layers at the sidewalls (see Figure 3 for a 
schematic representation of the problem). The spectral el- 
ement discretization technique is very suited for this kind 
of fluid-flow problems. Mesh refinement at places where 
accurate results are essential (in the boundary layers and 
behind the step) is obtained by taking many, small spec- 
tral elements. Larger elements can be used at the outflow 
and close to the plane of symmetry. The flow is steady 
in the range of Reynolds number that we have simulated 
(Re • 350 for the present paper, Re • 648 to be obtained 
soon), so time-accurate solutions are not essential. Never- 
theless, in order to be capable to simulate unsteady flows, 
high-order time-integration schemes are an issue. We will 
propose an implicit scheme that is third-order accurate 
in time. To avoid the solution of unsymmetric, indefi- 
nite systems, the nonlinear terms are discretized by an 
explicit scheme, based on the operator-integeration-factor 
splitting, proposed by Maday et al. [14]. This technique 
can also be interpreted as a subcycling method and in- 
troduces a time-splitting error that is also of order three. 
The favourable stability characteristics of this scheme are 
investigated for different ratios of convection to diffusion. 

The spectral element solver is based on the decoupling 
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of the pressure from the velocity field. In order to avoid 
additional boundary conditions for the pressure, this de- 
coupling is performed on the space- and time-discrete equa- 
tions, by either the pressure-correction method [19], or a 
high-order projection method, as proposed by Blair Perot 
[2]. The advantage of the latter method is that the re- 
sulting pressure operator is consistent and relatively cheap 
to evaluate. Furthermore, this projection method is third- 
order accurate in time. 

The resulting discrete systems are symmetric, (semi-) 
positive definite and are solved by the conjugate gradi- 
ent method. Since the operators are ill-conditioned (espe- 
cially the pressure operator associated with problems at 
high Reynolds numbers / small time steps), efficient pre- 
conditioners are essential. According to [4], we construct a 
preconditioner based on the local, elemental pressure op- 
erators. This block diagonal matrix is inverted indepen- 
dently on each element by fast diagonalization techniques 
[11]. This preconditioner applies to pressure operators re- 
suiting from the pressure-correction and high-order projec- 
tion methods. 

In order to perform large-scale simulations at a reason- 
able cost, the use of parallel, distributed-memory comput- 
ers can not be avoided. The performance of this gener- 
ation computers has overtaken that of the fastest single- 
processor machines. The spectral element code has been 
implemented on two of the leading machines: the Cray 
T3D at the EPF Lausanne and the Intel Paragon at the 
ETH Ziirich. The inter-processor communication is accom- 
plished by the PVM paradigm (T3D and Paragon) and by 
the NX communication library (Paragon). Some algorith- 
mical improvements, like a "parallel" conjugate gradient 
method (CGM) (see Meurant [15]) lead to a reduction of 
the amount of communication. It is important to study the 
relation between the cpu time spent in computation and in 
communication. The ratio of these quantities determines 
the parallel efficiency. 

2 Discretization in space 

The spectral element method (SEM) allows either to look 
for very accurate solutions, or, if precision is less important 
or unrealistic to obtain, to reduce the number of gridpoints 
in comparison with more classical discretization methods. 
Exponentional convergence with respect to the degree of 
the polynomial expansions is obtained, provided that the 
solution is smooth enough. This explains that spectral 
methods are especially suited for problems in which high 
regularity is common. Another argument to use this type 
of methods is that numerical dissipation and dispersion 

errors are almost absent. The fact that the spectral grid 
points are clustered at the boundaries can be considered 
as another advantage when trying to solve flows that are 
dominated by boundary-layer dynamics. 

The SEM is based on the decomposition of the com- 
putational domain fl in a number, say K, of nonover- 
lapping subdomains •2k (spectral elements). On each of 
these elements the solution is expanded in tensor-product 
b•ed polynomials of high degree, say N, with typically 
4 < N < 15. This decomposition allows for local re- 
finements at places where the solution is (expected to be) 
rapidly changing. The variational formulation provides au- 
tomatically continuity of the solution at the interfaces be- 
tween adjacent elements and deformed geometries can be 
handled without difficulties. All these factors make the 

SEM highly flexible with respect to geometry, accuracy 
and parallelization. 

The Navier-Stokes equations are given on a three- 
dimensional domain •2 with boundary 0• by 

Ou 
-- 

(1) Ot Re- •Au + u. Vu + Vp = _b, 
(2) -divu = 0 

and are subjected to appropriate initial and boundary con- 
ditions. Let us consider homogeneous Dirichlet boundary 
conditions, u = 0 on 0•. Here, u is the velocity, p is 
the pressure and b is a body force. The Reynolds num- 
ber Re = UL/•, is based on a characteristic velocity U, a 
characteristic length L and the kinematic viscosity •,. The 
spectral element method (see Patera [16], Maday and Pa- 
tera [13], Maday et al. [12], and ROnquist [17] for more 
details) leads to the following space-discrete formulation: 

(3) B Ou Ot + Re-lA-u- DTp + C(u)u = Bb 
(4) -Du - 0. 

Here, B is the diagonal mass matrix, A is the discrete 
Laplace operator, D is the discrete divergence operator, 
and C(_u) the nonlinear convection operator. The velocities 
and pressure, (u_, p), are sought in XN x Ms, defined by 

(5) X N -- 'ol (') PN, K 3 
(6) = r0(a) n 

with PN,•: = {½ • œ2(•2); ½l•k is a polynomial of degree 
less than or equal to N} and ?-/0x(•2) is the space of all 
square integrable functions vanishing at 0•2 with integrable 
first-order derivatives. œ2 (•2) is the space of all square inte- 
grable functions over •2 and œ• of all the functions in œ2 (f•) 
with zero average. In fact, in each spatial direction and 
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on each spectral element, the velocities are discretized on 
an (N+l)-point Gauss-Lobatto-Legendre (GLL) grid and 
the pressure on an (N-1)-point Gauss-Legendre (GL) grid. 
Consequently, the operator D does not only take a deriva- 
tive, but also an interpolation from the GLL to the GL 
grid into account. 

3 Time discretization 

It is our goal to construct a spectral element solver that 
is third-order accurate in time. Because of considerations 

based on the condition number of the operators (see e.g. 
Ronquist [17]) and on the fact that we want to avoid in- 
definite, nonsymmetric matrices, all terms of the Navier- 
Stokes equations are discretized in time by an implicit 
scheme. except for the nonlinear convection terms. This 
implicit/explicit splitting can be performed in several ways 
and should not degenerate the order of the time scheme. 
Furthermore, the explicit treatment of the nonlinear terms 
leads to a stability condition on the time step. Karniadakis 
et al. [9] proposed to extrapolate the nonlinear terms in 
time. This approach leads to a zero splitting error, but the 
region of absolute stability is rather small (see Couzy [3]). 
We have adopted the operator-integration-factor splitting 
(see Maday et al. [14]) because of its favourable stabil- 
ity characteristics. Timmermans [18] has also used this 
method in the context of spectral element discretizations. 
Equation (3) is written in terms of an integrating factor 

O ((t*.t) ) •(t"t)(-Re-lAu + OTp+ B_b) (7) Qc - , 
which is defined by 

(8) = , 
with I the identity matrix and t* an arbitrary •ed time. 
The convection operator is linearized, with [ = [(t), 
determined by extrapolation of previous approximations 
u • u •-• u TM for some q. The operator-integration- 
factor splitting proceeds by discretizing (7) by an appro- 
priate time scheme. Here, we will apply a backw•d dif- 
ferentiation formula of order s (BDFs), s • 4, with coef- 
ficients ,30, ..,•,, see e.g. Gear [8]. Consequently, we set 
q = s - 1. A BDFs is an A-stable method, implying that 
there is no stability condition on the linear (Stokes) part 
of the Navier-Stokes equations . Equation (7) is then dis- 
cretized as 

• •tn* 1 tn•l-ix , . ß •E + •-i c - - 
i=1 

At 

(9) -- R--•Au'•+• + AtDTp '•+• + AtBb '•+• 
and the continuity equation (2) as -D_u '•+• = 0. The 
next step consists of the evaluation of the terms involving 
the operator-integration factor, which is never constructed 
explicitly. Instead, we define 

n4-1 n4-1--i ß 

(10) (t ,t ) • •+•-• = B•+• Qc B• -i , i = l, .., s, 

where •+• is obtained by solving the following initial 
value problem: 

(11) B O•i = C(U)5i, t •+x-i < t < t •+• 

with initial condition •i(t •+x-i) = 3•+1-i. Problem (11) 
is solved with a stepsize As = At/M; M is the number 
of subcycles and has an important impact on the stability 
of the scheme. In this way, the stepsize for the expensive 
implicit part is decoupled from the cheap explicit part. 
Roughly speaking, the stability condition for the convec- 
tive part is on As and not on At. 

It is important to solve the initial value problem (11) 
by a time-integration scheme with a large stability re- 
gion along the imaginary axis. The fourth-order, explicit 
Runge-Kuta method is such a scheme. Combined with a 
BDFs method, we obtain the BDFs/RK4 scheme, the or- 
der of which is minimum{4, s}. The splitting error does 
not vanish when the problem is steady. 

The stability of the operator-integration-factor-splitting 
method can be investigated by applying the scalar test 
equation 

(12) d• = AlY + A2Y, 
dt 

where Ax and A2 represent the eigenvalues spectra of the 
diffusion and convection operators, respectively. Accord- 
ing to Ronquist [17], we give the following asymptotic es- 
timates for the parameters •1 and A2: 

(13) Ax • -Re-XK•N 4 
.(14) A2 • KxN2i, 

with K• the number of spectral elements in a typical 
space direction. In Figure 1, the maximum allowed time 
step is determined for BDF3/RK4 with As -- At and 
As -- At/2. The parameters •1 and ,k2 are chosen cor- 
responding to K• -- N = 5. The third-order extrapolation 
scheme combined with the BDF3 (see Karniadakis et al. 
[9]) is denoted by BDF3/EX3). It is clear that, at least 
for large Reynolds numbers, the stability condition is on 
As. The operator-integration-factor-splitting schemes are 
more stable than the one based on extrapolation. For small 
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Figure 1: Log-log plot of the maximum allowed time step 
as a function of the Reynolds number; A• = -3125Re -• 
and A2 = 125i, corresponding to K• = 5 and N = 5. 

Reynolds numbers the influence of the implicit BDF causes 
the BDF3/EX3 scheme to become unconditionally stable. 
The effect of performing two subcycles on the stability be- 
comes also less important. The results of this analysis have 
been confirmed by several numerical tests. More details 
can be found in Couzy [3]. 

Construction and precondition- 
ing of the pressure operator 

For reasons of convenience, we write the discrete Navier- 
Stokes equations in the following form 

(15) Hu '•+• - DTp '•+• = Bf '•+•, 
(16) -D_u '•+• -- 0, 

with 

(17) u= At + Re-•A' 
H is the Helmholtz operator and all the explicit terms 
have been included in the new right-hand-side vector f. 
V•% propose two methods to decouple the pressure from 
the velocity field. First, we give the pressure-correction 
method (see Van Kan [19]): 

(18) Hu_* = B f "+• + DTp n 
-- 

(19) $pcSP = -D•* 

(20) •+• = •* + •B-•DTSp. 

Here, u* is an intermediate velocity field that is not neces- 
sarily divergence-free, and 5p is defined by 5p --- pn+l _ pn. 
The pressure operator $pc is given by 

(21) Spc = •tDB-•DT. 
The third step (20) can be seen as the projection of the 
non divergence-free u* on the divergence-free field u n+•. 
The decoupling operation introduces an error in time that 
reduces the order of the scheme to minimum{2, s}. 

Second, we propose a high-order projection method that 
is based on a recent paper by Blair Perot [2], following 

Hu* = Bf •+• 

SbpP n+l -- -D_u* 
_u n+•' = _u* + FDTp n+•, 

(22) 

(23) 
(24) 
with 

(25) 
and 

S•p = DFD z 

(26)F = At B_x ( At (At AB_X).•) • I- •R•AB-X + •Re ' 
Note that neither the evaluation of the pressure operator 
$p•, nor $bp requires expensive inversions (we recall that B 
is a diagonal matrix), as would be the case for the Uzawa 
method. Note also that the decoupling has been applied 
to the space-discrete operators, where boundary conditions 
have already been implemented. This avoids problems re- 
lated to additional boundary conditions for the pressure 
[2]: The pressure operator is consistent. The pressure- 
correction method has a decoupling error proportional 
to Re-•(At) 2 and the projection method to (Re-•At) •, 
which makes these methods only suited for problems with 
moderate to large Reynolds numbers and / or small time 
steps. 

The Helmholtz operator H and the pressure operators 
Sp• and S•p are (semi-)positive definite and symmetric. 
The corresponding problems are therefore solved by a pre- 
conditioned conjugate gradient method (PCGM). As a pre- 
conditioner for the Helmholtz problem, we used the diag- 
onal of H. The preconditioning of the pressure operator is 
more complex. First, we remark that for Re-•At (( 1, the 
matrices Sp• and S•p are almost identical. Their respec- 
tive preconditioners can therefore be built along the same 
lines. We have adopted the strategy of Couzy and Deville 
[4], which consists of the construction of the local pressure 
operator on each spectral element. This elemental matrix 
is "identical" to the original matrix, except that it takes 
neither the interelemental coupling, nor the deformation 
into account, and can be inverted by a fast diagonalization 
technique (see Lynch et al. [11]). 



Parallel •¾avier-Stokes Solutions 589 

5 Parallelization 

The spectral element solver based on the aforementioned 
features has been implemeted on the Cray T3D. The T3D 
is a massively parallel processor machine (MPP). This im- 
plies that the architecture is based on a high number of 
processors, each one of them having its own CPU, mem- 
ory and cache. In the case of the T3D in Lausanne, these 
processors are 256 DEC chips 21064 (better known as DEC 
Alpha chips) with a peak performance of 150 Mfiops each. 
They are connected by a fast, bidirectional 3D torus system 
interconnect network. Interprocessor communication can 
be managed by three so-called programming models. For 
our application we have chosen PVM (parallel virtual ma- 
chine), because it is well-established and portable to other 
machines. The latter is only true to a certain extent: most 
MPP's, like the T3D, support a PVM "dialect", leading to 
non-negligible difficulties when porting a code to another 
computer. 

Basically, parallelizing a spectral element code is the 
same as parallelizing a PCGM for the Helmholtz and pres- 
sure equations. When each spectral element is allocated to 
a processor. communication occurs only at two places (see 
e.g. Fischer and Patera [5]): the computation of scalar 
products (inherent in a PCGM) and the assembly phase 
(also called "direct stiffness", inherent in spectral element 
discretizations) that follows every operator-vector multi- 
plication and takes care of the interface variables. 

Several tests on the T3D showed that the cascade sum 

algorithm (see e.g. Hockney and Jesshope [7]) is the fastest 
way to compute scalar products: Each processor computes 
its own part of the product and after 2 log(P) communi- 
cation steps the global value is known on every processor. 
Two scalar products have to be computed at every itera- 
tion of the PCGM. The value of the first one is (implicitly) 
needed for the second one, so we speak of two synchro- 
nization points. Meurant [15] has proposed to modify the 
PCGM in such a way that three, instead of two, scalar 
products are required. They can, however, be computed 
at the same time. Hence, the number of synchronization 
points is reduced to one and better parallel efficiency can 
be obtained. In most practical situations, the modified 
PCGM shows the same convergence behaviour as the clas- 
sical PCGM and is stable. In some cases, however, we 
encountered divergence. As an example, we mention the 
iterative solution of the Uzawa pressure operator [12] by 
two nested modified PCGM's. Classical PCGM converges 
correctly. 

The parallel efficiency of the assembly phase depends 
highly on its implementation. Without going into the de- 
tails, we confine ourselves to saying that the fastest corn- 

N=7 
N=10 -•-- 
N=13 

.-4.' 
+ 

.................... • ............................ O 

Number of processors = number of spectral elements 

Figure 2: The percentage of cpu time spent in commu- 
nication as a function of the number of spectral elements 
16 _< K-- P_< 128, for N = 7, N = 10, and N- 13. 
Navier-Stokes flow (Re • 30) with analytical solution. 
Pressure correction and subcycling, BDF1/RK4, M - 3. 

munication algorithms are obtained by avoiding blocking 
receives and by following the basic rules of "parallel com- 
mon sense". 

The parallel efficiency is investigated by comparing the 
cpu time spent in communication to the total cpu time. 
To this end, we have solved a Navier-Stokes flow (Re • 
30 / with an analytical solution by the pressure-correction 
method and subcycling (BDF1/RK4, •I - 3) for different 
values of K - P and N. The results are depicted in Fig- 
ure 2. We see that the efficiency increases with N. This 
is not surprising since the number of operations on each 
spectral element (processor) scales like N 4. For N - 10 
and N = 13, the percentage of cpu time for communication 
grows slightly with K. This is mainly due to an increasing 
ratio between the number of interfaces (equals the number 
of messages during the assembly phase) and the number of 
spectral elements, and only partially to a degrading paral- 
lel performance. This drives us to the conclusion that we 
have almost obtained parallel scalability. We investigated 
in more detail the results for N = 10, K = 128: Only 5.6 
percent of the total cpu time has been used for commu- 
nicating the scalar products around the processors; 22.5 
percent was taken by the assembly phase, which can be 
subdivided in 7.5 percent for the corners, 9.1 percent for 
the edges and 5.9 percent for the faces. 

Besides fast communication procedures, single-processor 
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optimization is another issue. It is a well-known problem 
on modern MPP's to get high single-node performances. 
We have tried to solve this problem by writing all the cpu- 
intensive operations in BLAS, a highly optimized package 
of basic linear algebra subroutines. In this way, we have 
obtained a sustained performance (Navier-Stokes compu- 
tations, K = P -- 128) of 1.2 Gfiops (N = ?), 2.6 Gfiops 
(N = 10), up to 6 Gfiops for the (unrealistic) value of 
N = 20. 

The same program has also been tested on the Intel 
Paragon. }Ve took the same test case that led to the re- 
suits of Figure 2 and compared the performances of the 
two MPP's. First, we remarked that PVM on the Paragon 
produces disastrous results. At the time of the tests, PVM 
was implemented as an intermediate layer between the For- 
tran program and the Intel communication routines. The 
function calls to and fro the different layers slow down 
the performance of the program and lead to unacceptable 
cpu times. Therefore, we have resorted to NX, the Intel 
library of communication routines. The results are repre- 
sented in Table 1. We conclude that the single-processor 

Cray T3D Intel Paragon 
N=7, K=16 25s; 35.4% 53s; 21.3% 
N=10, K=16 66s; 18.4% 169s; 9.84% 
N=13, K-16 148s; 10.1% 390s; 6.00% 
N=7, K=32 29s; 41.1% 69s; 25.4% 
N=10, K=32 85s; 21.3% 234s; 12.0% 
N=13, K=32 215s; 12.6% 590s; ?.65% 
N=7, K=64 33s; 49.2% 74s; 29.8% 
N=10. K=64 88s; 26.6% 233s; 14.7% 
N=13, K=64 207s; 15.9% 563s; 9.39% 

Table 1: Cpu time in seconds (per processor), for a problem 
that ran on/• = P processors and percentage of cpu spent 
in communication. Ten time steps At: 0.01 of a Navier- 
Stokes flow Re • 30. Tolerance for convergence is set to 
10 -•ø for the velocities and 10 -s for the pressure. Pressure 
correction method with subcycling, BDF1/RK4, M = 3. 

performance of the T3D is considerably higher than the 
Paragon. The communication seems to be faster on the 
Paragon, but is in fact slightly slower when we take the 
relatively low single-node speed into account. 

6 Simulation of a 3D backward- 

facing-step flow 

The 3D flow over a backward-facing step is a good test 
case for various reasons. First, it exhibits several physical 
phenomena that are not easy to simulate, like recircula- 
tion zones just behind the step and thin boundary layers 
(see Figure 3 for a sketch of the basic flow properties). 
Another factor that complicates the numerical simulation 
is the large aspect ratio of the geometry (1:36). Second, 
experimental data by Armaly et al. [1] is available for a 
1:1.94 expansion ratio. The Reynolds number is based on a 
characteristic velocity defined as the average inlet velocity, 
a characteristic length of two times the height of the inlet 
channel (2-0.5149) and the kinematic viscosity v. Armaly 
et al. predict that the flow is symmetric for all Reynolds 
numbers Re < 8000. Furthermore, away from the two 
sidewalls, the flow is two-dimensional for Re < 400 and 
Re > 6600. For 400 < Re < 6600 three-dimensional effects 

have been observed. Each value of the Reynolds number is 
characterized by a certain length of the recirculation zone. 
In fact, there are three of them; The first one is located 
at the bottom half, directly downstream of the step. The 
second one was measured at the upper wall downstream of 
the expansion for 400 _< Re _< 6600. A third recirculation 
zone occurs at the bottom wall, just downstream of the 
first one, for 1200 _< Re <_ 2300. 

It is our final goal to simulate the backward-facing step 
flow at Re = 648. This situation is well documented in 

[1]. Here, we restrict ourselves to intermediate results at 
Re = 172 and Re = 343. The simulations have been per- 
formed by the BDF1/RK4 subcycling method with M = 3 
and pressure correction for the first part of the transient. 
The discretization consists of 128 spectral elements of de- 
gree 9 x 9 x 9. Once the solution becomes more or less 
stationary, we have changed to the third-order Blair-Perot 
projection method combined with BDF3/RK4 subcycling 
(M = 3). The results for Re = 172 are represented in 
Figures 4 and 5. In Figure 4 the velocity component in the 
flow direction is displayed together with a part of the spec- 
tral element grid. The aspect ratio of the plot has been 
modified to indicate more clearly the flow characteristics. 
Just behind the step we observe a zone with a negative 
velocity component; the recirculation zone. The length of 
this zone corresponds to the value obtained by the exper- 
iments of Armaly et al. [1], and to the two-dimensional 
computations of Kim and Moin [10], see Figure 6. In the 
corner we see a very small eddy, the existence of which is 
not addressed in the aforementioned paper. In Figure 5, 
we display the spanwise velocity component in the plane 
x - 1. We see clearly that three-dimensional phenomena 
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Figure 3: The geometry of the backward-facing step with 
a 1:1.94 expansion ratio. The inflow profile is given as the 
tensor product of a parabola, which is zero at the walls 
and one at the center. and a Blasius boundary-layer profile 
characterized bv 5.99 = 0.50. The size of the geometry 
behind the step is 19. which is large enough to ensure fully 
developed outflow. For the range of Reynolds numbers 
that we consider. two recirculation zones are of interest. 

Their locations are indicated in the plane of symmetry. 
ß 

Figure 4: Contour lines of the streamwise velocity (sym- 
metry plane). The spectral element grid is superimposed. 
The dashed lines just downstream of the step correspond 
to negative velocities. The axis in the vertical direction 
has been blown up by a factor 5. Re = 172. 

Figure 5: Spanwise velocity component in a spanwise 
(transversal) cut plane. x = 1, half-way the recirculation 
zone. The black zones represent negative values of the ve- 
locity: the consecutive shades of gray indicate a velocity 
increase of 0.02 each. The axis in the vertical direction 

has been blown up. Re = 172. 
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Figure 6: Comparison of the length of the first recirculation 
zone as a function of the Reynolds number. 
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Figure 7: Streamwise velocity component. Two cross sec- 
tions: At 5/18 (z = 5) and 9/18 (z = 9, plane of sym- 
metry) of the backward-facing-step geometry. The black 
zones represent negative values of the velocity: the con- 
secutive shades of gray indicate a velocity increase of 0.2 
each. Re = 343. 

are present. despite the predicted two-dimensionality by 
Armalv et al. 

The second simulation took place at Re = 343. From 
Figure 6 we learn that the length of the separation zone still 
corresponds to the experimentally observed value. Figure 
7 suggests that the flow remains two-dimensional: There is 
ahuost no difference between the results at the symmetry 
plane and the cross section at 5/18 of the geometry. We 
also notice that a second recirculation zone is about to 

appear at the upper wall. However. like for the Re = 
172 case. three-dimensional effect are observed. They are 
present in almost the entire flow, but are relatively high 
near the boundary layer and in the recirculation zone. The 
three-dimensionality remains present after grid-refinement, 
by taking a longer inflow channel, and by changing the 
boundary-layer thickness. 

7 Conclusions 

A solution method for the three-dimensional, incompress- 
ible, unsteady Navier-Stokes has been proposed relying on 
a spectral element discretization in space. The time dis- 
cretization and decoupling method for the pressure are 
such that third-order accuracy in time can be obtained. 
The stability has been investigated. Good parallel effi- 

ciency has been demonstrated. A comparison between the 
Cray T3D and the Intel Paragon showed better perfor- 
mance for the former machine. The parallel solver has 
been applied to a three-dimensional flow over a backward- 
facing step. At Re = 172 and at Re = 343, good agreement 
has been obtained with experimental data. although three- 
dimensional phenomena have been observed. The length of 
the recirculation zone corresponds to the results of Armaly 
et al. [1]. The flow remains steady. The numerical simula- 
tions are currently extended to higher Reynolds numbers 
and to complex. unsteady flows. 

8 Acknowledgment 

The author is grateful for the advice of M.O. Deville. This 
paper presents research results of the Belgian incentive pro- 
gramme "Information Technology - Computer Science of 
the Future". initiated by the Belgian State, Prime Minis- 
ter's Office, Science Policy Programming. 

References 

[1] Armaly, B.F.. Durst, F.. Pereira, J.C.F., and 
SchSnung, B. (1983). Experimental and Theoretical 
Investigation of Back•vard-Facing Step Flow. J. Fluid 
Mech.. Vol. 127, pp 473-496. 

[2] Blair Perot, J. (1993). An Analysis of the Fractional 
Step Method. J. Comp. Phys., Vol 108. pp 51-58. 

[3] Couzy. xAL (1995). Spectral Element Discretization of 
the Unsteady Navier-Stokes Equations and its Iter- 
ative Solution on Parallel Computers. PhD Thesis. 
Ecole Polytechnique F•d•rale de Lausanne. 

[4] 

[5] 

[6] 

Couzy, W., and Deville, M.O. (1994). Iterative So- 
lution Technique for Spectral-Element Pressure Op- 
erators at High Reynolds Numbers. Proceedings of 
the Second European Computational Fluid Dynamics 
Conference, (Ed. Wagner, S. et al.) Stuttgart, Ger- 
many, pp 613-618. 

Fischer, P.F., and Patera, A.T. (1991). Parallel Spec- 
tral Element Solution of the Stokes Problem. J. Comp. 
Phys., Vol. 92, pp 380-421. 

Fischer, P.F., and Ronquist, E.M. (1994) Spectral Ele- 
ment Methods for Large Scale Parallel Navier-Stokes 
Calculations. Comp. Meth. Appl. Mech. Engr., Vol. 
116, pp 414-443. 



Parallel Navier-Stokes Solutions 593 

[7] Hockhey, R.W., and Jesshope, C.R. (1981). Paral- 
lel Computers. Architecture, Programming and Algo- 
rithms. Adam Hilger Ltd., Bristol. 

[8] Gear, G.W. (1970). Numerical Initial Value Problems 
in Ordinary Differential Equations. Prentice-Hall, En- 
glewood Cliffs, New Jersey. 

Karniadakis, G.E.M., Israeli, M., and Orszag, S.A. 
(1991). High-Order Splitting Methods for the Incom- 
pressible Navier-Stokes Equations. J. Comp. Phys., 
Vol. 97, pp 414-443. 

Kim, J., and Moin, P. (1985). Applications of a Frac- 
tional Step Method to Incompressible Navier-Stokes 
Equations. J. Comp. Phys., Vol. 59, pp 308-323. 

Lynch, R.E., Rice, J.R., and Thomas, D.H. (1964). 
Direct Solution of Partial Difference Equations by 
Tensor Product Methods. Numerische Mathematik, 
Vol. 6, pp 185-199. 

*Iaday, Y., Melton, D., Patera, A.T. and ROnquist, 
E.M. (1993). Analysis of Iterative Methods for the 
Steady and Unsteady Stokes Problem: Applications 
to Spectral Element Discretizations. SIAM J. Sci. 
Comp., Vol. 14, No. 2, pp 310-337. 

Maday, Y., and Patera, A.T. (1989). Spectral Element 
Methods for the Incompressible Navier-Stokes Equa- 
tions. State-of-the-Art Surveys on Computational Me- 
chanics (Ed. Noor, A.K. and Oden, J.T.), ASME, 
pp 71-143. 

Maday, Y., Patera, A.T. and R0nquist, E.M. (1990). 
An Operator-Integration-Factor Splitting Method for 
Time-Dependent Problems: Application to Incom- 
pressible Fluid Flow. J. Sci. Comp., Vol. 5, No. 4, 
pp 263-292. 

Meurant, G. (1987). Multitasking the Conjugate Gra- 
dient Method on the Cray X-MP/48. Parallel Com- 
puting, Vol. 5, pp 267-280. 

Patera, A.T. (1984). A Spectral Element Method for 
Fluid Dynamics; Laminar Flow in a Channel Expan- 
sion. J. Comp. Phys., Vol. 54, pp 468-488. 

Ronquist, E.M. (1991). Spectral Element Methods for 
the Unsteady Navier-Stokes Equations, Lecture Series 
1991-01, Von Karman Institute for Fluid Dynamics, 
Belgium. 

Timmermans, L.J.P. (1994). Analysis of Spectral El- 
ement Methods with Application to Incompressible 

[9] 

[10] 

[11] 

I14] 

[15] 

[16] 

[17] 

[18] 

Flow. PhD Thesis. Eindhoven University of Technol- 
ogy. 

[19] Van Kan, J. (1986). A Second-Order Accurate 
Pressure-Correction Scheme for Viscous Incompress- 
ible Flow. SIAM J. Sci. Stat. Comp., Vol. 7, pp 870- 
891. 



594 ICOSAHOM 95 


