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Abstract 

We present a high-order parallel algorithm which requires 
only the minimum inter-processor communication dictated 
by the physical nature of the problem at hand. This algo- 
rithm is applied to the incompressible Navier-Stokes equa- 
tions. The parallelization is achieved by domain decompo- 
sition. 

A novel feature of the present approach is that the spa- 
tial discretization in subdomains is performed using the 
Fourier method. To avoid the Gibbs phenomenon, the 
global functions are decomposed into smooth local pieces. 
Then the Fourier method is applied on extended local sub- 
domains •vith spectral accuracy. 

The continuity conditions on the interfaces are enforced 
by adding the homogeneous solutions. Such solutions often 
have fast decay properties which can be utilized to min- 
imize interprocessor communication. In effect, an over- 
whelming part of the computation is performed indepen- 
dently in subdomains (processors) or using only local com- 
munication. 

The present method allows the treatment of problems in 
various complex geometries by the mapping of curvilinear 
domains into simpler (rectangular or circular) regions. The 
operator with non constant coefficients, obtained in the 
transformed domain, is preconditioned by a (piece-wise) 
constant coefficient operator, easily inverted in the trans- 
formed domain. The problem is then solved with spectral 
accuracy by (a rapidly convergent) conjugate gradient it- 
eration. The capability of this algorithm is illustrated with 
results from two problems: a direct numerical simulation 
of turbulence in a two-dimensional periodic domain and 
a computation of convective motion in a vertical channel 
with wavy boundaries. 
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1 Introduction 

Direct numerical simulation of turbulent flows at high Rey- 
nolds number Re • 10 6 - 10 9 requires considerable compu- 
tational resources due to the extreme space and time res- 
olution (the computational requirements scales like Re3). 
High order methods, in particular spectral methods, are 
preferred for turbulence computation since they converge 
rapidly as the number of degrees of freedom grows. As 
a consequence, for moderate to high accuracy a smaller 
number of degrees of freedom may be needed, especially 
in multi-dimensional problems. It has been also proven 
that high order methods are beneficial for the long term 
integration necessary to attain the asymptotic turbulent 
regime. 

Efficient large scale scientific computing can be realized 
only on massively parallel computers. However, the global 
nature of spectral methods makes these methods difficult 
to parallelize. Current parallel spectral algorithms require 
massive data transfers (for example shuffle based transpose 
in parallel Fourier algorithms) and global communication 
with the concomitant communication and synchronization 
bottlenecks. 

In [1, 2, 3] a low communication multi-domain approach 
is developed which uses the Fourier method for the space 
discretization in subdomains. Since the truncated Fourier 

series of a non-periodic function exhibits O(1) spurious os- 
cillations near the boundaries and converges slowly inside 
the region (the Gibbs phenomenon), the direct application 
of this method to non-periodic local problems would result 
in a low order algorithm. To avoid the Gibbs phenomenon, 
the decomposition of functions into smooth local pieces is 
performed using a collection of overlapping window func- 
tions. 

The particular local solutions, being constructed inde- 
pendently (with some "convenient" boundary conditions) 
have jumps on the interfaces. In the correction step these 
jumps are removed with the aid of properly weighted ho- 
mogeneous solutions. The "localization" property of the 
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elliptic operator dictates that these solutions decay rapidly 
away from the interfaces. This permits the matching of the 
local solutions at each interface independently of jumps on 
the other interfaces. In effect the local communication be- 

tween the neighboring processors (subdomains) is mostly 
required. 

The above Multidomain Local Fourier (MDLF) method 
was applied efficiently to problems in periodic rectangular 
domains decomposed into strips or cells. In these cases the 
solution of a two-dimensional problem is reduced to the so- 
lution a collection of uncoupled one-dimensional problems 
for the Fourier coefficients with the local matching on the 
interfaces. The computational algorithm is outlined in sec- 
tion 2. In this paper we present new results obtained by 
the MDLF method for the computation of two-dimensional 
turbulence in periodic rectangular domains (section 3). 

We also develop the previous MDLF approach for treat- 
ing irregular geometries (section 4). In the generalized 
algorithm the irregular region is transformed first into the 
rectangle. Then the resultant differential equations with 
non-constant coefficients are solved by a preconditioned 
iteration method. The piece-wise constant coefficient op- 
erator is used in the capacity of the preconditioner. The 
solution of the corresponding constant coefficient problems 
in each subdomain is performed using the MDLF method. 
The method is illustrated by solving the problem of natural 
convection in a vertical channel with sinusoidal boundaries, 
heated from the side (section 5). 

Multidomain local Fourier algo- 
rithm 

ß Formulation of the problem 

An important application of the present Multidomain 
Local Fourier (MDLF) method is the solution of the 
incompressible Navier-Stokes equations. 

Governing Equations: 

Ov 

(1) • = Re-•V'2v + N(v) - VII + F in fl. 
Here fi C R d, d = 2, a, v(x, t) = (u, v, w) is the veloc- 
ity. subject to the incompressibility constraint 

(2) V. v=0 in •, 

H is the total pressure, F is the forcing term, and Re is 
the Reynolds number. The nonlinear term is written 
in the rotational form 

N(v) = v x (v x v). 

Computational Domain and Boundary Conditions We 
consider first the rectangular domain 9 = {0 _< x < 
2•r, 0 _< y < 2•r} with periodic boundary conditions in 
both directions. The case of irregular domains with 
Dirichlet boundary conditions is addressed below. 

The numerical solution of the problem (1)-(3) with 
specified boundary conditions requires discretization 
in both time and space. 

ß Discretization in time 

The discretization in time is performed via the 3d- 
order splitting algorithm of [4]: 

2 2 
•' -- Zq=00•q vn--q 

(4) At = Y] JqN(v•-q)' 
q----O 

(5) V -- -- . 

At ' At 

^ 

(6) ^zo v"+• - •z = Re_•V•.vn+• ' 
At 

It consists of an explicit advection step (4), a global 
pressure adjustment for incompressibility (5) and an 
implicit viscous step (6). 
Semi-implicit schemes of this type are associated with 
much less severe restriction on the time step, O(N-•), 
than fully explicit schemes, O(N-•'), where 2•r/N is 
the mesh size. 

As a result of the splitting procedure, a time- 
dependent problem is reduced to the solution (for each 
time step) of a sequence of two types canonical elliptic 
equations: 
the modified Helmholtz equation 

(7) V•'u - •u = f(•, y), 

and of the Poisson equation 

(8) V•'• = g(•, y), 

The parameter h in (7) is related to the time-stepping 
increment, h 

Domain decomposition. Discretization in space. 

First we describe briefly the algorithm as applied to 
Eq.(7) in l-D, then we show the extension onto 2-D 
case. The detailed description can be found in [1, 2, 3]. 
Algorithm in 1-D 
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1. Divide the computational interval [0, L] into P 
subdomains, I = L/P, and discretize the local 
problems on uniform grids of collocation points 
(with different resolution in each subdomain, if 
desired). 

2. Decompose the source function f(x) into smooth 
local pieces f(n) (x) using a collection of overlap- 
ping window functions. Each of these functions 
is equal to one inside a corresponding subdomain 
and smoothly decay outwards over the distance 
2e from both sides. 

3. Integrate the local problems on extended intervals 
l + 2e with smooth source functions in the right 
hand side. The values of the computed partic- 
ular solutions U(p © will have jumps through the 
interfaces. 

4. Correct solutions in each subdomain in order to en- 

force the continuity of u(x) and u • (x) at the inter- 
faces (then the higher derivatives will be matched 
automatically due to Eq. (7) It can be done by 
adding the properly weighted homogeneous solu- 
tions 

P 

(9) u -- U 

These solutions are two exponential functions 

h © = e -•x h? ) = e -•(•n-x), 0 < x < ln, 
which decay into a subdomain. Since A >> i for 
small enough time step, the influence of remote 
interfaces on the coeffcients An, Bn for each par- 
ticular n is negligible. Therefore, these coeff- 
cients can be found in terms of jumps at one 
corresponding interface. This requires only the 
local communication between neighboring sub- 
domains. 

The error caused by the use of an approximate lo- 
cal matching instead of the exact global matching 
is z = O(e-•), independent of the resolution N. 
For example, for P - 4, 1 = 2•r/P • 1.6, Re = 1 
and At = 0.04 we have A •, 10. The error will 

be then e • 10 -7 which is quite satisfactory in 
most applications. Note that the above restric- 
tion on the size At due to the local matching 
might be less severe than that imposed by the use 
of an explicit scheme in time. In the last case the 
stability constraint depends on the grid size like 
AtRe -• _• h2/2 where h = 2•r/N. For a realis- 
tic resolution, e.g. N = 128, and the Reynolds 

number Re = 1 we have h = 2•r/N • 0.05, 
At < 0.0013. In such a case the use of a semi- 

implicit scheme, combined with the local match- 
ing procedure, is still advantageous over explicit 
schemes. 

Algorithm in 2-D. Decomposition into Strips 

1. Decompose the computational rectangular region 
into parallel strips: • Un•l•n . 

2. Apply the FFT in the periodic direction y (along 
the strips) to obtain a collection of uncoupled 1-D 
ODEs for the Fourier coefficients •(x): 

d• n) ,• ̂ (n)= (10) dx • •u• (x) in •., 
where k = -• • 2 = A2 k2 2 ,'"', 2 , A• + for the 
modified Helmholtz equation and A• = k 2 for the 
Poisson equation. 

3. Solve the problems (10) by the previo• 1-D al- 
gorithm. The modified Helmholtz equation is 
solved using the local matching procedure on the 
interfaces. In the c•e of the Poisson equation, 
A = 0, A• = k 2, the global matching is required 
only for the long waves, k • k., whereas the 
short waves, k • k., can be treated by using lo- 
cal matching on the interfaces. The cut-off wave 
number k. should be chosen in accordance with 
the prescribed accuracy. 
In order to access the potential of this approach 
we present the following numerical t•ts. We 
solve the 2-D Poisson equation with the source 
function f(x,y) corresponding to the solution 

M 

= + where 
the ph•es •m are chosen randomly. Table 1 
gives the maximum relative error z• = •u- 
U•x•max/Umax for several numbers of globally 
matched harmonics, k (the error of the "full" 
global matching in this c•e is appro•mately 
z • 10-x•). 

5.4(-3) 5.7(-4) 6.0(-5) 6.3(-6) 

Table 1. The maximum numerical error when us- 

ing the global matching for the first k harmonics; 
P =8, N• =64 x P, Ny =64 

•Ve can see that using the global matching, for 
example, only for the first 9 long waves, while 
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treating locally the rest 21 shorter waves, we 
guarantee the accuracy ek •_ 10 -5. The rela- 
tive amount of globally matched waves, 2k*/Ny, 
becomes smaller as the resolution in the peri- 
odic direction increases. Note that the accuracy 
of the local matching relies on the localization 
properties of the boundary Green's functions of 
the Helmholtz operator. Therefore, the results 
in Table 1 depend only slightly on the particular 
form of the source function f(x, y). 
Decomposition into Cells. 

The algorithm in this case is more complicated 
than the previous one. For details see [3]. 

Parallel test . 

The parallel test is performed on a collection 
of Digital Alpha workstations (Alpha-farm), 128 
MB/unit. with Giga-switch and PVM software 
package. The computational domain is a 3-D pe- 
riodic box, decomposed into "slabs" (P -- 2-10). 
For the resolution 1283 the effect of using the 
local-global matching, when solving the Poisson 
equation, results in 2-3 times reduction of the ex- 
ecutable time as compared to the "fully" global 
matching. 
When solving the complete Navier-Stokes Eqs. 
(1)-(3) the implicit viscous step is always com- 
puted using the local matching. The use of the 
global-local matching in the pressure step gives 
about 15 - 20% saving in the CPU time as com- 
pared to the global matching. This effect is ex- 
pected to be even more pronounced for a larger 
number of processors. Detailed discussion of the 
parallel performance is given in [9]. 

Test of accuracy . 

The following example testifies the accuracy of 
the MDLF algorithm. We consider the exact so- 
lution of Eqs. (1)-(a) 

--- • Vy -- • v• Oy Ox 

y)= 

with Re = 10 •,• = 5, c = 0.075 and the forc- 
ing function f(x, y, t) computed accordingly (this 
solution was suggested in [5] to demonstrate the 
capability of the multilevel Nonlinear Galerkin 
method for the long-time numerical integration). 

The evolution of the maximum relative error in 

time is shown in Fig. 1; dt - 5- 10 -3 and .10 -4, 
the strip decomposition with P - 4 is applied, 
the space resolution is 64 x 64 . The error re- 
mains small on a large time scale and it decreases 
as the size of the time step At becomes smaller 
(the spatial error for this example is O(10 -11 ) 
can be found with g(t) - const (t)). 

0.0004 

0.00035 

0.0003 

0.00025 
0.0002 

0.30015 

o.oool 

5•-o5 

o 
o 

, , 

'dr.. : 5.e-3' -- 
.... 

1 2 3 4 5 6 7 

9e-07 , , 

8e-07 

7e-07 

6e-07 

5e-07 

4e-07 

3e-07 

le-07 

0 * I 
0 1 2 

, , 

ß dr = 5.e-4' -- 
.... 

4 5 6 7 
tlme 

Figure 1: Evolution of the relative maximum error in time 
for At = 5. 10 -3 (upper plot) and At = 5 ß 10 -4 (lower 
plot). 

3 Parallel simulation of 2-D tur- 

bulence 

In this section we present new results on numerical sim- 
ulation of decaying turbulence (without forcing term) in 
the periodic box using the above algorithm. The initial 
velocity field in the Fourier domain is chosen as in [6]: 
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90 

c • , , , •'o ' ' '•'o' ' '6'o' ' '•'o .... •o .... ,•o' ' 

Figure 2. Contour plots of vorticity at t = 20 
(upper plot) and t - 100 (lower plot). 

= I&(:)leiS(k) 

c Ikl < 20.5 o, Ikl > 2o.5 
where •p is the stream function defined by 

The ph•e O(k) is chosen randomly on the interval [0, 2•]. 
The enstrophy spectra are plotted in Fig. 3 for t = 20 

and 100. Naturally, the small scales dissipate faster than 
the large scales. 

The computed solution (the contour plot of vorticity 
• = -A•) is shown in Fig. 2 at t = 20 and t = 100; 
•t • 0.01, •e • 104, the resolution 128 x 128, the num- 
ber of processors P = 4. Practically the same pictures •e 
obtained using the resolution 256 x 256 and the time steps 
in the range At = 10 -4 - 10 -•. 

These plots are very similar (regarding the flow struc- 
ture, the sizes of the eddies) to those obtained in [6] using 
a pseudospectral Fourier method in a single domain (they 
are not expected to be identical since the phase O(k) is ran- 
dom field). Unfortunately, the above cited paper does not 
contain the energy spectrum plots to compare with. At 
le•t one conclusion can be made at this point: the MDLF 
algorithm allows a stable time integration at high Reynolds 
nmbers with adequate resolution of small features in the 
flow. The accuracy of this algorithm w• illustrated inde- 
pendently by the example in the previous section. 

-4 _•___. I i .•____ ' t=100 ' -- 
'-.. ß t=20 .... 
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-16 
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-20 

-22 I I I I 
0 0.5 1 1.5 2 2.5 

10g k 

Figure 3. The enstrophy spectra at t -- 20 and t -- 100; 
the resolution is 256 x 256, P = 4. 
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4 Problems in irregular geome- 
tries 

Our approach for treating irregular domains has much in 
common with that of [7]. The idea is to map a complex ge- 
ometry onto a simpler one and then solve the resultant non- 
constant coefficient equations by a preconditioned iteration 
method. Usually a low order (finite-difference or finite- 
element) approximation is chosen as a preconditioner. We 
propose to use in the capacity of the preconditioner a con- 
stant coefficient operator which has the same structure as 
the original one. These constant coefficients can be com- 
puted as the mean values of the corresponding variable 
coefficients. Then the above spectral MDLF method is ap- 
plied on each iteration step to solve constant coefficient 
problems in a simple geometry. We shall call this constant 
coefficient operator a spectral preconditioner. 

The spectral preconditioner gives a better approxima- 
tion to a noraconstant coefficient operator than any low 
order approximation provided that the variance is small. If 
the coefficients vary in a large range, then such an approx- 
imation is not satisfactory and thus the iteration method 
would converge slowly. However, in combination with the 
domain decomposition strategy the spectral preconditioner 
becomes very efficient. Since the computation in subdo- 
mains is performed independently, we can use a step-wise 
approximation to variable coefficients by taking different 
mean values in each subdomain. On each patch of the do- 
main this approximation will be accurate if the number of 
subdomains is large enough. 

We illustrate this approach by the following simplest ex- 
ample: 

(11) C(r)u = u" -+- a(x)u' - •2u -- f(x), x • [0, 1] 

(12) u(0) =u(1)=0, 

where a(x) = 10 (1 + tan 20(x- 0.5)). Function a(x) 
changes rapidly from 0 to 20 on a small interval Ax -• 1/20 
near the point x = 0.5. The forcing function has the form 
f(x) = 2 - a + (2a + •2)x - •2x • which corresponds to the 
exact solution u•.•(x) = x(x- 1). 

Instead of solving the problem (11), (12) directly we 
rather solve it iteratively using a preconditioned iteration 
method. The most simple Richardson scheme reads: 

(13) Hu n+l - f- (œ- H)u n. 

(more sophisticated iteration schemes, such as conjugate 
gradient types method, can be used as well). If the oper- 
ator œ is approximated in a spectral basis, upon conver- 
gence of iterations (13) a spectrally accurate solution is 

obtained. The rate of convergence depends on the choice 
of a preconditioner H. 

Following our approach, we divide the computa- 
tional interval x • [0, 1] into a number of subintervals 
[xn-1, xn], n = 1, ..., P and define a set of constant co- 
efficient operators Hn as follows: 

(14) Hn = u" + •nu' - A•u, x • [Xn--•,Xn], 

where 

an = 
J;n -- 37n-1 n-• 

Fig. 4 shows the coefficient a(x) on the interval x • [0, 1] 
and its step-wise approximation •n for P = 15. 

, , 

' a_n, dom. decomp, ?=15 .... 

02 0.4 0.6 0.8 

Figure 4. Step-wise approximation of the variable coef- 
ficient a(x) -- 10 (1 + tan 20(x - 0.5)). 

The convergence history of the preconditioned conjugate 
gradient iterations with the spectral preconditioner (14) 
is given in Fig.5 for several domain decompositions (pa- 
rameter A = 1). When the number of subdomains is not 
large enough, P = 9, the convergence is rather slow. How- 
ever, the convergence rate improves substantially for larger 
P as the local deviations [a(x)- an[ within the intervals 
[xn-x, xn] become smaller. 

Note that the computation of inner products, needed 
when using conjugate-gradient type methods, leads to ad- 
ditional global communications which degrade somewhat 
the parallel performance. 
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Figure 5. Acceleration of convergence by splitting the 
computational region into an increasing number of subdo- 
mains P. 

5 Natural convection in channels 

with wavy boundaries 

As a 2-D example we consider the problem of natural con- 
vection in a vertical channel with sinusoidal boundaries: 

(15) yz(y) =-(1+5cos kwx), Y2(Y)= l +Scos kwx. 

(this problem was investigated earlier in [8] using a finite- 
difference method). The computational domain fi = {0 < 
x < L, y• < y < y•.}. where L = 2•r/k,, k, = 1.4. 

The governing equations are written in the • - & formu- 
lation: 

(16) 00 0t• 00 0,• 0• _ •72• + Gr OT Ot + Ox Oy Ox Oy Oy' 

(17) V• = -•b 

i.- - Pr-•AT. (18) Ot Ox Oy Ox Oy 
Here C,, ̧, T are correspondingly stream function, vortic- 
ity and temperature; Gr, Pr are the Grashof and Prandtl 
numbers. 

Functions • and T are subject to the following boundary 
conditions: 

(19) y = yx,2, • = tk• = 0, T = •:1, 

(20) = = 

where • denotes the normal derivative of • on the bound- 
aries. 

By using a simple stretching transformation 

(21) •- x, r/= y•(x)- y• (x) 
we map a curvilinear region fi onto the rectangle • = {0 _< 

The discretization in time is performed via an implicit 
stiffly stable scheme (4)- (6) A preconditioned conjugate 
method with the spectral preconditioner is employed for 
the solution of the system (7), (8) as described in previous 
sections. 

The computed solution (contour plot of the stream 
function) on the asymptotic stage is shown in Fig.6 for 
Gr = 400, Pr = 0, 5 = 0.1 and kw = k,. This wave number 
corresponds to the most unstable periodic motion (critical 
eigenmode) in the plain vertical layer. Therefore, the per- 
turbation on the boundaries with this wavenumber leads 

to the resonant amplification of the critical eigenmode. 

/// 

Figure 6. Contour plot of the stream function for k• = 
k,; Gr = 400, Pr = O. 
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The steady solution with kw : 2k, ("even" mode) is [4] 
plotted in Fig.7; Gr = 300, Pr = 0, 6 = 0.1. The external 
forcing has the spatial frequency twice as high as the crit- 
ical number k,. In this case some resonance phenomenon 
of the parametric resonance type can be observed, such as [5] 
the competition between "even" and "odd" eigenmodes, 
the reduction of the stability threshold and more. 

Figure 7. Contour plot of the stream function for/cw -- 
2k.' Gr = 300, Pr = O. 
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