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ABSTRACT. Lewin has proved that if S is a ring and R a subring of finite 
index in S, then R contains an ideal of S which is also of finite index; and 
Feigelstock has recently shown that other classes of subrings must contain 
ideals belonging to the same class. We provide some extensions of these 
results, and apply them to prime rings. In the final section, we investigate 
finiteness of rings having only finitely many n-th powers, where n 2 2 is a 
fixed positive integer. 

1. INTRODUCTION 

Let S be a ring and R a subring. By the index of R in S, we shall mean the 
index of (R, +) in (S, +); and, as usual, we shall denote it by [S:R]. 

A useful result of Lewin ([6], Lemma l), recently rediscovered by Hirano ([4], 
Theorem l), asserts that if R has finite index in S, then R contains an ideal I 
of S which also has finite index in S; and Lewin’s proof gives a bound, albeit a 
rather large one, for [S : I] in terms of [S : R]. 

Recently Feigelstock [3] has generalized Lewin’s result by replacing the notion 
of finite index by the property that the additive group S/R belongs to a nonempty 
class C of abelian groups satisfying the following conditions (it being understood 
that the statement that A is a C-group means that A E C): 

(8’1) For each A E C, the additive group of the ring of endomorphisms of A is 
in C; 

(Fz) C is closed under taking subgroups; 

(Fs) C is closed under extensions by C-groups; 
(8’4) C is closed under taking epimorphic images. 
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Feigelstock calls such a class a finite-l&e class. We shall also use the term finite- 
like class, but with a slightly different meaning - a class C of abelian groups 
satisfying (FI) - (Fs). 

Feigelstock’s first result is that if C satisfies (Fl) - (Fd) and R is a subring 
of S with S/R E C, then R contains a left ideal I[ and a right ideal I, such 
that S/It E C and S/IT E C. His second result states that if all groups in C are 
finitely-generated, then It and I, may be replaced by a two-sided ideal. 

In our second section, we make the weaker assumption that C satisfies only 

(FI) - (&) and we obtain the full (two-sided ideal) extension of Lewin’s result, 
without assuming finite generation of groups in C. If C is the class of finite abelian 
groups, our proof yields a new proof of Lewin’s result and an improved bound 
for [S : I]. In the third section, we give some applications to prime rings; and in 
the last section we investigate finiteness in rings with finitely many n-th powers. 
The first proof in this final section is, in part, an application of Lewin’s original 
result. 

2. THE EXTENSION OF LEWIN’S RESULT 

The ring of endomorphisms of an abelian group A will be denoted by E(A), 
and it will be assumed that each endomorphism acts on A from the left side. As 
mentioned in the introduction, a nonempty class C of abelian groups satisfying 
(3’1) - (Fs) will b e called a finite-like class. We begin with our generalization of 
Lewin’s result. 

Theorem 2.1. Let C be a finite-like class of abelian groups. If R is a subring of a 
ring S such that S/R E C, then R contains a two-sided ideal I such that S/I E C. 

PROOF. Considering S/R as a right R-module in the natural way, we have an 
anti-homomorphism from R into E(S/R) given by a H a,, where a,. is defined by 
a,(s+ R) = sa + R. Its kernel L is the set {a E R 1 Sa & R}, which is the largest 
left ideal of S contained in R. The additive group R/L is isomorphic to a subgroup 
of E(S/R), hence R/L E C by (Fl) and (8’2); and since (S/L)/(R/L) 2 S/R as 
additive groups, it follows by (F3) that S/L E C. 

Regarding S/L as a left S-module and proceeding as in the previous para- 
graph, we get a homomorphism from S into E(S/L); and its restriction to L is 
a homomorphism from L into E(S/L) with kernel I = {a E LlaS & L} = {a E 
RISa,aS, SaS C R}, which is the largest two-sided ideal of S contained in R. 
Since S/L E C implies E(S/L) E C, we get L/I E C and therefore S/I E C. 0 
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Specializing to the class C of finite abelian groups and combining some elemen- 
tary observations on abelian groups with the proof of Theorem 2.1, we obtain a 
bound for [%I]. 

Theorem 2.2. Let R be a svbring of S with [S : R] = n, and let I be the largest 
ideal of S contained in R. If p is the smallest prime dividing n and e = [log, n], 
then 

[S : I] 2 n(e+1)3 . 

PROOF. We begin with some elementary observations on finite abelian groups. If 
A is an abelian group of order m and {al, a2, . . . , at} is a minimal set of generators 
for A, then it is easy to see that t 5 1 = [log, m], where p is the minimal prime 
dividing m. It is also clear that the minimal prime dividing IE(A)I cannot be 
smaller than p. Any endomorphism 13 of A is uniquely determined by the values 

qal), O(a2), . . - ,6(at); and since each O(a,) is one of m elements of A, we have 
IE(A)( 2 mt 5 me. 

Now let n,p, and e be as in the statement of the theorem, and L and I as in 
the proof of Theorem 2.1. Since R/L is isomorphic to a subgroup of E(SfR), 
and since the minimal prime dividing IE(S/R)I is at least p, the minimal prime 
dividing [R/L1 is at least p. 

Now consider IS/L/. I+ om the equality (S/L] = JS/RIIR/LJ, we see that the 
minimal prime dividing IS/LI is p and 

(2.1) IS/L1 5 (S/RJIE(S/R)I 5 nne = ne+l . 

It follows that \E(S/L)J < (ne+l)e’, where e’ = [log, IS/L]] 5 [ log,nefl] = 
[(e+ 1) log, n] . NOW [log, n] = C, so log, n < C + 1; hence (e + 1) log, n < (C + 1)2 

and 1’ 5 (! + 1)2 - 1. It follows that JE(S/L)) 5 n(‘+lj3 -ce+l). Recalling from 
the proof of Theorem 2.1 that L/I is isomorphic to a subgroup of E(S/L), we 
have 

(2.2) IL/II 5 ,(e+iY-(e+l) . 

Since [S/1( = IS/LI(L/IJ, t i is immediate from 2.1 and 2.2 that IS/l/ 5 nce+lJ3, 
which is precisely what we wished to prove. q  

Remark. Theorem 2.1 may be generalized to algebras over a commutative ring K 
as follows. Let C be a nonempty class of K-modules satisfying 
(E’i) For each A E C, the K-module EndK(A) is in C; 

($) C is closed under taking submodules; 
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(F$) C is closed under extensions by C-modules. 

For example, if K is a principal ideal domain, the class of finitely-generated 
K-modules satisfies (Fi) - (Fi). 

For such a class C, we obtain an analogue of Theorem 2.1 by replacing rings 
and ideals by K-algebras and K-algebra ideals. The proof is similar. 

3. APPLICATIONS TO PRIME RINGS 

Throughout this section, we assume that S is a prime ring and C is a finite-like 
class of abelian groups. We shall apply Theorem 2.1 for various subrings R such 
that S/R E C; and I will always denote the largest ideal of S contained in R, so 
that S/I E C. For a E S, the symbols Al(u) and A,.(u) will denote the left and 
right annihilators of a. 

For our first theorem, we need the following lemma, the proof of which is 
straightforward and is omitted. 

Lemma 3.1. If R is a subring of S and R contains a nonzero ideal of S, then R 
is prime. 

Theorem 3.2. If S $ C and R is a subring such that S/R E C, then R is prime; 
and if S is simple, then R = S. 

PROOF. We have S/I E C, and I # (0) since S 4 C; thus, R is prime by Lemma 
3.1. If S is simple, then I # (0) im pl ies that I = S and therefore R = S. cl 

Remarks (3a). Theorem 3.2 is an extension of Corollary 5 in [3]. 
(3b). One consequence of Theorem 3.2 is that if S is an infinite division ring 

and R is a subring of finite index, then S = R. This may be thought of as an 
analogue of the result that if S is an infinite division ring and R is a division 
subring whose multiplicative group has finite index in the multiplicative group of 
S, then S = R [lo, 14.2.11. 

For our next theorem, which is an extension of [l, Theorem 31, we require 
another lemma. 

Lemma 3.3. If S 4 C, then US $ C for any a E S\(O). 

PROOF. Assume there exists a E S\(O) f or which aS E C. Since aS Z S/A,(a) E 
C, Theorem 2.1 with-R = AT(u) yields S/I E C and I C AT(u). Thus al = {0}, 
and since a # 0 and S is prime, we must have I = (0). But this implies S E C, a 
contradiction. q  
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Theorem 3.4. If S 4 C, then either S is a domain or S contains a zero subbing 
K with K $! C and S/K $I! C. 

PROOF. Suppose S is not a domain. We first prove that 5’ contains a subring K 
with K $ C and K2 = (0). A p rime ring which is not a domain contains nonzero 
nilpotent elements, so we choose a E S\(O) such that a2 = 0. If aSa $ C, we can 
take K = aSa; hence we assume that aSa E C. In this case, take K = aSflAt( 
Since aSa g as/K E C and since aS $ C by Lemma 3.3, (Fz) gives K $ C. 
Moreover, K2 C_ Ae(a)aS = (0). 

It remains only to show that S/K $- C. Assume this is not the case. Taking 
R = K in Theorem 2.1 gives S/I E C and I C K. Hence I2 C K2 = (0); and by 
primeness of S, I = (0). But this implies S E C, a contradiction. cl 

The remainder of this section deals with derivations on prime rings. 

Lemma 3.5. [2, Lemma 31. Let d be a derivation on S, and let I be an ideal of 
S. I_fd(I) = {0}, then d = 0. 

Theorem 3.6. If S $ C and d is a derivation on S with d(S) E C, then d = 0. 

PROOF. Note that R = ker d is a subring of S and S/R Z d(S) E C. By Theorem 
2.1 we have S/I E C; and I & R, so d(l) = (0). Since S $ C, we have I # (0); 
hence d = 0 by Lemma 3.5. cl 

Corollary 3.7. If d is a derivation on S and d(S) is finite, then either S is finite 
or d = 0. 

4. Two FINITENESS THEOREMS 

In this section, we investigate finiteness of rings having only finitely many Ic- 
th powers, where k 2 2 is a fixed positive integer. We accord the k = 2 case 
special treatment because it can be handled by reasonably elementary methods, 
and because it provides a pretty application of Lewin’s theorem. 

Recall that a ring R is called periodic if for each 5 E R there exist distinct 
positive integers m and n for which xm = xn, We shall need to use the fact that 
if R is periodic, each element has an idempotent power and hence the Jacobson 
radical J(R) is nil. 

For the remainder of the paper, 2 will denote the center of R; and for each x E 
R, C(x) and A(s) will b e respectively the centralizer and two-sided annihilator 
of x in R. The symbol Hk (R) will denote the set {x” 1 x E R}. 



6 BELL AND KLEIN 

Theorem 4.1. Let R be a ring with no nonzero nil ideals. If Hz(R) is finite, 
then R is finite. 

PROOF. Note that if R is any ring with Hz(R) finite and if JHz(R)I = k, then for 
any x E R the elements x2, x4, . . . , xzk+’ cannot be distinct; hence R is periodic. 
Note also that R contains only finitely many idempotents. 

Assume the theorem is false, and let R be a counterexample with a minimum 
number of nonzero idempotents (necessarily at least 1). Observe that R can 
contain no nonzero central idempotent f which is a zero divisor; otherwise, we 
would have R = Rf @A(f), w h ere each summand satisfies our original hypotheses 

and has fewer nonzero idempotents than R, hence is finite. It follows that if R 
has nonzero central idempotents, then R has 1 and 1 is the only nonzero central 
idempotent. 

Now R has only finitely many elements of the form xy + yx = (x + y)’ -x2 - y2. 
Thus, for fixed x E R, the map y ti xy+yx has finite image and its kernel K, has 
finite index. Of course K, need not be a subring of R; however, K, is contained in 
the subring C(x’), which also has finite index. Since Hz(R) is finite, the subring 
&eR C(x’) has finite index, and by Lewin’s result contains an ideal I of finite 
index. Since R is infinite, I # (0); and since R has no nonzero nil ideals, I must 
contain a nonzero idempotent e. Now any idempotent in I centralizes x2 for all 
x E R, hence centralizes all idempotents in R, hence is in Z. Thus, e = 1, I = R, 
and all idempotents of R are central; hence, 1 is the only nonzero idempotent in 
R. 

We have noted that some power of each element of R is idempotent, hence 
each element of R is either nilpotent or invertible. It is known that this property 
implies that the nilpotent elements form an ideal [7], which in our context must be 
trivial; therefore R is a division ring. But periodic division rings are commutative 
by Jacobson’s “an = a theorem”. In a field u2 = v2 if and only if u = fv; hence 

our R cannot be a counterexample, and no counterexamples exist. 0 

This theorem invites the question of whether Hz(R) can be replaced by H,(R) 
for n > 2. The answer is yes; but the proof, unlike that of Theorem 4.1, is not 
elementary. 

Theorem 4.2. Let R be a ring with no nonzero nil ideals and let k be an integer 
greater than 1. If Hk(R) is finite, then R is finite. 

Lemma 4.3. [8, Theorem I]. Let R be a semiprimitive PI-ring with center Z. 
If I is any nonzero ideal of R, then I n Z # (0). 
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Lemma 4.4. Let x1, x2,. . . ,zk be a finite number of elements of a ring R szlch 
that for each i, there exist positive integers mi and ni for which xyi = xy’ and 
ni-mi > 0. Then there exist distinct positive integers m and n such that XT = xr 
fori=1,2 ,... ,k. 

PROOF. Let m = max{rnl,ma,. . . , mk} and n = m+II(q -m,). Then xr = x1 
for each i. cl 

PROOF OF THEOREM 4.2. As in the proof of Theorem 4.1, we see that any R 
with Hk(R) finite is periodic; and by Lemma 4.4, we conclude that R satisfies a 
polynomial identity of the form xn = xm. Since the Jacobson radical of a periodic 
ring is nil and R has no nonzero nil ideals, R is semiprimitive. 

Again we assume a counterexample R with a minimum number of nonzero 
idempotents. Since ideals of semiprimitive rings are semiprimitive rings, we con- 
clude as in the proof of Theorem 4.1 that R contains no nonzero central idem- 
potents which are zero divisors in R, and hence that R can have no central 
idempotents except possibly 1. 

By Lemma 4.3, 2 # (0); and since R is semiprime, Z has no nonzero nilpotent 
elements, hence must contain a nonzero idempotent, necessarily 1. Since 1 is the 
only nonzero central idempotent in R, Z must therefore be a field; and since Z 
satisfies a polynomial identity xn = xm, Z must be finite. 

Let I be any nonzero ideal of R. By Lemma 4.3 1 n Z # {0}, so I contains 
1 and hence I = R. Therefore, R is simple with 1, hence primitive; and by a 
well-known theorem of Kaplansky [9, Th. 6.1.251, R is finite-dimensional over Z, 
hence finite. This demolishes the assumption that R is a counterexample. 

Corollary 4.5. If R is a semiprime ring and there exists k > 1 such that Hk(R) 
is finite, then R is finite. 

PROOF. Since R satisfies an identity x” = xm, nilpotent elements have bounded 
index of nilpotency. Since Levitzki’s theorem [9, Prop. 2.6, 261 precludes nil ideals 
of bounded index in semiprime rings, R has no nonzero nil ideals and is therefore 
finite by Theorem 4.2. q  

Corollary 4.6. Let R be a ring with only a finite number of nilpotent elements. 
If there exists k > 1 for which Hk(R) is finite, then R is finite. 

PROOF. The prime radical P(R) is finite; and R/P(R) is finite by Corollary 4.5. 
Therefore R is finite. 0 

Remark. In general, a ring R with Hk(R) finite need not be finite; an obvious 
counterexample is an infinite zero ring. It is perhaps interesting that by Corollary 



t3 BELL AND KLEIN 

4.6, every counterexample contains an infinite zero subring, for it has recently 
been proved that every ring with infinitely many nilpotent elements contains an 
infinite zero subring [5, Theorem 61. 
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