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ABSTRACT. We investigate the structure of prime ideals of finite height in 
polynomial extension rings of a commutative unitary ring R. We consider the 
question of finite generation of such prime ideals. The valuative dimension 
of prime ideals of R plays an important role in our considerations. If X is an 
infinite set of indeterminates over R, we prove that every prime ideal of R[X] 
of finite height is finitely generated if and only if each P E Spec(R) of finite 
valuative dimension is finitely generated and for each such P every finitely 
generated extension domain of R/P is finitely presented. We prove that an 
integrally closed domain D with the property that every prime ideal of finite 
height of D[X] is finitely generated is a Priifer v-multiplication domain, and 
that if D also satisfies d.c.c. on prime ideals, then D is a Krull domain in 
which each height-one prime ideal is finitely generated. 

1. INTRODUCTION 

All rings considered in this paper are assumed to be commutative and to con- 
tain a unity element. Suppose X = {zi}~r is a countably infinite set of indeter- 
minates over a Noetherian ring R and T is a localization of R[X] with respect 
to a multiplicatively closed set of R[X]. (In particular, we are including the case 
where T = R[X].) It is readily seen that a prime ideal of T is finitely generated 
if and only if it is of finite height (cf. [8, Theorem 4, page 21). In relation to this 
result, it is shown in [9, Theorem 3.31 that an ideal c of T is finitely generated 
if and only if c has only finitely many associated prime ideals and each of the 
associated prime ideals of c is finitely generated. Moreover, if this occurs, then c 
has a finite primary decomposition. 

Motivation for our work in the present paper comes from the following specific 
questions concerning a converse to the finite generation result. 

9 
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Question 1.1. Suppose X = {zri}cr is a countably infinite set of indeterminates 
over a ring R. 

1. If every prime ideal of R[X] of finite height is finitely generated, does it 
follow that every prime ideal of R of finite height is finitely generated? 

2. Assume that each prime ideal of R has finite height. If each prime ideal of 
R[X] of finite height is finitely generated, does it follow that R is Noether- 
ian? 

We do not know the answer, in general, to either part of Question 1.1. For 
ease of reference in considering (l.l), we use the following terminology; here FH 
stands for finite height. 

Definition. Suppose X = {zi},e”_i is a countably infinite set of indeterminates 
over a ring R. We say that R is an FH-ring if every prime ideal of R[X] of finite 
height is finitely generated. 

The concept of valuative dimension is important in the consideration of Ques- 
tion 1.1. We recall that if D is an integral domain with quotient field K, then 
the valuative dimension of D, denoted dim, D, is the positive integer h if there 
exists a valuation overring ’ of D of rank h and no valuation overring of D of 
rank greater than h. If there exist valuation overrings of D of rank greater than 
h for every positive integer h, then D is said to have valuative dimension oo. The 
valuative dimension of a commutative ring R is defined to be the supremum of 
the valuative dimensions of domain homomorphic images of R [ll, page 561. For 
P E Spec(R), the valuative dimension of P is dim, Rp. 

In general, for D an integral domain and P E Spec(D), dim, D/P is at most 
dim,, D - dim Dp [ll, Prop. 2, page 571. Since one also has dim D < dim, D [ll, 
Theo&me 1, page 561, dim, D/P is at most dim, D - ht P. A summary of some 
basic properties of valuative dimension is given in [5, page 361. An important 
property for us is: 

Observation 1.2. If P E Spec(R) has finite valuative dimension h, where h is 
also the height of P (so dim Rp = dim, Rp), then for X a set of indeterminates 
over R, the height of PR[X] in R[X] is also h (cf. [ll, Theo&me 3, page 621). 

Discussion 1.3. 1. In view of Cohen’s theorem that a ring is Noetherian if 
every prime ideal of the ring is finitely generated [14, (3.4)], an affirmative 

‘By an oveting of an integral domain D with quotient field K we mean a subdomain of K 
that contains D. 
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answer to part (1) of (1.1) implies that the answer to part (2) of (1.1) is 
also affirmative. 

2. Suppose P is a prime ideal of R and Y is a set of indeterminates over R. 
Then Q = PR[Y] is a prime ideal of S = R[Y]. Since S is a free R-module, 
it is readily seen that Q is finitely generated in S if and only if P is finitely 
generated in R. Moreover, if Y = {yr, . . . , yn} is a finite set and P has finite 
height, then Q also has finite height. Indeed, if P has height h, then the 
height of PR[yl] is at least h and at most 2h (cf. [6, (30.2)]). Therefore if 
the set Y is finite, then Q = PR[Y] has finite height if P has finite height 
and the question analogous to (1.1) for a finite set of indeterminates has an 
affirmative answer. 

3. In the setting of (l.l), it is possible that there exists in R a prime ideal 
P having finite height such that Q = PR[X] has infinite height in R[X]. 
Indeed, if R is an integral domain, then Q = PR[X] has infinite height 
precisely if the domain Rp has infinite valuative dimension (cf. [6, page 
3601, [ll, page 631). 

Suppose R is an FH-ring and Y is a set of indeterminates over R. Is every 
prime ideal of R[Y] of finite height also finitely generated? We show in (1.4) 
below that this question has an affirmative answer if Y is infinite. On the other 
hand, if Y is finite, we show in (1.5) that an affirmative answer to this question 
is equivalent to an affirmative answer to Question 1.1. 

Proposition 1.4. Suppose R is an FH-ring and Y is an arbitrary infinite set of 
indeterminates over R. Then each prime ideal of R[Y] of finite height is finitely 
generated. 

PROOF. Let P be a prime ideal of R[Y] of finite height h and let PO < PI < . < 
Ph = P be a chain of prime ideals of R[Y] of length h with terminal element P. 
Choose a polynomial fi E Pi -Pi-l for i = 1,2,. . . , h. There exists a finite subset 
{yi}y==, of Y such that each fj E R[yl,. . . , yn]. It follows that P n R[yl, . . . , yn] 
has height at least h. Extend {yi}; to a countably infinite subset Y’ of Y. Then 
P n R[Y’] has height at least h, P’ = (P n R[Y’])R[Y] 5 P has height at least 
h, and hence P = (P n R[Y’])R[Y]. It follows that P n R[Y’] has height h. 
Since R is an FH-ring, P n R[Y’] is finitely generated. Consequently, P is finitely 
generated. 0 

Observation 1.5. Suppose x is an indeterminate over a ring R. As noted in part 

(2) of (I.3), P . a rime ideal P of R is finitely generated if and only if Q = PR[x] 
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is finitely generated in R[x], and Q has finite height if P has finite height. Thus 
if Y is a finite set of indeterminates over R, and if every prime ideal of R[Y] of 
finite height is finitely generated, then R also has this property. The converse, 
however, is not true. There exists an integral domain R having the property that 
there exists in R no nonzero prime ideal of finite height and which also has the 
property that there exists in R[z] a prime ideal Q of height one that is not finitely 
generated. To obtain such a domain R one can begin with a valuation domain 
V of infinite rank having no nonzero prime ideal of finite height and having the 
form V = F(t) + M, where M is the maximal ideal of V, F is a field and F(t) is 
a simple transcendental extension field of F. Let R = F + M and let Q be the 
kernel of the canonical R-algebra homomorphism R[z] -+ R[t] of the polynomial 
ring R[z] mapping x to t. Then Q is a prime ideal of R[z] of height one, for if K 
denotes the quotient field of R, then R[x]Q is a localization of the polynomial ring 
K[x] and hence is a DVR. Moreover, Q is not finitely generated, for the content 
ideal of Q in R is M and M as an ideal of R is not finitely generated. 

In this example, the prime ideal Q of R has valuative dimension one. Hence if 
z = x1, and X = {~~}~i, then QR[X] . 1s a non-finitely generated prime ideal of 
R[X], and by (1.2), QR[X] has height one. Therefore the converse of part (1) of 
(1.1) is not true; that is, there exists a ring R in which each prime ideal of finite 
height is finitely generated such that R[X] fails to have this property. 

Question 1.6. Suppose R is an FH-ring and c is an ideal of R[X] having finitely 
many associated primes, each of which is finitely generated. 

1. Does it follow that c is finitely generated? 
2. Does it follow that c has a finite primary decomposition? 

Observation 1.7. 1. If R is an FH-ring, then every height-zero prime of R 
is finitely generated. For if P is a height-zero prime of R, then PR[X] is 
a height-zero prime of R[X]. Thus PR[X] is finitely generated and so P 
is finitely generated. It follows that R has only finitely many height-zero 
primes [9, Theorem 1.61. 

2. In view of (1.4) and [8, Theorem 41, every Noetherian ring, or polynomial 
ring over a Noetherian ring, is an FH-ring. As we note in (2.1) below, it is 
also true in general that a localization of an FH-ring is again an FH-ring. 

3. The case of (1.1) where R is an integral domain is already quite interesting. 
We consider this case in $3. 
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2. STABILITY PROPERTIES OF FH-RINGS AND VALUATIVE DIMENSION 

Proposition 2.1. Suppose R is an FH-ring. 

1. If U is a multiplicatively closed subset of R, then the localization U-iR = 
RU is again an FH-ring. 

2. If Y is a set of indeterminates over R, then the polynomial ring R[Y] is an 
FH-ring. 

PROOF. Since R[X]~J is canonically isomorphic to Ru[X] and since a prime ideal 
Q of R[X]u has finite height if and only if Q n R[X] has finite height in R[X], 
the first assertion is clear. For (2), suppose X is a countably infinite set of 
indeterminates over R[Y]. By (1.4), every prime ideal of R[Y][X] of finite height 
is finitely generated. Therefore R[Y] is an FH-ring. cl 

Notation 2.2. We use R(“) to denote the polynomial ring in n indeterminates 
over a ring R. 

Proposition 2.3. Suppose X is an infinite set of indeterminates over a ring R 
and P E Spec(R). Th en the following are equivalent. 

1. P[X] has finite height in R[X]. 
2. PRp[X] has finite height in Rp[X]. 
3. Rp has finite valuative dimension. 

Consequently, if R is an FH-ring having finite ualuative dimension, then R is 
Noetherian. 

PROOF. The equivalence of (1) and (2) is clear. If Rp has finite valuative di- 
mension h, then for n sufficiently large, the height of P(Rp)(“) is the height 
of PRp[X], which is h (cf. [ll, Theoreme 3, page 621). Thus (3) implies (2). 
On the other hand, if Rp has infinite valuative dimension, then the sequence 

{ht P@P)("))~~ is unbounded (cf. [ll, Theo&me 4, page 631). Hence PRp[X] 
has infinite height and (2) implies (3). cl 

Proposition 2.4. Suppose R is a ring and P E Spec(R) contains only finitely 
many height-zero primes PI, . . . , Pk of R. Let X be an infinite set of indetewni- 

nates over R. The following are equivalent: 

1. PR[X] has finite height. 
2. PR[X]/P,R[X] has finite height for each i, 1 5 i 5 k. 
3. The domain RP/P~RP has finite ualuative dimension for each i, 1 2 i 2 k. 

PROOF. The equivalence of (1) and (2) follows from the fact that {Pi[X]}: is 
the set of height-zero primes of R[X] contained in P[X]. In view of the fact that 
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P[X]/P,[X] ” (P/E)[X] and (R/P,)P/P~ g Rp/PiRp, the equivalence of (2) 
and (3) follows from Proposition 2.3. 0 

Theorem 2.5. A ring R is an FH-ring if and only if for each positive integer n, 
each prime ideal of R(“) of fi ‘t ne e valuative dimension is finitely generated. 

PROOF. Suppose R is an FH-ring and Q E Spec(R(“)) is of finite valuative di- 
mension. By (2.1), R cn) is an FH-ring and by (1.7), R(‘“) has only finitely many 
height-zero primes. Hence (2.4) implies that QR(“)[X] has finite height, where X 
is an infinite set of indeterminates over R(“). Therefore QR(“)[X], and hence Q, 
is finitely generated. 

Conversely, assume that each prime of R (71) of finite valuative dimension is 
finitely generated. It follows that every height-zero prime of R is finitely gener- 
ated. Hence by [9, Theorem 1.61, R has only finitely many height-zero primes. Let 
P be a prime ideal of R[X] of finite height h. There is a finite subset Y of X such 
that P n R[Y] has height at least h. We necessarily have (P n R[Y])R[X] = P, 
since the prime ideal (P n R[Y])R[X] is contained in P and has height at least h. 
By (2.4), it follows that P n R[Y] has finite valuative dimension. By hypothesis, 
this means that P n R[Y] is finitely generated, so that P = (P n R[Y])R[X] is 
also finitely generated. Consequently, R is an FH-ring. 0 

Proposition 2.6. Suppose R is a ring, n is a positive integer, Q E Spec(R(“)), 
and P = Q n R. Then Q has finite valuative dimension if and only if P has finite 
valuative dimension. 

PROOF. By passing from R to Rp, we may assume that R is quasilocal with 
maximal ideal P. If P has finite valuative dimension h, then R(“) has valuative 
dimension h + n [ll, ThCoritme 2, page 601. Since Q E Spec(R(“)), it follows 
that Q has finite valuative dimension. On the other hand, if P has infinite valu- 
ative dimension, then PR(“) has infinite valuative dimension. Since R&$n, is a 

localization of R$‘, it follows that Q has infinite valuative dimension. q  

Observation 2.7. Suppose S = R[<l, . . . , &] is a finitely generat,ed extension 
ring of R. If Q’ E Spec(S) h as infinite valuative dimension, then P = Q’ n R 
also has infinite valuative dimension. For S is an R-algebra homomorphic image 
of R(“) and the preimage Q of Q’ in R cn) has infinite valuative dimension and 
QnR = Q’nR = P. Hence by (2.6), P has infinite valuative dimension. However, 
as we observe in Observation 3.7 below, it can happen that there exists a prime 
ideal Q’ E Spec(S) of finite valuative dimension such that Q’n R = P has infinite 
valuative dimension. 
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D liscussion 2.8. 1. Since every ring is a homomorphic image of a polynomial 
ring over Z and since, as noted in part (2) of (1.7), a polynomial ring over 
a Noetherian ring is an FH-ring, the property of being an FH-ring is not in 
general preserved under homomorphic image. 

2. It is unclear whether for P a height-zero prime of an FH-ring R it follows 
that R/P is again an FH-ring. A problem here is that for Q E Spec(R) with 
P < Q it may happen that QR[X] h as infinite height, but QR[X]/PR[X] 
has finite height. 

3. It would be interesting to know if a finitely generated extension ring of an 
FH-ring is again an FH-ring. 

3. FH-DOMAINS AND CONDITION (p) 

Discussion 3.1. Let D be an integral domain with quotient field K and let 

~lr...,% be indeterminates over K. Then K[sl, . . , xn] = Kc”) is a localiza- 
tion of D[zl, . . , xn] = Den). Hence for P E Spec(K(“)) we have (K(“))p = 
( Dtn)) PnD(“). Therefore P f~ DC”) is of finite valuative dimension. In view of 
Theorem 2.5, for each positive integer n, an FH-domain D satisfies the following 
condition which we denote by (p,). 

1. “(&)” For each P E Spec(K(“)), the contraction P n DC”) is finitely 
generated. 

We say the integral domain D satisfies condition (p) if D satisfies (p,) for each 
positive integer n. 

Observation 3.2. An equivalent form of condition (p) on an integral domain D 
is that every finitely generated extension domain of D is finitely presented. It was 
proved by Nagata in [15] that a valuation domain has this property, and a result 
of Raynaud and Gruson in [16, (3.4.7), page 261 implies that a Priifer domain also 
has this property. 

Condition (p) modulo prime ideals of finite valuative dimension of a ring R 
relates nicely to R being an FH-ring as we observe in Theorem 3.3. 

Theorem 3.3. A ring R is an FH-ring if and only if each P E Spec(R) of finite 
valuative dimension is finitely generated and for each such P the integral domain 
R/P satisfies condition (p). 

PROOF. Assume that R is an FH-ring. By Theorem 2.5, each P E Spec(R) of 
finite valuative dimension is finitely generated. To show R/P satisfies condition 
(p), it suffices to show that if Q’ is a prime ideal of the polynomial ring (R/P)(“) 
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such that Q’ n (R/P) = (0), then Q’ is finitely generated. Let Q denote the 
preimage of Q’ in IX(“). Then Q n R = P. By (2.6), Q has finite valuative 
dimension. Since R is an FH-ring, Q is finitely generated by (2.5). Therefore Q’ 
is finitely generated. 

Assume conversely that each P E Spec(R) of finite valuative dimension is 
finitely generated and RIP satisfies condition (p). To show R is an FH-ring, by 
Theorem 2.5, it suffices to show for each positive integer n that each prime Q of 
R(“) of finite valuative dimension is finitely generated. Proposition 2.6 implies 
that P = Q n R is of finite valuative dimenion in R. Therefore P is finitely 
generated. Since R/P satisfies condition (p), the image of Q in (R/P)cn) is 
finitely generated. Therefore Q is finitely generated. 0 

A test case for part (2) of (1.1) asks whether a one-dimensional quasilocal FH- 
domain D is Noetherian. By (2.3), the answer is affirmative if dim,, D is finite. On 
the other hand, Theorem 3.3 implies that a one-dimensional quasilocal domain 
having infinite valuative dimension and satisfying condition (p) is an FH-domain: 
hence the existence of such a domain would provide a negative answer to part (2) 
of (1.1). 

Let D be an integral domain with quotient field K. We recall that D is said 
to be quasi-coherent if 1-l = D :K I = {a E K : al G D} is finitely generated 
for each nonzero finitely generated ideal I of D [4]. 

Proposition 3.4. If D satisfies condition (p), then D is quasi-coherent. 

PROOF. Suppose I = (al,. . . , a,)D is a nonzero finitely generated ideal. Let 

El,...,% be indeterminates over K and let f = alzl + .. + a,z,. Then 

fJ+l,... , z,] is a height-one prime ideal of K[zl, . , xn] = Kc”). Let P = 
fKcn) II DC”). Since D satisfies condition (p), P is a finitely generated homoge- 
neous ideal, where DC”) is regarded as a graded ring with D of degree zero and 
each xi of degree one. The degree-one piece of P is I-l f, and P finitely gener- 
ated as an ideal of Den) implies that I-If is finitely generated as a D-module. 
Therefore 1-l is finitely generated as a fractional ideal of D. 0 

From (3.3) and (3.4), we have the following corollary. 

Corollary 3.5. If R is an FH-ring, then for each P E Spec(R) of finite valuatiwe 
dimension, the domain R/P is quasi-coherent. In particular, since the ideal (0) 
of an integral domain is a prime ideal of finite ualuative dimension, if D is an 
FH-domain, then D is quasi-coherent. 



PRIME IDEALS OF FINITE HEIGHT IN POLYNOMIALS RINGS 17 

Question 3.6. Suppose E = D[<] is a simple integral extension of domains. Is 
there an implication in either (or both) directions between the condition that D 
is an FH-domain and the condition that E is an FH-domain? 

Observation 3.7. In relation to Question 3.6, we remark that there can exist 
in E a maximal ideal Ma of finite valuative dimension such that Ma n D = M 
has infinite valuative dimension. This is illustrated by [7, Example 5.8, page 1611, 
where A is the field of algebraic numbers, A((x)) is the quotient field of the formal 
power series ring A[[x]], V 1 1s a valuation domain of infinite rank on A((x)) of the 
form VI = A + Ml, and V, = A[[x]] = A + M2, where M2 = xA[[x]]. Then with 
M = M1 n iVl2, and < E Ml such that C is a unit in VP, we define D = A + M 
and E = D[<]. 

It is easy to see that condition (p) lifts from D to E. More generally we have: 

Proposition 3.8. If n 2 2, and if an integral domain D satisfies condition (p,), 
then a simple extension domain E = D[<] of D satisfies condition (p,_l). Thus 
if D satisfies condition (p), then every finitely generated extension domain of D 
also satisfies condition (p). 

PROOF. Suppose P’ E Spec(E cn-‘)) is such that P’ r-? E = (0). Under the canoni- 
cal D-algebra homomorphism of DC”) onto D[<](“-‘1 mapping x, + C, the preim- 
age of P’ is a prime ideal P E Spec(D(“)) such that Pn D = (0). Since D satisfies 
condition (pTL), P is finitely generated. Therefore P’ is finitely generated and 
E = D[<] sa is t’ fi es condition @,_I). The second statement of (3.8) follows from 
the first statement. 0 

Corollary 3.9. Suppose R is an FH-ring and P E Spec(R) is of finite valuative 
dimension. Then every finitely generated extension domain of R/P is quasi- 
coherent. In particular, if D is an FH-domain, then every finitely generated 
extension domain of D is quasi-coherent. 

PROOF. Apply (3.5) and (3.8). 

4. INTEGRALLY CLOSED FH-DOMAINS 

0 

We recall that an integral domain D is a Priifer v-multiplication ring, 2 abbre- 
viated PVMD, if the divisorial ideals of D of finite type form a group [12, page 
6671, [6, page 4271, [13]. It IS well known that an integrally closed quasi-coherent 

2The term v-multipliation ring is used in [lo], while Bourbaki [3, page 961 calls such domains 
pseudo-Priifer. 
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domain is a PVMD. A simple direct proof for this is to observe that if I is a 
nonzero finitely generated ideal of a quasi-coherent domain D, then J = II-l is 
a finitely generated integral ideal of D with the property that J-l = J : J. Since 
J is finitely generated, the elements of J : J are integral over D. If D is also 
integrally closed, then J-l = J : J = D, and it follows that D is a PVMD. 

Proposition 4.1. Suppose R is an FH-ring and P E Spec(R) is of finite valua- 
tive dimension. Then every finitely generated integrally closed extension domain 
of R/P is a PVMD. In particular, if D is an integrally closed FH-domain, then 
D is a PVMD. 

PROOF. This is immediate from (3.9) and the fact that an integrally closed quasi- 
coherent domain is a PVMD. q  

Corollary 4.2. Suppose D is a one-dimensional FH-domain such that the inte- 
gral closure D’ of D is a finitely generated D-module. Then D is Noetherian. In 
particular, a one-dimensional integrally closed FH-domain is a Dedekind domain. 

PROOF. By (4.1), D’ is a PVMD. Since a one-dimensional PVMD is Priifer, it 
follows that D’, and hence D, has valuative dimension one. Therefore, by (2.5), 
each prime ideal of D is finitely generated, and D is Noetherian. cl 

In preparation for showing that certain integrally closed FH-domains are Krull 
domains, we note the following. 

Proposition 4.3. A nontrivial valuation domain V is an FH-domain if and only 
if V is either a rank-one discrete valuation domain (DVR), or Spec(V) contains 
no prime ideal of finite positive height. 3 

PROOF. If V contains a prime ideal of finite positive height and V is not a DVR, 
then V contains a non-finitely generated prime ideal P of finite height. Then 
PV[X] is of finite height in V[X] and is not finitely generated. On the other 
hand, it is clear that if V is a DVR, then V is an FH-domain. If Spec(V) contains 
no prime ideal of finite positive height, then Theorem 3.3 implies that V is an 
FH-domain, for as noted in (3.2), V satisfies condition (p). 0 

Theorem 4.4. Suppose D is an integrally closed FH-domain that satisfies the 
descending chain condition (d.c.c.) on prime ideals. Then D is a Krull domain, 
and each prime ideal of D of height one is finitely generated. 

3A nontrivial valuation domain V has no prime ideal of finite positive height if and only if 
the nonzero prime ideals of V intersect in (0). 
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PROOF. By Proposition 4.1, D is a PVMD. Hence there exists a set {Pa}aE~ of 
prime ideals of D such that D = n, Dp, , where each Dp, is a valuation domain. 
By (2.1), each Dp, is an FH-domain. Since D, and therefore Dp,, satisfies d.c.c. 
on prime ideals, either Pa = (0) or Dp, is a DVR. Therefore Pa has finite valuative 
dimension, so by (2.5) each Pa is finitely generated. Suppose d E D is a nonzero 
non-unit, and let P be a minimal prime of (d). Then Dp is a PVMD whose 
maximal ideal PDp is the radical of a principal ideal. It follows that Dp is 
a valuation domain, thus a DVR, and P is finitely generated. Therefore each 
minimal prime of (d) is finitely generated. Hence by [9, Theorem 1.61, (d) has 
only finitely many minimal primes. It follows that the representation D = n,Dpa 
is locally finite, and D is a Krull domain in which each height-one prime ideal is 
finitely generated. 0 

Question 4.5. Suppose (R, m) is a a-dimensional quasilocal integrally closed 
FH-domain. Must R be Noetherian? 

With notation as in (4.5), we note that if P is a height-one prime of R, then 
P is finitely generated and has finite valuative dimension. Therefore R/P is a 
one-dimensional quasilocal domain that satisfies condition (p) and hence is quasi- 
coherent. If R/P is Noetherian, then m is finitely generated and R is Noetherian. 
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