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ABSTRACT. Several structural characterizations of locally connected con- 
tinua that admit an open mapping onto an arc are obtained. 

It is well-known that each arc of an n-cube is its open retract. The Sierpiriski 
universal plane curve, the Menger universal curve and the simplest indecompos- 
able continuum ([7], $48, V, Example 1, p. 204) are also retractable onto arcs 
under open mappings. Oversteegen [9] has constructed an example of an open 
and monotone retraction of a smooth dendroid onto an arc. Thus a problem arises 
to characterize continua which are retractable onto arcs under open mappings. 
Special attention - with respect to the above problem - is paid to the class of 
locally connected continua. 

Open mappings from a locally connected continuum onto an arc have been 
investigated by a number of authors, in particular by G. T. Whyburn in his 
book [ll], but under some additional assumptions that concerned either map- 
pings (which were assumed to be light or non-alternating for example, compare 
[ll], Theorems 3.1, p. 189, 2.1, p. 212 and 4.1, p. 218) or the structure of the 
domain space (dendrites, two-manifolds, etc.). Other particular results were ob- 
tained by the authors in [5], where it is shown that each subarc of a graph is 
its open retract, and in [8], where some conditions are studied that imply the 
nonexistence of an open retraction of a locally connected continuum onto an arc. 
Further studies on the problem lead to some characterizations of locally connected 
continua which admit an open mapping onto an arc. In these characterizations 
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both the structure of the set of all separating points and a manner of separation 
of the continuum by particular points are important, and they play an essential 
role in the formulation of the considered conditions. In this paper we present 
the obtained results. The characterizations given in this paper (see the seven 
equivalent conditions in Theorem 3) as well as the methods by which they are 
proved are expressed in the same language as those in the Whyburn’s book [ll]. 
Thus the research can be understood as a prolongation and a completion of G. 
T. Whyburn’s studies in the area. 

All spaces considered in this paper are assumed to be metrizable and separable. 
Given a subset A of a space X, we denote by clA the closure, by bd A the 
boundary, and by int A the interior of A in X. A continuum means a compact 
connected space. 

We shall use the notion of order of a point in the sense of Menger-Urysohn 
(see e.g. [7], $51, I, p. 274 or [ll], p. 48), and we denote by ord (p, X) order of 
the space X at a point p E X. Points of order one are called end points, and 
points of order at least three - ramification points of X. A dendrite means a 
locally connected continuum containing no simple closed curve. Recall that for 
a point p of a dendrite X the concept of ord (p, X) agrees with the number of 
components of the set X \ {p} (see [ll], Chapter 5, Theorem (1.1) (iv), p. 88). 
By the standard universal dendrite of order 3 we mean a dendrite 03 such that 
every ramification point of 03 is of order 3 and for every arc A contained in 03 
the set of ramification points of 03 which belong to A is a dense subset of A. It is 
shown in Theorem 3 of [3], p. 493 that all open images of 03 are homeomorphic 
to D3, so 03 cannot be openly mapped onto an arc. 

We start with recalling some old (and rather forgotten) concepts due to G. T. 
Whyburn. 

A family (a sequence) of subsets of a metric space is called a null family (a null 
sequence) provided that for every E > 0 at most a finite number of its elements 
are of diameter greater than E. For a metric space X a subset Y of X is called an 
A-set provided that X \ Y is the union of a finite number or of a null sequence 
of mutually disjoint open sets each having at most one boundary point. The 
following properties of A-sets in locally connected continua are known (see [ll], 
(3.1) and (3.11), p. 67 and (3.31) and (3.61), p. 69). 

Proposition 1 (G. T. Whyburn). If a continuum X is locally connected and a 
subset Y of X is an A-set, then Y is a locally connected continuum, and 

(1) the components of X \ Y are open sets, they form a null sequence at most, 
and the boundary of each component of X \ Y is a single point. 
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Conversely (see [ll], Theorem (3.3), p. 67) the following is true. 

Proposition 2 (G. T. Whyburn). If a continuum X is locally connected and a 
subcontinuum Y of X is such that the boundary of each component of X \ Y is a 
single point, then Y is an A-set. 

A-sets contained in a locally connected continuum are characterized as follows 
(see [ll], (3.4), p. 69). 

Proposition 3 (G. T. Whyburn). A subcontinuum Y of a locally connected con- 
tinuum X is an A-set if and only if for each arc ab in X the condition a, b E Y 
implies ab c Y. 

Let two distinct points a and b of a locally connected continuum X be given. 
We say that a point p E X separates the points a and b in X (or separates X 
between a and b) provided that the points a and b belong to distinct components 
of X \ {p}. We put 

E(a, b) = {p E X : p separates a and b in X }. 

A point p of a locally connected continuum X is called a separating point of X 
if it separates X between some two distinct points of X \ {p}. Another name 
used for this concept is a cut point of X (see [ll], p.41; compare [ll], Chapter 3, 
Section 8, a paragraph preceding (8.1), p. 58). Since for each end point p of X 
there exist arbitrarily small neighborhoods of p the boundary of each of which 
consists of a single point, it follows that each end point of X is the limit of a 
sequence of separating points of X, namely the terms of the sequence are just 
the points lying in the boundaries of arbitrarily small neighborhoods mentioned 
in the definition of the end point. Consequently, 

(2) the set of end points of a locally connected continuum X is contained in the 
closure of the set of separating points of X. 

Two distinct points a and b of a locally connected continuum X are said to be 
conjugate provided that no point of X separates a and b in X, i.e., if E(a, b) = 8. 
If a point p E X is neither a separating point nor an end point of X, then the set 
consisting ofp and of all points of X conjugate to p is called a simple link of X. By 
a cyclic element of X we mean any separating point of X, or an end point of X, 
or a simple link of X. The separating points and end point are called degenerate 
cyclic elements of X, while the simple links are called true cyclic elements. Denote 
by lV(a, b) the union of all cyclic elements C of X such that 

(3) C n (E(a, b) U {a, b]) consists of exactly two points. 
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For every two distinct points a and b of a locally connected continuum X the 
intersection of all A-sets in X containing a and b is called the cyclic chain from 
a to b in X, and it is denoted by C(a,b). The following result is known (see [ll], 
(5.2), p. 71). 

Proposition 4 (G. T. Whyburn). For every two distinct points a and b of a lo- 
cally connected continuum X we have 

(4) C(a, b) = E(a, b) U {a, b} U W(a, b). 

Besides the above proposition, the structure of cyclic chains in a locally con- 
nected continuum X is described in the next known result (due to G. T. Whyburn) 
which has merely been mentioned without proof in [lo], p. 914. For completeness, 
we present its proof here. To formulate the result, denote by U(a, b) the union of 
all arcs ab joining the points a and b in X, and note that 

(5) E(a, b) U {a, b) c Ua, b). 

To prove the result, we recall a concept of cyclic connectedness. A set S is said 
to be cyclicly connected provided that every two points of S lie together in some 
simple closed curve contained in S. The following theorem, due to W. L. Ayres 
(see e.g. [ll], (9.5), p. 79) will be needed in the sequel. 

Proposition 5 (W. L. Ayres). A locally connected continuum C is cyclicly con- 
nected if and only if for each triple of points pl, ~2, p3 of C taken in any order 
pi, pj, pk for i, j, k E {1,2,3} there exists an arc pipjpk in C. 

Corollary 6. For every triple of points pl, ~2, p3 of a true cyclic element C of 
a locally connected continuum taken in any order pi, pj, pk for i, j, k E {1,2,3} 
there exists an arc pipjpk in C. 

PROOF. Each true cyclic element of a locally connected continuum X is cyclicly 
connected (see [ll], Corollary 1, p. 79). Further, it is an A-set ([ll], (3.5) (i), p. 
69), and therefore, by Proposition 1, it is a locally connected subcontinuum of X. 
Now the conclusion follows from the Ayres theorem (Proposition 5 above). q  

Proposition 7. For every two distinct points a and b of a locally connected con- 
tinuum X we have C(a, b) = U(a, b). 

PROOF. Since the intersection of an arbitrary family of A-sets is an A-set (see 
[ll], (3.5) (ii), p. 69), the cyclic chain C(a, b) is an A-set, whence the inclusion 
U(a, b) C C(a, b) follows from Proposition 3. To prove the opposite inclusion it 
is enough to show that for each point x in C(a, b) there exists an arc axb from a 
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to b through 5. By (4) and (5) we have only to consider the case z E w(a, b). 
Then z is in a cyclic element C of X such that (3) holds. Thus C is a true cyclic 
element. Denote by y and z points of C such that C n (E(a, b) U {a, b}) = {y, z}. 

Since y, z E E(a, b) U {a, b}, we infer y,z E u(u,b) by (5). By Corollary 6 above 
there exists an arc yzz in C. Since y, z E V(u, b), we have 2 E u(u, b). The proof 
is finished. cl 

A mapping f : X + Y of a space X onto Y is said to be open if for each open 
subset of X its image under f is an open subset of Y. Further, f is said to be 
interior at a point p E X provided that for every open set U in X containing p, 
the set f(u) contains the point f(p) in its interior. The following statement is 
obvious. 

Statement 8. A mapping is open if and only if it is interior at each point of its 
domain. 

Now we are going to discuss some structural conditions concerning a locally 
connected continuum X under which there exists an open mapping of X onto 
the closed unit, interval [0, l] ( or, equivalently, onto an arc). Our starting point is 
Whyburn’s characterization of those locally connected continua which can be 
mapped onto an arc under a mapping that is simultaneously open and non- 
alternating. Recall that a mapping f : X + Y of a space X onto Y is said to 
be non-alternating provided that for each point y E Y and for any separation of 

X\fF(Y) t t in o wo mutually separated sets X1 and Xz we have f (X,)n f (X2) = 8 
or, equivalently, Xi = f-l(f (Xi)) f or i E {1,2} (see [ll], (4.2), p. 127 and Chap- 
ter 8, Section 2, p. 137-140). The following lemma will be needed in the sequel. 

Lemma 9. Let X be a locally connected continuum, and let f : X -+ [0, l] be 
un open mapping such that f-l(O) and f-‘(l) are singletons. Then for every 

t E [0, I] \ (0, 1) the set X \ f-‘(t) consists of two components X1 and X2 such 

thut f (Xl) n f (X2) = 0, and thus f is non-alternating. 

PROOF. Put {u} = f-l(O) and {b} = f -‘( 1). Suppose on the contrary that 
there exist a number t E [0, l] \ (0, 1) an d a component C of X \ f-‘(t) which 
contains neither a nor b. Then C is open as a component of an open subset of 
the locally connected continuum X, so f(C) is an open subset of [0, l] such that 

elf (Cl = f (Cl u It), and thus either 0 E f(C) or 1 E f(C), a contradiction. 0 

The above mentioned characterization runs as follows (see [ll], (2.1), p. 212 and 
(4.2) p. 218). 
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Theorem 10 (G. T. Whyburn). Let two distinct points a and b of a locally con- 
nected continuum X be given. The following conditions are equivalent: 

(6) there exists a non-alternating open mapping f : X + [0, l] such that f(a) = 
0 and f(b) = 1; 

(7) for every arc ab C X there exists a non-alternating open retraction r : X + 
ab; 

(8) C(a, b) = X. 

Thus, as a consequence of the implication from (8) to (6) we get the following 
corollary. 

Corollary 11. If a locally connected continuum X contains two distinct points a 
and b such that (8) holds, then there exists an open mapping f : X -+ [0, l] such 
that f(a) = 0 and f(b) = 1. 

Obviously, the opposite implication to that of Corollary 11 does not hold in gen- 
eral, because according to Theorem 10 we need an additional assumption on the 
mapping (namely that it is non-alternating) to construct the two needed points 
a, b E X satisfying (8). In other words, the existence of points a, b E X with (8) 
suffices, but it is not necessary, to the existence of an open mapping from X onto 
[0, 11. To find a necessary condition (which is also sufficient), and which is formu- 
lated in the same language, we generalize the concept of a cyclic chain between 
distinct points of a locally connected continuum X to a cyclic chain between some 
subsets of X. The authors express their gratitude to Dr. K. Omiljanowski and 
Dr. J. R. Prajs for fruitful discussions concerning this generalization. 

Given a locally connected continuum X, let A and B be disjoint closed subsets 
of X, both with empty interior. Then by a cyclic chain C(A, B) from A to B we 
mean the union of A and B and of all arcs ab in X such that 

(9) abnA = {a} and abn B = {b}, 

i.e., 

(10) C(A,B)=AUBUlJ{abcX:abnA={a}andab~B={b}}. 

Observe that in case when the sets A and B are singletons {a} and {b} respec- 
tively, the concept of C(A, B) coincides with one of C(a, b) by Proposition 7. 

The following characterization of locally connected continua admitting an open 
mapping onto an arc has been proposed by Dr. J. R. Prajs. 

Theorem 12 (J. R. Prajs). For a locally connected continuum X the following 
conditions are equivalent: 
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(11) there exists an arc L c X and an open retraction r : X + L of X onto L; 
(12) there exists an open mapping f : X + [0, l] of X onto the closed unit 

interval [0, 11; 
(13) there are two disjoint closed subsets A and B of X, both with empty interior, 

such that C(A, B) = X. 

PROOF. The implication from (11) to (12) is obvious. To show the implication 
from (12) to (13) assume that there exists an open mapping f : X --t [O,l]. 
Putting A = f-‘(O) and B = f-l(l) we see that A and B are disjoint closed 
subsets of X with int A = int B = 8. To prove the equality 

(14) C(A, B) = X 

it is enough to verify, according to definition (10) of C(A, B), that for each point 
x of X \ (AU B) there is an arc axb from a to b through x such that conditions (9) 
are satisfied. Shrink A and B to points, and consider the double quotient space 
2 = (X/A)/B. S’ mce A and B are closed, Z is a locally connected continuum. Let 
R : X + Z be the natural projection. Put T(A) = {a’} and T(B) = {b’}. Denote 
by g : Z + [0, l] the mapping satisfying g o n = f and note that since f is open, 
g is open, too ([ll], Chapter 8, (3.1), p. 140). By Lemma 9 it is non-alternating, 
and thus according to Theorem10 we have Z = C(a’, b’). Denote by L an arc in 
Z with end points a’ and b’ and such that K(X) E L. Since r](X \ (AU B)) is 
one-to-one, there is an arc Lo in X such that x E Lo and the end points of Lo lie 
close to A and to B respectively. Let a and b be points of A and B respectively, 
close to the end points of Lo. By the local arcwise connectedness of X at a and 
at b there are small arcs L, and Lb joining a and b with the end points of Lo 
respectively. Then L, U Lo U Lb contains an arc with end points a and b which 
passes through the point 2. Consequently, (14) is shown, and so (13) is satisfied. 

To verify the implication from (13) to (11) assume subsets A and B of X do 
exist having the properties listed in (13). Let L be an irreducible arc between 
A and B (i.e., such that L intersects both A and B and no proper subarc of 
L does). As in the previous part of the proof, shrink A and B to points, and 
consider the double quotient space Z = (X/A)/B. Since A and B are closed, Z 
is a locally connected continuum. Again let 7r : X -+ Z be the natural projection. 
Put r(A) = {a’} and T(B) = {b’}. S ince A n B = 0, we have a’ # b’. And since 
int A = int B = 0, we infer from the definition of the mapping r that for each arc 
ab c X as in (lo), i.e., such that conditions (9) hold, the partial mapping nlab : 
ab + a’b’ is a homeomorphism. Thus by Proposition 7 it follows that r(C(A, B)) 
is contained in the cyclic chain C(a’, b’) from a’ to b’ in Z. Since 7r is surjective, 
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condition (14) implies that 2 = x(X) = r(C(A,B)) c C(a’,b’) c 2, whence it 
follows C(a’,b’) = 2. Now we infer from Theorem 10 that there exists an open 
retraction u : 2 -+ r(L) with a(~‘) = a’ and a(V) = b’. Put f = (~071 : X -+ T(L). 
We claim that f is open. Indeed, since A and B are closed, the set X \ (AU B) is 
open; and since the partial mapping x](X \ (A U B)) : X \ (A U B) -+ 2 \ {a’, b’) 
is a homeomorphism, the mapping 7~ : X + 2 is interior at each point of the set 
X \ (A U B). Therefore, since ~7 is open, the mapping f is interior at each point 
of X \ (A U B). Further, since each point of A U B is sent under rr into {a’, b’}, 
and since int A = int B = 0 by assumption, we infer from the openness of u that 
f is interior at each point of A U B. Therefore f is open according to Statement 
8. Since 7r]L is a homeomorphism, the composition (7r]L)-l o f : X + L is the 
needed open retraction. This finishes the proof. 0 

Corollary 13. If a locally connected continuum X contains two disjoint closed 
subsets A and B of X, both with empty interior, such that C(A, B) = X, then 
there exists an open mapping f : X + [O, l] of X onto the closed unit interval 
[0, l] such that 

(15) f-‘(O) = A and f-'(l)= B. 

PROOF. The retraction (TIL)-’ o f : X -+ L as constructed in the proof of the 
implication from (13) to (11) of Theorem 12 composed with a homeomorphism 
of L onto [0, l] satisfies the required conditions. q  

Remark 1. Observe that in the proof of implication from (12) to (11) of Theo- 
rem 12 we used intermediate condition (13), and therefore in the construction of 
the needed retraction we did not exploit the mapping f of condition (12). One 
could expect that to construct the retraction it would be enough to compose f 
and a homeomorphism. We will show that this is not the case. To this aim denote 
by D the unit disc in the plane, i.e., put D = {(x, y) E R2 : x2 + y2 < 1). 

Example 14. There is un open mapping f : D -+ [0, l] and an arc L c D such 
that for no homeomorphism h : [0, l] + L the composition h o f is a retraction. 

PROOF. Consider the pseudo-circle P (see [l] and [6] for the definition and basic 
properties) located in the disc D so that it is disjoint with the boundary S = 

{ (2, y) E Ik2 : x2 + y 2 = 1) of D. Thus D \ P is the union of two disjoint open 
subsets VI and Us of D such that VI is homeomorphic to the plane R2, and Us 
is homeomorphic to D \ ((0, 0)). Let hl : VI + R2 and hz : U2 + D \ ((0,O)) be 
the homeomorphisms. Denote by 11(x, y)ll = dw the standard norm in the 
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plane R2. Consider a binary relation p on D defined for points p, q E D by the 
following conditions. 

ppqe eitherp,qEPorthereisanindexiE{1,2} 

such that p,q E & and llh(~)ll = Ilb(q)ll. 

Then the decomposition space D/p is homeomorphic to [O,l]. Denote by f : 
D + [0, l] a mapping which is the composition of the quotient mapping from D 
onto D/p and a homeomorphism from D/p onto [O, l] and such that f-l(O) is a 
point of VI, f-‘( l/2) = P, and f-‘( 1) = S, and let L be an arbitrary arc in D 
whose one end point is the point f-‘(O) and the other one is in the boundary 
f-‘(l) = S of D as the only point of L II S. Suppose on the contrary that there 
is a homeomorphism h : [0, l] + L such that h o f is a retraction of D onto L. 
Then P n L is a singleton {h(1/2)} which locally separates P. This contradicts 
hereditary indecomposability of P. 0 

Now we are going to show that one cannot omit the sets A and B as uniands 
in the definition of a cyclic chain C(A, B) ( see the union in the right member of 
the equality (10)). In other words, if we put 

C’(A,B)=n{a,cX:a,nA={a}anda,nB={,}}, 

where the sets A and B are disjoint, closed and having empty interiors, then 
Theorem 12 with C’(A, B) in place of C(A, B) is not true. This can be seen by 
the following example, the main idea of which is due to Dr. J. R. Prajs. 

Example 15 (J. R. Prajs). There exists a locally connected continuum X admit- 
ting an open mapping onto the closed unit interval [0, l] such that for every two 
disjoint closed sets A and B both with empty interior we have C’(A, B) # X. 

PROOF. The construction is made in the Euclidean 3-space R3. Denote by Q 
the closed unit square [0, l] x [0, l] x (0). In its relative interior, i.e., in the set 

(0, I) x (0, I) x (0) 1 oca t e a continuum K being the union of a closed segment J 
and of a spiral line L which is a one-to-one continuous image of the non-negative 
reals [O, +oo) and which approximates J going around it close and close to J 
in such a way that J = cl L \ L and that no point of J is accessible from the 
complement of Q \ K, i.e., 

(16) there is no arc ab c Q such that a E J, b E Q \ K and ab n K = {a}. 

Further,foreachnEN,letp,EQ\KwithK=cl{p,:nEN}\{p,:nEN}, 
and let p,q, be a straight line segment perpendicular to the plane R2 x {0}, with 
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limdiamp,q, = 0. Put X = QUu{ p,q, : n E IV}. Then X is a locally connected 
continuum. We define an open mapping f : X + [0, l] as the composition of four 
intermediate mappings. The first step is shrinking the continuum K c Q c X to 
a point. Let fl : X + X/K = XI be the quotient mapping. Then for each n E N 
the partial mapping f~Ip,q, is a homeomorphism, fi(Q) is homeomorphic to Q, 
and the sequence of points fi (p,) converges to the point fl (K). So, without 
loss of generality, we can assume that fi(Q) = Q, fi(K) = (l/3,1/2,0), for 
each n E N, f~(p~) E [l/3,2/3] x {l/2} x {0}, and that the arcs fi(p,q,) are 
straight line segments perpendicular to the plane lRz x (0). Therefore, under 
these assumptions, we have Xi = Q U U{ fi(p,qn) : n E IV}. 

The second step is projecting the square Q onto its middle segment M = 

[O,1lx~1/2~x~Ol. M ore P recisely, we define a continuum X2 = MUU{ fl (p,q,) : 
n E Pi} and a mapping fs : X1 + Xs such that fs]Q : Q t M is defined by 

fz((s, Y, 0)) = (x,1/2,0) and fsl(U{ fl(p,q,) : n E W}) is the identity. 
The third step is retracting X2 onto the middle third part T1 of M. Precisely, 

putting 

T, = [i/3, (i + 1)/3] x {l/2} x (0) for i E (0, 1,2} 

we have M = To U Tl U Ts and we define f3 : X2 + TI as follows. The partial 
mapping f31Tl : Tl -+ Tl is the identity, and f3 ITo : To + Tl and fs)T2 : Ts + Tl 
are homeomorphisms. So, f3jM : M + Tl is defined. For each n E N we 
put f3(fi(qn)) = (l/3,1/2,0) and we take f31fi(pnq7L) as a homeomorphism of 
the straight line segment fl(p,q,) onto the straight line segment in Tl joining 

(l/3,1/2,0) with fl(pd Th e reader can verify that the composition f3 o fi o fi : 
X + Tl is an open mapping (note that neither fi nor f2 is open). 

The fourth mapping fd : Tl + [0, l] is a homeomorphism. Putting f = f4 o 
f3 o fi o fi we see that f is open. 

To show the final part of the conclusion consider arbitrary subsets A and B of 
X such that A = cl A, B = cl B, A n B = 8, and int A = int B = 8. Then either 
A or B contains almost all end points qn of X. Let these end points be in A. 
Since K = Lim {p, : n E N} = Lim { qn : n E N}, we have J c K c cl { qn : n E 
N} c clA = A. Consider an arc ab with a E J c A and b E B. If b E p,q, for 
some n E N, then the arc up, c ab lies in Q; if b E Q, then ab c Q. In any case 
each such arc has to intersect K out of the point a, according to (16). Thus the 
segment J is not in C’(A, B), whence C’(A, B) # X. 0 
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Remark L. As another argument for the existence of a mapping f : X + [0, l] of 
Example 15 one can apply Theorem 12 putting A = { qn : n E N} U K, B = {p} 
for some point p E Q \ K and verifying that the equality (14) holds true. 

Remark 3. It follows from the construction of the continuum X of Example 15 
(in particular from the final statement of the formulation of the example), that 
there are no points a,b E X such that C(a,b) = X. Therefore, according to 
Theorem 10, the open mapping f : X + [0, l] defined in Example 15, as well 
as any other open mapping from X onto [0, l] such that f(a) # f(b) is not non- 
alternating. 

Now we intend to characterize those locally connected continua X which are 
cyclic chains, i.e., such that X = C(A,B) f or some two disjoint closed subsets 
A and B of X, both with empty interior. To this aim let us come back to 
Proposition 2 and observe that just the same situation is described in Theorem 10 
of [8], p. 451, where some conditions are considered which concern the structure of 
the boundary bd Y of Y as a subcontinuum of X, and which prevent the existence 
of an open retraction from X onto an arc. Note that, since an arc is an absolute 
retract, a retraction from X onto an arc A c X always does exist. So, the 
obstructions refer rather to openness than to retractness. Thus a more general 
situation can be considered of a mapping that maps X onto an arbitrary arc, not 
necessary being a subset of X, or even onto an arbitrary (linear) graph. By a 
graph we mean any linear graph, that is, a continuum being the union of a finite 
number of arcs disjoint except for their end points. Since every arc contained in a 
graph G is an open retract of G (see [5], Theorem 4, p. 345), and since the closed 
interval [0, l] is a graph, we get the following corollary to Theorem 12. 

Corollary 16. A locally connected continuum X can be mapped onto a graph G 
under an open mapping f : X + G if and only if there are two disjoint closed 
subsets A and B of X, both with empty interior, such that C(A, B) = X. 

Proposition 1’7. Let a continuum X be locally connected. If there is an open 
mapping of X onto a graph, then 

(17) for each point p E X its complement X \ {p} has finitely many compo- 
nents. 

PROOF. Assume (17) is not satisfied. Then there is a point p E X whose comple- 
ment X \ {p} has infinitely many components. The boundary of each component 
of X \ {p} is the singleton {p}, thus Proposition 2 implies that {p} is an A-set, 
and therefore the components form a null sequence according to condition (1) of 
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Proposition 1. For each n E N let C, denote the closure of a component of the 
complement X \ {p}. Thus C, is a continuum with the nonempty interior. We 
can assume that C, n C,, = {p} for m # n and that limdiamc, = 0. Sup- 
pose on the contrary that there are a graph G and an open surjective mapping 
f : X -+ G. Therefore, for each n E N the set f(Cn) is a subcontinuum of G with 
the nonempty interior, and limdiamf(C,) = 0. Thus there is an no E N such 
that for each n > no we have bdf(C,) \ {f(p)} # 8. For these n take a point 

P, E G such that f(pn) E bdf(C,)\{f(p)) an c d h oose in X an open connected 
neighbourhood U,, about p, so that p $ lJ, and U, n C,,, = 0 for m, n > no 
and m # n. Then U, c C,, whence f(Un) c f(C,). Since f is open, we infer 
that f(Ull) c int f(&), and so f(pn) E f(Un) is an interior point of f(C,), a 
contradiction. The proof is complete. cl 

Remark 4. The opposite implication to that of Proposition 17 is not true. Indeed, 
the standard universal dendrite D3 of order 3 contains no point the complement 
of which has infinitely many component, and it cannot be openly mapped onto 
any graph because all open images of Da are homeomorphic to 03 (Theorem 3 
of [3], p. 493). 

As a consequence of Theorem 12 and Proposition 17 we get the following 
corollary. 

Corollary 18. Let a locally connected continuum X contain two disjoint closed 
subsets A and B, both with empty interior, such that X = C(A, B). Then (17) 
holds. 

To show the next result we need a lemma. Given a metric space X, let E(X) 
denote the set of end points of X, i.e., the set of points of order 1 in X. Recall that 
if B is a subset of a metric space X, then Bd stands for the set of all accumulation 
points of B. 

Lemma 19. Let a locally connected continuum X be mapped onto a graph G 
under an open mapping f : X -+ G, and let an A-set Y in X be given. Then 

f WUd) c E(G). 
PROOF. Suppose on the contrary that there is a point x E (bdY)d such that 

f(x) E G \ E(G). T a k e a sequence of distinct points x, E bdY with x = limx,. 
For each n E N let C, denote the closure of the component of the complement 
X \ Y such that x, E C,, i.e., C, nY = {xn}. Thus each C, is a subcontinuum 
of X with the nonempty interior. According to the definition of an A-set we see 
that Cn’s form a null sequence and we have Lim C, = {x}. Therefore for each 



OPEN MAPPINGS OF CONTINUA 33 

n E N the set f(Cn) is a subcontinuum of G with the nonempty interior, and 
Limf(C,) = {f(z)}. Thus th ere is an no E N such that for each n > TZO we have 
0 # bdf(C,) \ {f(z)} c G \ E(G). For these n take a point p, E C, such that 

f(prx) E bd f(G) \ -V(x)) an d h c oose in X an open connected neighbourhood U, 
about p, so that x, $! U, and U, n C, = 0 for m, n > no and m # n. Then U, c 
C,, whence f(Un) c f(G). S ince f is open, we infer that f(Un) c int f(C,), 

and so f(~,d E f&L) is an interior point of f(C,), a contradiction. The proof is 
complete. q  

Remark 5. Observe that if in condition (11) of Theorem 12 we substitute the 
phrase “for every arc L c X” in place of “there exists an arc L c X” (analogously 
as it is stated in condition (7) of Whyburn’s Theorem 10 above), then the obtained 
statement is no longer equivalent to (12) and (13). In fact, if Y c X is an A-set 
such that (bdY)d # 8 and L is an arc which contains a point of (bdY)d as a 
non-end point of itself, then by Lemma 19 there is no open retraction of X onto 
L. 

Proposition 20. Let a locally connected continuum X contain two disjoint closed 
subsets A and B, both with empty interior, such that X = C(A, B), and let an 
A-set Y in X be given. Then 

(18) the complement X \ (bd Y)d has finitely many components. 

PROOF. By Theorem 12 there is an open mapping f : X -+ [0, l] such that (15) 
is satisfied. Taking [0, l] for G in Lemma 19 we infer that f((bdY)d) c (0, l}, 
so (bdY)d c A u B. Let F = (bdY)d and note that F is closed. Shrink the 
intersections An F and BnF to points and observe that the double quotient space 
K = (X/(A n F))/(B n F) is a locally connected continuum. Let rr : X + K be 
the natural projection. Put a’ = r(AnF) and b’ = n(BnF). Define a mapping r~ : 
K + [0, l] such that f = 00~. Openness of f implies that g is open, too (see [ll], 
(3.1), p. 140). Assume on the contrary that X\F has infinitely many components. 
Consequently, the set K \ {a’, b’} 1 a so h as infinitely many components. Since the 
sets K \ {a’} and K \ {b’} h ave finitely many components by Proposition 17, it 
follows that there are infinitely many components of K \ {a’, b’} whose boundary 
is {a’, b’}. Let K1, Kz, . . . be a convergent sequence of the closures of these 
components. Then the limit continuum is not locally connected at any point 
distinct from a’ and b’, a contradiction. The proof is finished. q  

The following lemma is needed to prove the converse to Proposition 20. 
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Denote by S(X) the set of all separating points of a locally connected contin- 

uum X. 

Lemma 21. Let a locally connected continuum X be given such that for each 
A-set Y in X condition (18) is satisfied. Then 

(19) int clE(X) = 0. 

PROOF. Suppose on the contrary that there is a nonempty open set U of the 
continuum X such that 

(20) u c clE(X). 

We intend to construct an A-set Y in X such that the complement X\(bd Y)d has 
infinitely many components. Observe that by (20) and (2) we have U c clS(X), 
whence it follows that U II S(X) is a dense subset of U. Take a sequence of 
mutually disjoint nonempty open sets { Vi : i E N} contained in U, and for each 
i E N choose a point yi E U, n S(X). Next, again for each i E N, consider a 
null sequence of mutually disjoint nonempty open sets { U+ : j E IV} having the 
singleton {yi} as its limit. In each set Ui,j choose a point xi,j and arrange the 
double sequence { xif : i, j E N} in an ordinary one: { x, : n E N}. We see, by 
the definition of the points x,, that 

(21) each point yi is an accumulation point of the set { xn. : n E RI}. 

We shall define now, by induction, a sequence of subcontinua {X, : n E N}. 
The needed A-set Y will be the intersection of this sequence. Let B1 be an open 
ball of radius 1 centered at xi. By (20) we can choose ei E B1 n E(X) and 

Sl E Bl r-l S(X) so that si separates ei from xi. Let Cl be the component of 
X \ {si} containing ei, and define Xi = X \ Ci. Note that Xi is a subcontinuum 
of X. Assume that for some positive integer n a subcontinuum X, of X has 
been defined. Let B,+I be an open ball of radius l/(n + 1) centered at x,+1. 
Since x,+1 E U, again by (20) we can choose a point e,+l E B,+I n E(X) 
and s,+i E B,+I n S(X) so that s,+l separates e,+i from x,+1. Let &+I be 
the component of X \ { s,+r} containing e,+i, and define Xn+i = X, \ C,+l. 
Note that Xn+l is a subcontinuum of X,. The inductive procedure is finished. 
Putting Y = n{Xn : n E N} we see that Y is a subcontinuum of X. Moreover, 
it follows from the construction that the components of X \ Y are just the sets 
C, and {sn} = bdC, for each n. Thus Y is an A-set by Proposition 2. Again 
by construction we have bdY = {s, : n E N}, whence by (21) it follows that 
{ yi : i E N} c (bdY)d. S ince each yz is a separating point of X, we conclude 
that X \ (bdY)d h as infinitely many components. This contradiction completes 
the proof. q  
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Observation 22. For every subset Z of a locally connected continuum X there 
exists in X an A-set M(Z) which is minimal with respect to containing the set 
Z. 

PROOF. Indeed, it is enough to recall that the intersection of any family of A-sets 
is an A-set (see [ll], (3.5), (ii), p. 69), and take as M(Z) the intersection of all 
A-sets containing the set Z. 0 

Since a continuum X is not disconnected by any subset of the set E(X) of end 
points of X, we have the following observation. 

Observation 23. Given a continuum X, let H be a subset of the set E(X) of 
end points of X. Then the sets X \ Z and X \ (Z \ H), where Z is any subset of 
X, have the same number of components. 

Proposition 24. Let a locally connected continuum X be given such that for each 
A-set Y in X condition (18) holds. Then also 

(22) the set X \ [E(X) U bd M(S(X))ld has finitely many components. 

PROOF. Put F = cl ([E(X)Ubd M(S(X))ld\E(X)) and observe that, by Lemma 21, 
we have int F = 8. We claim that there exists an A-set Y in X such that 

(23) (bdY)d = F. 

To this aim we take in the set F a dense countable (or, maybe, finite) subset 
of points {pi : i E Pi}. For every point pi we choose a sequence of points 
xi,j E [E(X) U bd M(S(X))] \ F tending to pi when j tends to infinity, and 
such that dist (xi,j, F) < l/(i + j). Therefore every xi,j is an isolated point of 
the set { xi,j : i, j E IV}. Arrange all points of this set in a sequence { xn : 

n E lV} c E(X) U bd M(S(X)). W e will define, by induction, a decreasing 
sequence of A-sets Y,. Put Ye = X and assume that for some n E N an A- 
set Y, is defined such that bdY, = { ql,. . . , qn }, {x,+1, xn+2,. . . } c Y, and 
Ye > ... > Y,. To define Y,+l consider the point x,+1. If x,+1 E E(X), 

let &+I denote an open set containing x,+1, with a one-point boundary, and 
disjoint with the set F U bdY, U { x, : n + 1 # m E IV}, If x,+1 E bd M(S(X)), 

let &+I denote the component of X \ M(S(X)) such that bd Un+i = {x,+1}. 
In this case put qn+l = x,+1. Then we define Y,+i = Y, \ Un+l. Note that 
bdY,+l = bd Y, U {qn+l} = (41,. . . , qn,qn+l }. It can be observed that Y,+i is 
an A-set and meets all the needed conditions. Put Y = n{ Y, : n E N}. Then, 
since the intersection of any family of A-sets is an A-set (see Ill], (3.5), (ii), p. 
69), Y is an A-set. By construction we have F c Y and bdY = { qn : n E N}. 
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To verify (23) take a point y E (bdY) ‘. Then there is a sequence {qni } of 
points of bdY having y as its limit. Note that the distances d(qni, +) tend to 
zero as the subindex i tends to infinity, whence also the sequence {xni} has the 
point y as its limit,, and thus y E F. To show the other inclusion, take a point 
y in F and choose a sequence of points z,~ E E(X) U bdM(S(X)) tending to 
y. As previously we see that also the sequence {qni} has y as its limit. Since 
qni E bdY, we infer that y E (bdY)d. Thus the equality (23) is shown. 

According to assumption (18), the complement X \ (bdY)d has finitely many 
components, so by (23) the set X \ F has finitely many components. Since 

[E(X) u bd M(S(X))ld \ E(X) c F c [E(X) U bd M(S(X))]$ 

we see that F differs from [E(X)UbdM(S(X))ld by a subset of the set E(X), and 
therefore Observation 23 implies that the number of components of X \ [E(X) U 
bdM(S(X))ld is finite, too. Hence the conclusion (22) follows. 0 

To formulate the next proposition we need an auxiliary notation. In a locally 
connected continuum X take the A-set M(S(X)) and in every component C of 
the complement X \ M(S(X)) h c oose exactly one point c. Denote by J the set 
of all chosen points. In other words, we denote by J any subset of X \ M(S(X)) 
such that 

(24) for every component C of X\M(S(X)) th e intersection J n C is a singleton. 

Proposition 25. Let a locally connected continuum X be given, and let a set 
J c X satisfy (24). Zf conditions (17) and (22) are satisfied, then 

(25) the set X \ [E(X) U Jld has finitely many components. 

PROOF. Since J consists of isolated points, we infer from (17) that Jd = 
[bdM(S(X))ld, and therefore (25) is satisfied. 0 

Proposition 26. Let a locally connected continuum X be given, and let a set 
J c X satisfy (24). Then conditions (19) and (25) imply (13). 

PROOF. Put A = cl (E(X) u J), and observe that, by construction, 

(26) ifs E S(X), th en each component of X \ {s} intersects A. 

Note further that, since J consists of isolated points only, it follows from condition 
(19) that int A = 8. So, by (25), the set X\Ad has a finite number of components. 
In every component of the set X \ Ad choose exactly one point not belonging to 
A, and let B denote the (finite) set of the chosen points. Note that A and B are 
disjoint. Thus both A and B satisfy the needed conditions. We have to show that 
C(A, B) = X. 
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So, take a point x of X \ (AU B) and let D be the component of X \ Ad to 
which the point x belongs. By the definition of the set B there is exactly one 
point b E B n D. We claim that 

(27) there exists an arc L from x to b in D with L n A = 0. 

Indeed, take an arbitrary arc L’ from x to b in D. Then 

(28) L’ n Ad = 0 = L’ n E(X). 
Since every component of X \ A is contained in a corresponding component of 
X\Ad, by (28) we have L'nA c J. Modifying the arc L’ in the set X\M(S(X)) 
one can get an arc L with end points x and b such that, still keeping (28) with L 
in place of L’, the condition L n J = 0 holds true. Since A = E(X) U J U Ad by 
the definition of A, we see that L is the needed arc. 

Consider three cases. First, if x E X \ M(S(X)), let C be the component 

of X \ M(S(X)) containing x, let c be the only point of J in C and let s be 
the only point of the boundary of C in X. Then cl C = C U {s} and therefore 
S(X) n clC = {s}. Th us clC is an A-set ([ll], (3.32), p. 69) which contains 
no separating point of itself. Since a locally connected continuum is cyclicly 
connected if and only if it contains no separating point (the cyclic connectedness 
theorem, [ll], (9.3), p. 79), we infer that cl C is cyclicly connected. If b E clC, it 
follows from Proposition 5 that there is an arc cxb c cl C. Note that CxsnA = {c}. 
Thus the arc cxb is the needed one, i.e., it satisfies (9) with a = c, whence it follows 
that x E C(A, B). If b is not in clC, then applying Proposition 5 again, we get 
an arc cxs c clC. Note that cxs n A = {c}. Taking an arc sb c D disjoint with 
A, according to (27), we see that sbn (AU B) = {b}, and thus the union cxs U sb 
is the needed arc, i.e., the arc satisfying (9) with a = c, whence it follows that 

x E C(A, B). 
Second, if x E S(X) c M(S(X)), let K stand for the component of X \ {x} 

containing the point b. By (27) there is an arc xb c cl K = K U {x} which is 
disjoint with A. By (26) each other component of X \ {x} intersects A. Let K* 
be one of these components, and let a E A n K*. Choosing an arc ax c cl K’ = 
K* U {x} we see that ax n B = 0, so the union ax U xb is an arc containing x and 
satisfying (9). Thus again x E C(A, B). 

Third, if x E M(S(X))\S(X), we claim that there are points al, a2 in A and an 
arc alxa2 c X such that aixa2nA = {al, az}. Indeed, since x E M(S(X))\S(X), 
there are points ~1,s~ E S(X) and an arc ~1.~2 c X such that x E ~1s~. For 
i E {1,2} and for a component of X \ {si} not containing x choose a point 
a,’ E A. In the arc a;slxs& naturally ordered from a; to ua let al be the last 
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point in a;znA, and let u2 be the first point in xa;lnA. Then 01x02 c ~~~~5~24 

is the needed arc. 
By (27), there is an arc L from 2 to b disjoint from A. Let c be the last point of 

the intersection Lnalxa2 in the natural ordering of L from x to b and take the arc 
cb c L. If c E ~12, put L,-, = u2xc c ulxu2; if c E 202, put Lo = ulxc c ulxu2. 

In both these subcases the union Lo Ucb is the needed arc, i.e., the arc satisfying 
(9) and containing the point x. So, all cases have been considered, and thus the 
proof is complete. 0 

Theorem 12, Corollary 18 and Propositions 20, 24, 25 and 26 can be summarized 
as follows. 

Theorem 27. For every locally connected continuum X the following conditions 
are equivalent: 

(29) there is un arc L c X which is an open retract of X; 
(30) the continuum X can be mapped onto the closed unit interval [0, l] under 

an open mapping; 
(31) there exists a graph G such that the continuum X can be mapped onto G 

under an open mapping; 
(32) for each an A-set Y in X and for each point p E X the complements X \ 

(bd Y)d and X \ p have finitely many components; 
(33) int cl E(X) = 8, the complement X \ [E(X) U bd M(S(X))ld has finitely 

many components, and for each point p E X its complement X \ {p} has 
finitely many components; 

(34) int clE(X) = 0, and for every set J c X satisfying (24) the set 
X \ [E(X) U Jld has finitely many components; 

(35) there are two disjoint closed subsets A and B of X, both with empty interior, 
such that C(A, B) = X. 

Remark 6. (a) The assumption (17) cannot be omitted in Proposition 25 (and in 
conditions (32) and (33) of Theorem 27). In fact, if X is the one-point union of 
countably many circles with diameters tending to zero, then the point p which 
is the only point of the intersection of every two and of all these circles does not 
satisfy (17), and we have E(X) = 0 and S(X) = {p}, whence (22) is satisfied, 
while the conclusion of Proposition 25 does not hold according to Corollary 18. 

(b) The operator M cannot be neglected in assumption (22) of Proposition 25, 
i.e., we cannot take the complement X \ [E(X) U bdS(X)ld in place of one con- 
sidered in (22) by the following example. In the closed unit segment [O, l] x (0) 
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in the plane take the standard Cantor ternary set C and replace each compo- 
nent of [0, l] x (0) \ C by a circle having the closure of the component as the 
diameter. Then the union of all (countably many and mutually disjoint) circles 
together with C is a locally connected continuum X for which we have S(X) = C 
and [E(X) U bd S(X)ld = C, thus the complement X \ [E(X) U bd S(X)ld has 
infinitely many components, while the natural projection of X onto [0, l] x (0) is 
open (and M(S(X)) = X). 

(c) The assumption (19) cannot be omitted in Proposition 26 (and in conditions 
(33) and (34) of Theorem 27). Indeed, let X be the standard universal dendrite 
03 of order 3. Since all points of 03 are of order 3 at most, and since for dendrites 
order of a point equals the number of components of the complement of the point 

(P11, (1.11, (iv>, P. 88), we see that condition (17) of Proposition 25 is satisfied. 
Further, the set E(X) is dense in X whence the condition M(S(X)) = X follows, 
and so assumption (22) of Proposition 25 is satisfied, too. So, assumption (25) 
of Proposition 26 holds by Proposition 25, while there is no open mapping of 
X = Ds onto [0, l] because all open images of X are homeomorphic to X ([3], 
Theorem 3, p. 493). 

Studying open mappings between dendrites, the first and the second named 
authors together with J. R. Prajs obtained a characterization of these dendrites 
which can be openly mapped onto an arc ([4], Theorem 6.61, p. 33). However, 
an even better result was shown by the third and the fourth named authors as 
Theorem 2 of [8], p. 455, namely the characterization is valid not only for dendrites 
but for local dendrites. We derive that and one more characterizations from 
Theorem 27. Recall that a locally connected continuum is called a local dendrite 
provided that each its point has a closed neighbourhood which is a dendrite, or - 
equivalently - if the continuum contains a finite number of simple closed curves 
at most ([7], $51, VII, Theorem 4, p. 303). To prove the characterization we need 
a statement. 

Statement 28. Let a continuum X be given. The numbers of components of the 
following four sets are equal: 

(36) X \ (E(X))d, 

(37) X \ ((D(X))d \ E(X)), 

(38) X \ (cl E(X) \ E(X))> 

(39) x \ clE(X). 
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PROOF. The numbers of components of the sets (36) and (37) as well as of the 
sets (38) and (39) are equal by Observation 23. The sets (37) and (38) are the 
same since for each subset A of a space X we have cl A \ A = Ad \ A. 0 

Theorem 29. If the locally connected continuum X is a local dendrite, then each 
of conditions (29) -(35) of Th eorem 27 is equivalent to any the following two: 

(40) int cl E(X) = 0 and the set X \ cl E(X) has finitely many components; 
(41) the set cl E(X) \ E(X) is finite, and ord (p, X) is finite for each point p of 

X. 

PROOF. Since X contains finitely many simple closed curves only, the set bd M(S(X)) 
is finite, whence 

(42) (bd M(S(X)))d = 0, 
and by condition (33) of Theorem 27 we infer, in addition to the first part of (40), 
that the set X \ (E(X))d has finitely many components. Now the second part of 
(40) is a consequence of Statement 28. 

To show that (40) implies (41) we first claim that 

(43) the set clE(X) contains no nondegenerate continuum. 

Assume on the contrary that a nondegenerate continuum V is contained in cl E(X). 
Since int cl E(X) = 8, there is a sequence of points al, a2,. . . , an,. . in X \ 
cl E(X) such that cl { a 7L : n E P?} = V. Consider irreducible arcs between points 
a, and the continuum V. Because of local connectedness of X the arcs form a null 
sequence. Since X contains finitely many simple closed curves only, the points 
a, are contained in infinitely many components of X \ cl E(X), a contradiction 
to (40). So (43) is shown. 

Since every subset of X \ E(X) that has infinitely many components separates 
the local dendrite X into infinitely many components, the first part of (41) is 

established. 
To prove the second part, suppose there is a point p in X such that ord (p, X) 

is infinite. Since X contains no small simple closed curves, p E cl E(X). By (43) 
the number of components of X \ cl E(X) is greater than or equal to the number 
of components of X \ {p} which is infinite, contrary to (40). This finishes the 
proof of the implication from (40) to (41). 

To show that (41) implies (33) note that int E(X) = 0 and thus, by (41), we 
get int clE(X) = 0. Further, it follows from (41) that no point of the finite set 
clE(X) \ E(X) d isconnects X into infinitely many components, i.e., that the 
number of components of X \ (cl E(X) \ E(X)) is finite. Therefore (33) follows 
from (42). The proof is complete. q  



OPEN MAPPINGS OF CONTINUA 41 

Remarlc 7. Equivalence of conditions (30) and (31) holds for any space X (not 
necessarily being a locally connected continuum). Conditions (32) and (33) have 
no meaning for a continuum X which fails to be locally connected; and (35) is 
not equivalent to (30) if the continuum X is not locally connected. In fact, the 
circle of pseudo-arcs (see [2] for the definition) contains no arcs, so (35) does not 
hold, while (30) is satisfied. 

Problem. What continua can be openly mapped onto an arc? 

Remark 8. For dendrites condition (30) is preserved under open mappings in the 
sense that if a dendrite X can be openly mapped onto [0, 11, then every open 
image of X can be also ([4], Corollary 6.66, p. 34). However, it is not true for 
arbitrary locally connected continua because putting X = D3 x [0, 11, where 03 is 
the standard universal dendrite of order 3, we see that X can be openly mapped 
onto [0, l] (under the projection onto the second factor), while its open image 03 
(under the projection onto the first factor) cannot be. 

Proposition 17 and Theorem 27 can be considered as an extension and a rec- 
tification of Theorem 1 of [8], p. 451. Three conditions are considered in that 
theorem which suffice to nonexistence of an open retraction of a locally connected 
continuum onto an arc. The first of them is identical with the negation of ours 
(17), and therefore Proposition 17 generalizes part (i) of Theorem 1 of [8]. Recall 
that this condition is sufficient but not necessary (see Remark 4). The second 
condition discussed in Theorem 1 of [8], which states that there is an A-set Y 
in X whose boundary contains a nondegenerate subcontinuum, has been erro- 
neously formulated. Below we present an example (viz. Example 30) showing 
incorrectness of that formulation. Finally, the third condition which says that 
there is an A-set Y in X such that the complement of (bd Y)d has infinitely many 
components, and which coincides with the negation of ours (18), is not only suf- 
ficient, but also necessary to demonstrate the nonexistence of an open mapping 
of a locally connected continuum X onto an arc. Thus Theorem 27 complements 
part (iii) of Theorem 1 of [8]. 

Example 30. The locally connected continuum X of Example 15 contains a sub- 
continuum Y such that: 

(44) Y is an A-set; 
(45) the boundary of Y contains a nondegenerate subcontinuum; 
(46) there exists an open retraction of X onto an arc. 
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PROOF. We will use the notation of Example 15. For each n E N let qi be any 
interior point of the arc pnqn, and put Y = Q U U{pnqz : n E IV}. Then Y is an 
A-set in X and bd Y = {qg : n E IV} U K. Thus X satisfies (44) and (45). It also 
satisfies (46) by Theorem 12. 0 

Remark 9. Let X be the locally connected continuum of Example 15. Note that 
clE(X) contains the subcontinuum K in X (we are still using the notations of 
Example 15). More precisely, we have cl E(X) = KU E(X). Therefore, the same 
Example 30 shows that part (II) of Corollary 1 of [8], p. 453, is also incorrect, i.e., 
cl E(X) contains a nondegenerate continuum, while there is an open retraction of 
X onto an arc. 
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