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ABSTRACT. A structure theorem is proved about separable zero-dimensional 
spaces which are continuous images of ordered compacta and it is shown that 
not all spaces in this class are orderable themselves. 

1. INTRODUCTION 

All spaces considered in this paper are Hausdorff. 
The paper is devoted to study the class S of all separable zero-dimensional 

spaces which are continuous images of ordered compacta. Theorem 3.1 shows 
that members of S can be obtained by resolving a metrizable zero-dimensional 
compactum into at most two-point sets in a rather canonical fashion. The general 
method of resolutions is presented in the survey paper [18], while the more specific 
approach adapted here follows the construction in [12, p. 3881. 

The other goal of the paper is to show that not all members of S are orderable. 
The argument is presented in Theorem 4.2 which was initially planned to be put 
in a joint paper of the second-named author with S. W. Williams and H. Zhou. 
That paper was never written though it was quoted in other publications, e.g. in 

PI, PI, [121 or 1181. Th e result of Theorem 4.2 shows that the results published 
in [8, (3.1) and (3.2)] and [13] are false. The corrected version of [8, (3.l)j is 
quoted in Theorem 4.3, below. 

Another motivation for the results obtained here is their relation to studies 
of monotonically normal compacta. The first intensive study of the concept of 
monotone normality can be found in [3] where among many other results it was 
shown that each continuous image of an ordered compactum is a monotonically 

1991 Mathematics Subject Classijication. Primary 54F05; Secondary 54CO5, 54D30. 
Key words and phrases. orderable space, continuous image, resolution, dendron. 

45 



46 NIKIEL, PURISCH, TREYBIG 

normal space. The considerations in [3] motivated a 1973 conjecture in [Is] that 
monotone normality coincides with orderability in the class of compact, separable 
and zero-dimensional spaces. The conjecture reappeared in [17], [l], [16], [7] and 
[= lo]. It led to the following more general question which was asked in 1986 
in [7] and then was repeated in [8] and [lo]: Is each monotonically normal 
compactum the continuous image of an ordered one? Theorem 4.2 shows that 
the conjecture of [15] is not true. However, it does not settle the more general 
question because the space X used in the proof of Theorem 4.2 belongs to the 
class S. 

The structure of monotonically normal compacta is almost unknown so far. 
The only two results which are available are concerned with the class M of sep- 
arable monotonically normal compacta. Each member of M is perfectly normal, 
[14]. Moreover, if a member of M is obtained by means of a resolution, then all 
but countably many fibers of the resolution consist of at most two points, [ll]. 
The latter result is somewhat similar to what is proved in Theorem 3.1 about the 
structure of members of S. 

Since this paper was written the authors have learned about the elegant result 
of Mary Ellen Rudin that “Every separable monotonically normal compactum is 
the continuous image of an ordered compacturn”. 

The starting point to proving Theorems 3.1 and 4.3 is the following result of 

[8, (2.1)1: a zero-dimensional space which is the continuous image of an ordered 
compactum can be embedded into a dendron. In order to keep the present paper 
reasonably self-contained it is necessary to summarize basic results about den- 
drons. This is done in the preliminary Section 2, while the main results of the 
paper are put in the Sections 3 and 4. 

2. ABOUT DENDRONS 

A space Z is said to be a dendron if Z is compact and connected and for every 
two distinct points x and x’ of Z there exists t E Z such that x and x’ belong to 
distinct components of 2 - {z}. Metrizable dendrons are also called dendrites. 
A rather comprehensive survey of basic results on dendrons can be found in [4]. 
We would like to recall the following facts: 

2.1. [4] Each d en r d o n is locally connected. Hence, if 2 is a dendron and A is a 
closed subset of 2, then each component of Z - A is an open subset of 2. 

2.2. [4] If 2 . IS a dendron, then the collection of all sets which are components 
of 2 - {.z} for z E 2 is a subbasis of open sets in 2. 
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2.3. [4] Dendrons are rim-finite continua, i.e., each dendron admits a basis of 
open sets which have finite boundaries. 

2.4. [4] Dendrons are hereditarily unicoherent continua, i.e., the intersection of 
any two subcontinua of a dendron is a connected set. 

2.5. [4] Dendrons are uniquely arc-connected spaces, i.e., if Z is a dendron and 
x and x’ are distinct points of Z, then there exists the unique orderable sub- 
continuum [IC, x’] of 2 whose end-points are x and x’. Furthermore, [x, z’] = 
{x,x’}U{zEZ: x and x’ belong to distinct components of Z - (z}}. 

2.6. (see e.g. [5] or [S]) Dendrons are nested continua, i.e., if 2 is a dendron 
and C is a collection of orderable subcontinua of Z such that L: is linearly 
ordered by inclusion, then UC is contained in an orderable subcontinuum 
[x,x’] of 2. 

2.7. (see e.g. [19, (6.1) on p. 134 and (2.21) on p. 1381) If 2 is a dendron and 
3 is a family of pairwise disjoint subcontinua of Z, then the decomposition 
G of 2 into members of 3 and points is upper semi-continuous, and the 
quotient space Z/G is a dendron again. 

2.8. [4] If 2 is a dendron then density (2) = weight (2). Hence, separable 
dendrons are metrizable. 

2.9. [4] Each dendron is an image of an orderable continuum under a continu- 
ous map. Hence, each closed subset of a dendron is a continuous image of 
an orderable compacturn. 

Let Z be a dendron and z E Z. We define the order of ramification, r(z), 
of z in Z to be the number of components of Z - {z}. We shall say that z is 
an end-point of 2 if r(z) = 1, and z is a ramification point of 2 if r(z) > 3. 
We shall use the following notation: Ez = {x E Z : x is an end-point of Z} and 
Rz = {z E 2 : x is a ramification point of 2). 

Let Z be a dendron and A c 2. We shall say that A is a strong T-set in Z 
if A is non-empty and closed, and each component of Z - A is homeomorphic to 
the real line. 

Let 2 be a dendron and A be a strong T-set in 2. By local connectedness of 
Z, each component of Z - A is open in Z. Let J be a component of Z - A. By the 
properties (2.5) and (2.6), there exist points aJ,bJ E Z such that cl(J) = [aJ,bJ] 
and J = [aJ, bJ] - {aJ, by}. Therefore, if z E J then Z - {z} has exactly two 

components. One of the components contains aJ while the other one contains bJ. 
Thus, r(z) = 2 for each z E J. This proves the following lemma. 
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Lemma 2.10. If A is a strong T-set in a dendron 2, then Ez c A and Rz c A. 

Lemma 2.11. Let A be a separable strong T-set in a dendron 2, and (~0, ~1,. . } 
be a countable dense subset of A. Then 2 - EZ c U,"=, [zo, .zn]. 

PROOF. Suppose that 2 E 2 - Ez. Since r(x) > 1, there is a component J of 
2 - {CC} which does not contain zo. By (2.6), Jn = EZ # 0. Hence, by Lemma 
2.10, J fl A # 8. Since J is an open subset of 2 and {zo, zi, . . } is a countable 
dense subset of A, there exists a positive integer n such that z, E J. Therefore, 
either z = ~0 or ~0 and zn belong to distinct components of 2 - {CC}. It follows 
that z E [ze,z,]. 0 

Lemma 2.12. Suppose that Z is a dendron which contains a separable strong 
T-set. Then the set RZ is at most countable. 

PROOF. Let A denote a separable strong T-subset of 2 and let {ze, ~1,. . } be 
a countable dense subset of A. Then Rz c 2 - EZ c U,"==,[zo, zn]. Hence, it 
suffices to show that RZ n [ZO, z,] is a countable set for each n. 

Let n be a positive integer. For each z E Rz fl [ZO, z,], there exists a component 
L, of 2 - {z} such that L, n [zo,-z,] = 0. By (2.4), L, n L,I = 0 if z and CC’ are 
distinct points of Rz n [ZO, z,]. Thus, sets of the form L, n A, z E RZ n [ZO, z,], 
are open and pairwise disjoint subsets of A. As in the proof of Lemma 2.11, all 
these sets L, n A are non-empty. Since A is separable, Rz n [ZO, zn] is at most 
countable. 0 

3. THE STRUCTURE THEOREM. 

The double arrow space is ([0, l] x (0, l}) - { (O,O), (1, l)} with its lexicographic 
ordering and the order topology. 

Let X be a separable and zero-dimensional space which is a continuous image 
of an orderable compacturn. The following properties of X are well-known and 
quite easy to prove: 

3.1. X is a continuous image of a separable and orderable compacturn. 

3.2. Since each separable and orderable compacturn is a continuous image of the 
double arrow space, X is a continuous image of the double arrow space. 

3.3. Since the double arrow space is hereditarily separable, X is hereditarily 
separable, too. 

We shall also need the following well-known fact: 
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3.4. If Y is a separable and orderable compactum, then there exist A,A* c X 
such that A is closed, A has no isolated points, A* is at most countable, 
andY=AUA*. 

The following partial converse of (2.9) is available: 

3.5. [8, Theorem 2.11 A zero-dimensional space which is a continuous image of 
an orderable compactum is homeomorphic to a strong T-subset of a dendron. 

Construction 1. Let Z be a dendron, A a non-empty closed subset of Z, and C 
a subset of A such that r(z) = 2 for each x E C. Thus, 2 - {E} has exactly two 
components Kz,O and K,,l for each x E C. 

Let s(A, C, 2) = (A - C) U (C x (0, 1)) and define 7r : s(A, C, 2) + A by 

7r(s) = 
s ifsEA-C 

5 ifs = (~,i) E C x (0, 1). 

Let S be the collection which consists of all sets r-l(V), where U is an open set 
in A, and of all sets ~‘-l(K,,i) U {(x, i)}, where (x, i) E C x (0, l}. Topologize 
s(A, C, 2) by letting S be a subbasis of open sets. The resulting space s(A, C, 2) 
is called the dendritic resolution of A by means of C with respect to 2. Rougly 
speaking, it is formed from A by splitting each point of C into two points in the 
directions dictated by Z. For instance, the double arrow space coincides with 

s([O, 11710, I[, [O, 11). 
The following lemma is easily proved. 

Lemma 3.6. s(A, C, Z) IS a compact space and 7r : s(A, C, Z) -+ A is a continuous 
mapping. 

Construction 2. Dendritic resolutions can be viewed as subsets of dendrons. In 
fact, let Z, A and C be as in Construction 1. Let t(C, Z) = (Z - C) U (C x [0, 11) 
and define p : t (C, Z) -+ Z by 

P(t) = 
{ 

t iftEZ-C 

2 if t = (x,i) E C x [O,l]. 

It can be easily shown that t(C, Z) becomes a dendron when topologized by using 
the open subbasis 

p-‘(U) : U is open in Z}U{p-‘(K,,o) U ({x} x [0, i[) : x E C, i ~10, I[} U 

{P-~(K,;I) u ({++, 11) : x E C, i ~16, I[}. 
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Clearly, s(A, C, 2) . 1s a subspace of t(C, 2) and the restriction of p to s(A, C, 2) 
coincides with 7r. We remark that if A is a strong T-set in 2, then s(A, C, 2) is 
a strong T-set in t (C, 2). 

Theorem 3.1. Let X be a zero-dimensional space vlhich is a continuozLs image 
of a separable and orderable compacturn. Then there exist a dendrite Z and a 
strong T-set A in Z such that X is homeomorphic to a dendritic resolution of A 
with respect to Z. 

PROOF. By (3.5), there exists a dendron Y such that X c Y and X is a strong 
T-set in Y. Let (~0, 21, . } be a countable dense subset of X. By Lemma 2.11, 

Y - EY c U,“=,[2o,&l 3. Moreover, each component of Y - X is a component of 
[x0,x,] - X for some n. Indeed, by Lemma 2.10, Ey c X. Since 20 E X, each 
component of Y - X is contained in some [x0, x,]. 

Let n be a positive integer. Observe that each component of [x0, ~~1 - X is a 
component of Y - X. Hence, X n\xCo, ~2~) is a strong T-set in 1x0, xn]. Moreover, 
by (3.3), X n [x0,x,] is separable. 

Let P, = {cl(J) : J is a component of [x0,x,,] - X}. Then each I E P, is of 
the form I = [x,x’] for some x,x’ E X n [x0,x,], and 1nX = {x,x’}. Of course, 
if y E X n [x0, z,], y can belong to at most two members of P,. Since X n [x0, x,] 
is separable, there exist X, and Xz such that X,, is closed, X, has no isolated 
points, X; is at most countable, and X n [x0, x~] = X, U Xz. By Lemmas 2.10 
and 2.12, we may assume that RY n [x0,x,] c Xz. 

Let Rk = {I E P, : I n Xz # 8) and R, = P,, - RGz. Then R; is at most 
countable. Suppose that I, I’ E R, and I # I’. Then I and I’ are disjoint. In 
fact, if In I’ # 0, then In I’ = {y} f or some isolated point y of X n [x0, xcn]. But 
then y E X;, and so I, I’ E Ri. 

Let R = U,“=, R,. We shall prove that R consists of pairwise disjoint sets. 
Suppose that I, I’ E 72, I # I’ and 1r-V’ # 8. Since the members of each collection 
R, are pairwise disjoint, there exist distinct positive integers m and m’ such that 
I E R, and I’ E %&I. By (2.4), [ xo,z,] n [zo,xml] = [x0,x] for some x E Ry. It 
follows that I = [xc, y] and 1’ = [x, y’] for some y E [xc, x,] and y’ E [x, x,(1. Since 
x E Ry , x E Xi for each n such that z E [x0, x,,]. Hence, I # R and I’ @ R; a 
contradiction which proves that R consists of pairwise disjoint sets. 

Let G denote the decomposition of Y into members of R and singletons. By 
(2.7), 4 is upper semi-continuous. Therefore, the quotient space Y/G is Hausdorff. 
Let Z = Y/G and g : Y -+ Z denote the quotient space and the quotient map, 
respectively. Since g is a monotone map (i.e., its fibers are continua), Z is a 
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dendron. Observe that 2 = g(X) U g( U lJ,“=, 72:). Since X is separable and 
each K!; is a countable family of separable sets, 2 is separable. By (2.8), 2 is 
metrizable, i.e., it is a dendrite. 

Let A = g(X). Then A is a closed subset of 2. Let C = g(U R). If I E R 
then I UT X # 0 and I is collapsed to a point by g. Hence C c A. 

Let K be a component of Z - A. Since K n A = 8, it follows that there 
exists the unique component J of Y - X such that K n g(J) # 8. Furthermore, 
cl(J) E ‘Rz for some n and g]J is a homeomorphism of J onto K. This proves 
that A is a strong T-set in 2. 

Let z E C. Then there exists the unique 1, E R such that z = g(Iz). Since 
1, n RY = 0, Y - I, has exactly two components. Denote them by JI, ,o and JI,,~. 
Let Kz,o = g( JI.,i) for i = 0,l. Then Kz,O and K,,l are distinct components of 
2 - {z} and Kz,O U K,,l = 2 - {z}. 

Therefore, r(z) = 2 for each z E C. 
It remains to prove that X is homeomorphic to s(A, C, 2). Let z E C and 

1, E R be as above. Then 1z = [z, z’] for some z, z’ E X - Ry. Furthermore, if 
i E (0, l}, the boundary of Jr,,i consists of a single point which is one of x and x’, 

and bd(JIz,c) U bd(JI,,i) = {x, x’}. Let X,,i denote the unique boundary point of 

Jr,,i, i = 071. 
Defineh:X-+s(A,C,Z)=(A-C)U(Cx{O,l}) by 

h(x) = x if g(x) E A - C 

(x,i) if z = g(x) E C, i E (0, 1) and x = x,,i. 

An easy straightforward proof shows that h is continuous, one-to-one and onto. 
Hence, h is a homeomorphism of X onto s(A, C, Z). 0 

Remark. It is quite easy to see that the dendron Z, its strong T-subset A, and 
the set C c A as given in Theorem 3.1 can be chosen in a manner such that A 
has the additional property of being zero-dimensional. 

4. THE EXAMPLE 

In this section we let Q denote the subset of all rational numbers and P denote 
the subset of all irrational numbers of IO, l[. 

Construction 3. Each rational number 4 p l ]0,1[ is assumed here to be in its 
irreducible form, i.e., p and q are to be relatively prime positive integers. 
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Let 2 = ({[O, l] x (0)) UU { {5} x [0, i] : E E Q} and let Z carry the topology 

induced from the plane Iw2. Then Z is a dendrite, EZ = { (0, 0), (1, 0)} u {(F, i) : 

~EQ}, andRz= (f,O): E EQ . LetA= ([O,l]x{O})UEzandC=Px{O}. 
{ > 

Then C c A C Z, A is a strong T-set in Z, and r(z) = 2 for each t E C. 
Let X = s(A, C, Z). 

Construction 4. Let Y = ([0, l] x (0, 1)) U (Q x (2)). Consider Y with its lexi- 
cographic ordering and the order topology. Let 6 denote the decomposition of Y 
into singletons and the sets {(q, 0), (q, 2)}, q E Q. 

Let X = Y/G. 

Construction 5. Let Y = ([0, l] x (0)) U (P x {l}), and let 5 denote the lexico- 
graphic ordering on Y, and take Y with its order topology. Then Y is a linearly 
ordered compact space and Q x (0) is a dense subset. 

Let X = Y U Q with the following topology: The points of Q are isolated, 
and basic neighbourhoods of each (t, i) E Y are of the form U U {s E Q : s # 
t and (s,O) E V}, w h ere U is an open neighbourhood of (t, i) in Y. 

A straightforward proof of the following Proposition 4.1 is left for the reader. 

Proposition 4.1. The three spaces X of Constructions 3-5 are homeomorphic. 

Theorem 4.2. There exists a space which is compact, separable, zero-dimensional, 

the continuous image of an ordered compactum, monotonically normal, and yet 
not orderable. 

PROOF. It is enough to prove that the space X obtained in Construction 5 is not 
orderable. We are going to follow the notation introduced in Construction 5. Let 
5 denote the lexicographic ordering of Y. 

Suppose that X is orderable and let & be a linear ordering on X which induces 
the original topology of X. Since we are going to consider two different linear 
orderings 5 and _C, the need arises to deal with the two kinds of closed intervals. 
Let [a, b] = {y E Y : a 5 y < b} when a, b E Y and a 5 b, and let I(c, d) = {x E 
X : c r x L d} when c,d E X and c E d. In addition, intervals of real numbers 
are denoted as usual. 

Since X is compact, (X, c) is Dedekind complete. Let xc and 21 denote the 
smallest and the biggest points of (X, C), respectively. Since Y is a closed subset 
of X, there exist the smallest point yc of Y and the biggest point yr of Y in 

(X, L). 
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Let (a, b) be a pair of adjacent jump points in (Y, L), i.e., a, b E Y, a c b, a # b 
and 1(a, b)nY = {a,b}. S’ mce Y is compact and Q is discrete, I(a’, b’) is finite for 
all a’, b’ E Q such that a E a’ L b’ C b. If 1(a, b) n Q # 0, let c(+) E I(u, b) II Q. 

Observe also that if q E Q and q g yo then I(zo,q) is a finite set, and if q E Q 
and yi E q then I(q,zl) is a finite set. 

Let q E Q. Then q & yo, y1 L q, or there exists a pair (a, b) of adjacent jump 
points in (Y, EJ such that q E I(u, b). 

Ifq C ~0, let 

_f(b?>O)) = YO if YO # (q, 0) 
Yl otherwise. 

If YI L q, let 

f(W)) = ~1 if YI # (4,O) 
ye otherwise. 

If q E I(a, b) for some pair of adjacent jump points in (Y, C), let 

f(W)) = 
a if b = (q,O) or if both q E I(u,c(,,b)) and a # (q,O) 

b otherwise. 

Then f is a function, f : Q x (0) + Y. Obviously, f has no fixed point. 0 

Claim 1. If A c Q, then the set of cluster points of A x (0) in X coincides 

with the union of the set of cluster points of f(A x (0)) in X and the set 
1 

x E 

f(A x (0)) : f-‘(z) n (A x (0)) is infinite}. 

Proof of Claim 1. Let x be a cluster point of A x (0) in X. Then 3: is also 
a cluster point of A in X. Hence, there exists a &-monotone, say L-increasing, 

sequence (k)Zi in A which converges to x. If x E cl(1(xe,x) n Y - {x}), 
then there is a subsequence (qn,)fYl such that qni 5 f((qni+lr 0)) L qni+* and 

4% # f ((4n*+17 0)) # qni+z for i = 1,2,. . Hence, the sequence (f((qni,O)))zl 

converges to 2, i.e., IC is acluster point of j(Ax{O}). If z $! cl(l(so,z)nY-{x}), 
then there exists a positive integer no such that f ((qn, 0)) = 2 for all n > no, and 
so f-l(z) n (A x (0)) is infinite. 

Now, suppose that x is a cluster point of f(A xm{O}) in X. Then there ex- 

ists a sequence (qn)rEl in A such that (f((q,,, O))),=, is a [T-monotone, say g- 

increasing, sequence of distinct points converging to x. Clearly, there exists a sub- 

sequence (qn, )Z’i such that qni 5 f ( (qni+l, 0)) L qni+* and qni # f ( (qni+l, 0)) # 
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qni+* for all i. Hence, (qni)& converges to 2, i.e., 5 is a cluster point of A, and 
so a cluster point of A x (0). 

Finally, suppose that x E f (A x (0)) and the set f-‘(z) n (A x (0)) is infinite. 
Let 6 : Q x (0) + Q d enote the projection, b((q,O)) = q. The following four 
cases are possible concerning the set A, = S(f-l(z)) n A: 
(1) A, c I(zo,yo) and z = yo, (2) A, c I(yl,zl) and z = 511, (3) there exists a 
pair (a, b) of adjacent jump points in (Y, g) such that A, c I(u, c(,,b)) and z = a, 
or (4) there exists a pair (a,b) of adjacent jump points in (Y, F) such that 

Az c l(c(a,b)r b) and x = b. In either of these cases A, is a C-monotone sequence 
(qn)rE1 of distinct points which converges to x. Then ((qn, O))rzl converges to x 
as well, and so x is a cluster point of A x (0). This completes the proof of Claim 
1. 

For each n E (0, 1, . . , cm} let P, denote the set of all p E P such that the set 

1 q E Q : [CO, Oh (P, 011 contains exactly one of the points (q, 0) and f((q, 0))} 

consists of n elements. 
Note that P, is empty because otherwise there would exist p E Pm and an 

infinite set A contained in Q such that either A x (0) c [(O,O), (p, O)] and f(A x 

(0)) c [(P, I), (LO)] or .f(Ax (0)) c [(O,O), (P,O)] and Ax (01 c [(P, I), (ho)]. 
This would imply that A x (0) h as a cluster point not in the closure of f (A x (0))) 
contradicting Claim 1. 

Claim 2. For each non-negative integer n, P,, is the union of a countable set and 
a nowhere dense subset of P. 

Proof of Claim 2. As before, let S((q, 0)) = q for each q E Q. 
Suppose that n is a non-negative integer such that P, is not the union of 

a countable set and a nowhere dense set. Hence, there exists an open interval 
J contained in [0, l] such that J c cl(P,. - C) for each countable set C. Let 

po E (JnP,)-b(f(Qx{O})). Let FO = {q E Q: [(O,O),(po,O)l containsexactly 

one of the points (q, 0) and f ((q, 0)) }. Then Fo has exactly n elements. 

Let qo denote the biggest element of the finite set 

((FU~{O})UJ(FI,~{O}))~[(O,O),(PO,O)]-{(PO,O)}~~(Y,~). LetqlEQnJ 
be such that q. < (q1,O) < (po,O). Then there exists pl E JnP, such that (p1,O) 
is between (q1,O) and f((ql,O)) as well as between qo and (~0, 0). It follows 

that the set Fl = q E Q : [(O,O), (pl,O)] 1 
contains exactly one of the points 
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(so) and f((q,O))} contains the (n + 1)-point set Fe U (41). This contradicts 

the fact that pi E P,. The proof of Claim 2 is complete. 

Since P, = 0 and P = Urzt”=, Pn, Claim 2 implies that the set P of all irrational 
numbers between 0 and 1 is the union of countably many nowhere dense sets. This 
contradiction which has originated from the hypothesis that X is an orderable 
space concludes the proof of Theorem 4.2. 

Theorem 4.3. Let X be a compact, separable and zero-dimensional space. Then 
the following conditions are equivalent: 

(i) X is orderable; 
(ii) there exists a dendron Z such that X c 2, X is a strong T-set in 2, and 

the set cl(1 n R z ) 2s metrizable for each orderable subcontinuum I of Z. 

PROOF. If X is orderable, then it can be embedded into an orderable continuum 
Z as a strong T-set. Then Rz = 0. The alleged proof of [8, (3.1)] shows that (ii) 
implies (i) as it was already remarked in [9]. 0 

Remark. Let R be a subset of P. Let YR, = ([0, l] x (0)) U (RX (1)) and consider 
the lexicographic ordering and the order topology on YR. Let XR = YR U Q with 
the topology defined as in Construction 5. 

(a) The argument of Theorem 4.2 shows that XR is not orderable if R is not 
the union of countably many nowhere dense subsets of [0, l]. 

(b) It is not hard to prove that XR is orderable when R = AU U,“=I R,, where 
A is a countable dense subset of P, and each R, is a nowhere dense subset 
of [0, l] such that no component of [0, I] -R, is of the form {q} with q E Q. 

REFERENCES 

[l] H.R. Bennett and D.J. Lutzer (eds.), Posed Problems, in Topology and Order Structures, 
Math. Centre Tracts, vol. 142, Amsterdam, 1981, pp. 181-184. 

[2] G. Gruenhage, Generalized metric spaces and metrization, in Recent progress in general 
topology, M.HuSek and J. van Mill (eds.), Elsevier Science, 1992, 239-274. 

[3] R.W. Heath, D.J. Lutzer and P.L. Zenor, Monotonically normal spaces, Trans. Amer. Math. 
Sot. 178 (1973), 481-493. 

[4] J. van Mill and E. Wattel, Dendrons, in Topology and order strzlctwes, Math. Centre 
Tracts, vol. 142, Amsterdam, 1981, pp. 59-81. 

[5] T.B. Muenzenberger and R.E. Smithson, The structure of nested spaces, Trans. Amer. 
Math. Sot. 201 (1975), 57-87. 

[6] T.B. Muenzenberger, R.E. Smithson and L.E. Ward, Jr., Characterizations of arboroids 
and dendritic spaces, Pacific J. Math. 102 (1982), 107-121. 



56 NIKIEL, PURISCH, TREYBIG 

[7] J. Nikiel, Some problems on continuous images of compact ordered spaces, Questions An- 
swers Gen. Topology 4 (1986/87), 117-128. 

[S] J. Nikiel, Orderability properties of a zero-dimensional space which is a continuous image 
of an ordered compactum, Topology Appl. 31 (1989), 269-276. 

[9] J. Nikiel, Erratum to [8], Topology Appl. 36 (1990), 93. 
[lo] J. Nikiel, On continuous images of arcs and compact orderable spaces, Topology Proceed- 

ings 14 (1989), 163-193 and 279-280. 
[ll] J. Nikiel and L.B. Treybig, Null-families of subsets of monotonically normal compacta, 

Colloquium Mathematicum (1996), 87-92. 
[12] J. Nikiel and E.D. Tymchatyn, On homogeneous images of compact ordered spaces, Cana- 

dian J. Math. 45 (1993), 380-393. 
[13] A.A. Odintsov, Separable images of ordered compacta, Vestnik Moskov. Univ. Ser. I Mat. 

Mekh. 3 (1989), 35-38 (in Russian). 
[14] A.J. Ostaszewski, Monotone normality and Ga-diagonals in the class of inductively gener- 

ated spaces, in Topology, Colloquia Mathematics Societatis JBnos Bolyai, vol. 23, Budapest, 
1978, 905-930. 

[15] S. Purisch, The orderability and suborderability of topological spaces, Ph D. dissertation, 
Carnegie-Mellon University, 1973. 

[16] S. Purisch, Monotone normality and orderability, Questions Answers Gen. Topology 2 
(1984), 20-23. 

[17] M.E. Rudin, Lectzlres on set theoretic topology, CBMS regional conference series, No. 23, 
Amer. Math. Sot., Providence, RI, 1975. 

[18] S. Watson, The construction of topological spaces: planks and resolutions, in Recent 
progress in general topology, M.HuSek and J. van Mill (eds.), Elsevier Science, 1992, 673- 
757. 

[19] G.T. Whyburn, Analytic topology, Amer. Math. Sot. Colloquium Publications, vol. 28, 
Providence, RI, 1942. 

Received January 16, 1997 

Revised version received December 16, 1997 

(Nikiel) AMERICAN UNIVERSITY OF BEIRUT, BEIRIJT, LEBANON 

E-mail address: nikieloaub. edu. lb 

(Purisch) UNIVERSITY OF MIAMI, CORAL GABLES, FLORIDA 33124-4250 

E-mail address: purischQcs .miami. edu 

(Treybig) TEXAS A & M UNIVERSITY, COLLEGE STATION, TEXAS 77843-3368 

E-mail address: treybigamath. tam. edu 


