ON THE TOTAL CURVATURE OF PARALLEL FAMILIES OF CONVEX SETS IN 3-DIMENSIONAL RIEMANNIAN MANIFOLDS WITH NONNEGATIVE SECTIONAL CURVATURE

JOSEPH H.G. FU communicated by bob hardt

1. INTRODUCTION

Let M^m be a smooth complete oriented Riemannian manifold of nonnegative sectional curvature, and let $C \subset M$ be a closed convex subset. Put $\hat{\rho}(x) :=$ $\operatorname{dist}(x, M - C)$ for the distance function to the complement of C; thus each $C_t :=$ $\hat{\rho}^{-1}[t,\infty)$ is convex ([CE], Thm. 8.9). Denote by k(t) the total curvature of C_t , i.e. the integral of the determinant of the second fundamental form of bdry C_t . G. Perelman has asked whether k(t) is nondecreasing (for example, if $M = \mathbb{S}^m$ is a standard sphere and C is a hemisphere then the total curvature increases from k(0) = 0 to $k(\frac{\pi}{2}) = \operatorname{vol}(\mathbb{S}^{m-1})$). An affirmative answer would yield a proof of the Cheeger-Gromoll soul conjecture (although Perelman has proved the conjecture by other means [P]). In this note we prove that the answer is yes in case m = 3.

It is not difficult to prove by classical methods, and in general dimensions, that k is nondecreasing in the case that the sets C_t have C^2 (or even $C^{1,1}$) boundary (cf. the calculations of section 4 below). The difficulty arises when these sets develop singularities. Note that the question still makes sense in this case: if C is any convex set (with possibly nonsmooth boundary) put $\sigma(x) := \operatorname{dist}(x, C)$. Then for small s the sets $C^s := \sigma^{-1}[0, s]$ have $C^{1,1}$ boundaries, i.e. the outward unit normal field n_s on $\operatorname{bdry} C^s$ is Lipschitz. Thus by Rademacher's theorem the second fundamental form $H_s(v, w) := \langle \nabla_v n_s, w \rangle$ is well-defined at a.e. point $p \in \operatorname{bdry} C^s$. The total curvature of C is then

(1.1)
$$k(C) = \lim_{s \downarrow 0} k(C^s) = \lim_{s \downarrow 0} \int_{\mathrm{bdry}C^s} \det II_s.$$

As this definition is slightly cumbersome we give a more natural one which will serve as the framework for this note. The convex set C admits a normal cycle N(C), which is an integral current of dimension m-1 in the tangent sphere bundle $\mathbb{S}M$ of M. If C has interior then N(C) is the unique Legendrian cycle in $\mathbb{S}M$ such that $\pi_*N(C) = \partial \llbracket C \rrbracket$ and spt $N(C) \cap \pi^{-1}(p) \cap \operatorname{Tan}(C, p) = \emptyset$ for all $p \in \operatorname{bdry} C$. Given a vector $\xi_0 \in \mathbb{S}M$, consider a positively oriented orthonormal frame field $e_1(\xi), \ldots, e_m(\xi) = \xi \in \mathbb{S}_{\pi(\xi)}M$, defined for ξ close to ξ_0 . Let ω_{ij} denote the connection forms for this frame. Then the (m-1)-form $\omega_{1m} \wedge \cdots \wedge \omega_{(m-1)m} =: \tilde{\omega}$ is independent of the choice of the complementary vectors e_1, \ldots, e_{m-1} . Thus $\bar{\omega}$ is well-defined globally on $\mathbb{S}M$, and the total curvature of C is the evaluation of the normal cycle of C against this form: $k(C) = N(C)(\bar{\omega})$.

The equivalence of this definition with the one of the previous paragraph may be seen as follows. Let $\widetilde{\exp} : \mathbb{R} \times \mathbb{S}M \to \mathbb{S}M$ denote the natural lift of the exponential map. Then $N(C^s) = \widetilde{\exp}_{s*}N(C)$ for small $s \ge 0$, so

(1.2)
$$k(C^s) = N(C^s)(\bar{\omega}) = \widetilde{\exp}_{s*}N(C)(\bar{\omega}) \to N(C)(\bar{\omega}) = k(C)$$

as $s \downarrow 0$, since $\widetilde{\exp}_s \rightarrow$ the identity.

We are obliged to remark that in dimension 3 the Chern-Gauss-Bonnet formula [Ch] yields a simpler expression for k(C) that does not involve the normal cycle. For sets $B \subset M^3$ with smooth boundary the formula of [Ch] reads

(1.3)
$$k(B) + \int_{\partial B} K_x \, dx = 4\pi \chi(B),$$

where χ is the Euler characteristic and K_x is the sectional curvature of M in the 2-plane $T_x \partial B$. Since the boundary of a convex set C is rectifiable, the second term on the left is well-defined in this case, and (1.3) remains valid with B replaced by C, so we may solve for k(C). The Euler characteristics of the sets C_t satisfy $\chi(C_t) = \chi(C)$, so $k(C_t)$ is nondecreasing iff $\int_{\partial C_t} K_x$ is nonincreasing. It is tempting to think that this less technical definition might yield a correspondingly less technical proof of our theorem, but this seems an illusion: in the present framework $\int K_x$ may also be expressed as an integral over the normal cycle of a universal form $\tilde{\omega}$ on the sphere bundle. The idea of the proof of [Ch] is to apply Stokes' theorem on the graph of an appropriate section of the sphere bundle via the basic identity $d(\bar{\omega} + \tilde{\omega}) = d\bar{\omega} + d\tilde{\omega} = 0$. The idea of the proof presented here is to integrate $d\bar{\omega}$ over a graph associated to the distance function and apply Stokes' theorem; there is obviously nothing to be gained by integrating $d\tilde{\omega}$ instead.

2.

Our method is to work on the graph of the function $\rho := -\hat{\rho}$, or more precisely on the graph of its gradient. Although ρ is not everywhere differentiable, it is nevertheless *semiconvex* on intC — that is, about any given point there are smooth local coordinates $\phi : C \supset U \rightarrow \mathbb{R}^m$, such that

(2.1)
$$\rho \circ \phi^{-1} = f + \alpha,$$

where f is smooth and α is the restriction to $\phi(U) \subset \mathbb{R}^m$ of a convex function. This fact is well known; for instance it is a consequence of the proof of Prop. 1.2 of [Fu1] (cf. also [Ba]). Therefore there is a closed Lagrangian current $[\![\nabla \rho]\!] \in \mathbb{I}_m(T(\text{intC}))$ that represents the graph of the gradient of ρ . Here T int $\mathbb{C} \subset TM$ is endowed with the symplectic structure arising from the identification $TM \leftrightarrow T^*M$ induced by the Riemannian metric. In fact, in the semiconvex case the structure of this current is very simple: it is given by integration over a closed oriented Lagrangian Lipschitz submanifold $Q \subset T^*(\text{intC})$. This Q is precisely equal to the graph of the Clarke gradient $\nabla \rho$ of ρ , i.e.

$$abla
ho(x) := \operatorname{convex} \operatorname{hull}\{v : v = \lim_{i \to \infty} \nabla \rho(x_i) \text{ for some sequence} \\ x_i \to x, \ \rho \text{ differentiable at } x_i\}.$$

The orientation of Q is determined by the condition that the projection π of the tangent bundle induce an orientation-preserving map $Q \to \text{intC}$. Moreover, in view of the convexity of α , the orientation of Q is given explicitly as follows. For almost every $\xi \in Q$ the tangent space $T_{\xi}Q$ exists and is a Lagrangian subspace of the symplectic vector space $T_{\xi}TQ$. Put $V := \ker \pi_* \cap T_{\xi}Q \subset \ker \pi_* \simeq T_{\pi(\xi)}M$ and $W := \pi_*(T_{\xi}Q) \subset T_{\pi(\xi)}M$. The fact that $T_{\xi}Q$ is Lagrangian implies that V and Ware orthogonal. Thus $T_{\xi}Q$ is canonically isomorphic to $T_{\pi(\xi)}M$. The orientation is now induced from that on the latter space. This corresponds to the fact that all curvature measures of a convex body are nonnegative.

We write

$$\llbracket Q \rrbracket = \llbracket \nabla \rho \rrbracket,$$

with this orientation understood.

We will also make use of the following basic fact. Suppose $K \subset \mathbb{R}^m$ is a closed convex set. Put $\Sigma^k := \{x \mid \dim \operatorname{Nor}(K, x) = m - k\}$. Then Σ^k is a k-dimensional set which is C^2 rectifiable in the sense of [AS], i.e.

(2.2)
$$\Sigma^k \subset \bigcup_{i=1}^{\infty} V_i \cup N,$$

where each V_i is a k-dimensional submanifold of class C^2 and $\mathcal{H}^k(N) = 0$, where \mathcal{H}^k denotes k-dimensional Hausdorff measure. For a proof of this fact see [A]. Applying this result to the epigraph of the function α appearing in (2.1), if we put

$$R^{k} := \{x \in \operatorname{int} C \mid \dim \nabla \rho(\mathbf{x}) = \mathbf{m} - \mathbf{k} - 1\}, \ \mathbf{k} = 0, \dots, \mathbf{m},$$

then each \mathbb{R}^k is locally the image under ϕ^{-1} of a k-dimensional, \mathbb{C}^2 -rectifiable subset of \mathbb{R}^m , and is therefore itself a k-dimensional, \mathbb{C}^2 -rectifiable subset of M. Moreover, decomposing \mathbb{R}^k as in (2.2), each $\rho|_{V_i} \cap \mathbb{R}^k$ is the restriction of a \mathbb{C}^2 function ρ_i on V_i .

3.

The distance function ρ is differentiable at a point x_0 iff there is a unique minimizing geodesic γ from bdryC to x_0 , and in this case the gradient of ρ is precisely the tangent vector to γ at x_0 . Therefore, at a general point x, the Clarke gradient $\nabla \rho(x)$ consists of the convex hull of the set of all tangent vectors to all minimizing geodesics from bdryC to x. In particular, $0 \in \nabla \rho(x)$ iff x is a critical point of ρ in the usual generalized sense.

The convexity of C implies that ρ has at most one critical value ρ_{\min} . Therefore the normalizing map $\nu(v) := v/|v|$ is well-defined and locally Lipschitz on Q, at least away from this critical set. Thus the normal cycles of the sets C_t arise as

(3.1)
$$N(C_t) = \langle \nu_* \llbracket Q \rrbracket, \rho \circ \pi, t \rangle, \ t \in (\rho_{\min}, 0),$$
$$N(C) = \lim_{t \neq 0} N(C_t).$$

Therefore if $0 \leq s < t < -\rho_{\min}$ then

$$k(t) - k(s) = (N(C_t) - N(C_s))(\bar{\omega})$$

= $(\langle \nu_* \llbracket Q \rrbracket, \rho \circ \pi, -t \rangle - \langle \nu_* \llbracket Q \rrbracket, \rho \circ \pi, -s \rangle)(\bar{\omega})$
= $-\partial(\nu_* \llbracket Q \rrbracket \sqcup \pi^{-1} \rho^{-1} (-t, -s))(\bar{\omega})$
= $-(\nu_* \llbracket Q \rrbracket \sqcup \pi^{-1} \rho^{-1} (-t, -s))(\bar{\Omega})$

(3.2) where

(3.3)
$$\bar{\Omega} := \sum_{j=1}^{m} (-1)^{j+1} \omega_{1m} \wedge \dots \wedge \omega_{(j-1)m} \wedge \Omega_{jm} \wedge \omega_{(j+1)m} \wedge \dots \wedge \omega_{(m-1)m}$$

since $\bar{\Omega} = d\bar{\omega}$ for C^2 frames e_i . However (3.2) remains valid even if the frame is only C^1 , as may be proved easily by approximation.

Our main result is the following.

m

Theorem 3.1. If m = 3 then the 0-current (signed measure) $\pi_*(\nu_*[Q] \sqcup \overline{\Omega})$ is non-positive.

The proof is given in the next two sections.

4.

Put $Q_1 := \nu(Q)$ for the corresponding rectifiable set of unit vectors. By [F2,3.2.22], for \mathcal{H}^3 a.e. $\xi \in Q_1 \cap \pi^{-1}(R^i)$ the image under π_* of the approximate tangent 3-plane $T_{\xi}Q_1$ has dimension at most *i*. Since the curvature 2-forms Ω_{ij} are horizontal it follows that

$$\bar{\Omega}|Q_1 \cap \pi^{-1}(R^i) = 0, \ i = 0, 1.$$

It remains to compute the contributions due to R^2 and R^3 . We shall see that both are nonpositive.

We deal first with R^3 . From the first paragraph of §3 we see that $Q_1 \cap \pi^{-1}(R^3)$ consists of all values $\eta = -\widetilde{\exp}(t, -\xi)$ such that $\xi \in \operatorname{Nor}(C) \cap SM$, t > 0, and $\gamma(s) := \exp(-s\xi)$ is the unique minimizing geodesic from bdry C to $\pi(\eta)$. Therefore, for \mathcal{H}^3 a.e $\eta \in Q_1 \cap \pi^{-1}(R^3)$, the tangent space $T_\eta Q$ is the direct sum of the tangent line to the lifted geodesic $\widetilde{\exp}(s\eta)$ and the tangent plane $T_\eta \operatorname{Nor}(C_t)$, where $t = \rho \circ \pi(\eta)$.

We claim first of all that for \mathcal{H}^3 -a.e. such η the base point $\pi(\eta)$ is not a focal point of bdry*C*. In other words the restriction of the derivative $D(\widetilde{\exp}_{-t})$ to $T_{\xi}(\operatorname{Nor}(C))$ is nondegenerate. If not, then the usual second variation argument implies that *t* must be the smallest parameter for which this derivative degenerates. However if we put for tangent *m*-planes *P* to *TM*,

 $\delta(P) := \inf\{t : \text{ the restriction of } D(\widetilde{\exp}_{-t}) \text{ to } P \text{ is singular}\},\$

then δ is clearly lower semicontinuous, hence Borel measurable. So $\tilde{\delta} : \xi \mapsto \delta(T_{\xi}(\operatorname{Nor}(C)))$ is a measurable function. In particular the graph of $\tilde{\delta}$ has \mathcal{H}^3 measure zero in $\operatorname{Nor}(C) \times \mathbb{R}$. So the image of this graph under the smooth map $\widetilde{\exp}$ also has \mathcal{H}^3 measure zero, as claimed.

Therefore the projection $D\pi$ is nondegenerate on $\Pi := T_{\eta} \operatorname{Nor}(C_t)$. Hence $D\pi : T_{\eta}Q \to T_{\pi(\eta)}M$ is nondegenerate and orientation preserving. Choose a local frame field $e_1(\eta'), e_2(\eta'), e_3(\eta') = \eta'$ for η' near η , in such a way that $e_1(\eta'), e_2(\eta')$ are principal directions for C_t at $\pi(\eta')$ and e_3 is the tangent vector field along

geodesics normal to C_t . Then $\omega_{i3} \mid \Pi = \theta_i := \pi^*(e_i^*), i = 1, 2$. Therefore

$$\begin{split} \bar{\Omega} \mid \Pi &= \Omega_{13} \wedge \omega_{23} - \omega_{13} \wedge \Omega_{23} \\ &= \Omega_{13} \wedge k_2 \theta_2 - k_1 \theta_1 \wedge \Omega_{23} \\ &= -(k_2 K_{13} + k_1 K_{23}) \pi^* (vol_M), \end{split}$$

where the K_{ij} are sectional curvatures of M and the k_i principal curvatures of C_t at ξ_0 . Since these quantities are all nonnegative, and $\pi | Q$ is orientation-preserving, we conclude that $\overline{\Omega} | Q \cap \pi^{-1}(R^3) \leq 0$.

5.

We write $R^2 = \bigcup_{i=1}^{\infty} V_i \cup N$, where the V_i are as in the last sentence of §2. Since $\overline{\Omega}$ is horizontal in two slots, the null set N may be neglected and we have the corresponding decomposition of 0-currents

(5.1)
$$[\![Q_1 \cap \pi^{-1} R^2]\!] \sqcup \bar{\Omega} = \sum_{i=1}^{\infty} [\![Q_1 \cap \pi^{-1} V_i]\!] \sqcup \bar{\Omega}.$$

We will show that each of these terms is nonnegative.

Fix $V = V_i$. For simplicity we again denote by ρ the C^2 function on V extending $\rho | V \cap R^2$. By the first paragraph of §3, given $x \in R^2$ the set $Q \cap \pi^{-1}(x)$ is a line segment with endpoints $u_x, v_x \in \mathbb{S}_x M$. Since Q is Lagrangian, if $x \in V \cap R^2$ then σ_x is perpendicular to the tangent 2-plane $T_x V \subset T_x M$. Therefore

$$u_x - v_x = c(x)n(x),$$

where *n* is a unit normal to *V* and c(x) > 0. Furthermore the gradient $\nabla_V \rho(x) := \nabla(\rho|V)(x)$ is the common orthogonal projection to $T_x V$ of the elements of σ_x . Thus if we determine the positively oriented frame field $\epsilon_1, \epsilon_2, \epsilon_3$ by

$$egin{array}{rcl} \epsilon_2(x)&=&n(x),\ \epsilon_3(x)&=&
abla_V
ho(x)/|
abla_V
ho(x)|, \end{array}$$

and put

$$\psi_x := \arcsin(c(x)/2) \in [-rac{\pi}{2}, rac{\pi}{2}]$$

for the angle that u_x and v_x make with the tangent plane $T_x V$, then $Q_1 \cap \pi^{-1}(V \cap R^2)$ is the intersection with $\pi^{-1}(R^2)$ of the C^1 submanifold

$$\mathbb{S}M \supset \widetilde{V} := \{(x,\cos\phi\epsilon_3(x)+\sin\phi\epsilon_2(x)): x\in V, \ -\psi_x\leq\phi\leq\psi_x\}.$$

Finally, note that if ι is the C^1 involution of $TM|\widetilde{V}$ defined by

$$\iota(x, a\epsilon_1 + b\epsilon_2 + c\epsilon_3) = (x, a\epsilon_1 - b\epsilon_2 + c\epsilon_3),$$

then

(5.2)
$$\iota_* \llbracket \widetilde{V} \rrbracket = -\llbracket \widetilde{V} \rrbracket.$$

Let $\phi := \arcsin\langle \xi, \epsilon_2(\pi(\xi)) \rangle$ be the C^1 function on \widetilde{V} determined by the relation $\xi = \cos \phi \epsilon_3 + \sin \phi \epsilon_2.$

Now define the modified frame

$$\begin{array}{lll} e_1(\xi) &=& \epsilon_1(\pi(\xi)), \\ e_2(\xi) &=& -\sin\phi\epsilon_3(\pi(\xi)) + \cos\phi\epsilon_2(\pi(x)), \\ e_3(\xi) &=& \xi. \end{array}$$

If ω_{ij},Ω_{ij} denote the connection and curvature forms for this latter frame then obviously

$$\omega_{13}(\xi) \cdot v = 0$$

for vertical vectors $v \in T_{\xi} \widetilde{V}$. Therefore the summand $\omega_{13} \wedge \Omega_{32}$ of $\overline{\Omega}$ vanishes when restricted to \widetilde{V} . Denote by O_{ij} the curvature forms of M relative to the frame ϵ . Then

$$\Omega_{13}(\xi) = \cos \phi O_{13}(\pi(\xi)) + \sin \phi O_{12}(\pi(\xi))$$

Therefore we may write

$$\Omega_{13} = (\cos\phi K_{13} + \sin\phi R_{1312})\theta_1 \wedge \theta_3,$$

where the curvature tensor and sectional curvature are given in terms of the frame ϵ . Finally, on \tilde{V} we have $\omega_{32} \wedge \Omega_{13} = d\phi \wedge \Omega_{13}$ since the curvature forms are horizontal. To sum up, we may express the contribution of V by

$$\begin{bmatrix} \widetilde{V} \end{bmatrix} \llcorner \overline{\Omega} = -\llbracket \widetilde{V} \rrbracket \llcorner \omega_{32} \land \Omega_{13} \\ = -\llbracket \widetilde{V} \rrbracket \llcorner (\cos \phi K_{13} + \sin \phi R_{1312}) \theta_1 \land \theta_3 \land d\phi$$

Examining orientations and recalling the determination of the orientation of Q in the second paragraph of §2, we find that the contribution of the cosine term is nonpositive. As for the sine term, using (5.2) we may calculate

$$2\pi_*(\llbracket \widetilde{V} \rrbracket \ \sqcup \ \sin \phi R_{1312} d\phi \wedge \theta_1 \wedge \theta_3) \\ = \ \pi_*\left((\llbracket \widetilde{V} \rrbracket - \iota_*\llbracket \widetilde{V} \rrbracket) \sqcup \sin \phi R_{1312} d\phi \wedge \theta_1 \wedge \theta_3\right) \\ = \pi_*\left(\llbracket \widetilde{V} \rrbracket \sqcup \sin \phi R_{1312} d\phi \wedge \theta_1 \wedge \theta_3 - \llbracket \widetilde{V} \rrbracket \sqcup \iota^*(\sin \phi R_{1312} d\phi \wedge \theta_1 \wedge \theta_3)\right)$$

JOSEPH H.G. FU

$$=\pi_*\left(\llbracket \widetilde{V} \rrbracket \sqcup (\sin\phi R_{1312}d\phi \wedge \theta_1 \wedge \theta_3 - \sin(-\phi)R_{1312}d(-\phi) \wedge \theta_1 \wedge \theta_3)\right) = 0.$$

Acknowledgements. We would like to offer our thanks to the referee for several helpful comments. This work was supported in part by NSF grant DMS-9404366 and the M.G. Michael award from the University of Georgia.

References

- [A] G.Alberti, On the Structure of Singular Sets of Convex Functions, Calc. Var. 2 (1994) 17-27.
- [AS] G. Anzellotti and R. Serapioni, C^k -Rectifiable Sets, J. reine angew. Math. **453** (1994), 1–20
- [Ba] V. Bangert, Analytische Eigenschaften konvexer Funktionen auf Riemannschen Mannigfaltigkeiten, J. Reine Angew. Math. 307/308 (1979) 309-324
- [CE] J. Cheeger and D. Ebin, Comparison Theorems in Riemannian Geometry, North-Holland, Amsterdam (1975).
- [Ch] S.S. Chern, On the curvatura integra in a Riemannian manifold; Selected Papers, Springer (1978).
- [F1] H. Federer, Curvature measures, Trans. Amer. Math. Soc. 93 (1959) 418-491.
- [F2] —, Geometric Measure Theory, Springer, New York (1969).
- [Fu1] J.H.G. Fu, Tubular neighborhoods in euclidean spaces, Duke Math. J. 52 (1985), 1025-1046
- [Fu2] —, Monge-Ampère functions I, Indiana U. Math. J. 38 (1989), 745-771.
- [P] G. Perelman, Proof of the soul conjecture of Cheeger and Gromoll, J. Diff. Geom. 40, 209-212 (1994)

Received April 28, 1997

Revised version received October 31, 1997

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF GEORGIA, ATHENS, GA 30602-7403 E-mail address: fu@math.uga.edu

64