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1. INTRODUCTION 

Let M” be a smooth complete oriented Riemannian manifold of nonnegative 
sectional curvature, and let C c A4 be a closed convex subset. Put b(x) := 
dist(z, M-C) for the distance function to the complement of C; thus each Ct := 
b-‘[t,co) is convex ([CE], Thm. 8.9). D enote by k(t) the total curvature of C,, 
i.e. the integral of the determinant of the second fundamental form of bdryCt. 
G. Perelman has asked whether It(t) . 1s nondecreasing (for example, if M = S” is 
a standard sphere and C is a hemisphere then the total curvature increases from 
k(0) = 0 to Ic($) = v~l(S+~)). A n a ffi rmative answer would yield a proof of the 
Cheeger-Gromoll soul conjecture (although Perelman has proved the conjecture 
by other means [PI). In this note we prove that the answer is yes in case m = 3. 

It is not difficult to prove by classical methods, and in general dimensions, that 
lc is nondecreasing in the case that the sets C, have C2 (or even Cl>‘) boundary 
(cf. the calculations of section 4 below). The difficulty arises when these sets 
develop singularities. Note that the question still makes sense in this case: if C 
is any convex set (with possibly nonsmooth boundary) put g(x) := dist(s,C). 
Then for small s the sets C” := a-‘[0, s] have Cl>’ boundaries, i.e. the outward 
unit normal field n, on bdryC” is Lipschitz. Thus by Rademacher’s theorem 
the second fundamental form IIS(v, W) := (V vns, w) is well-defined at a.e. point 
p E bdryC”. The total curvature of C is then 

(1.1) k(C) = liik(C”) = lim 
.I’ 

det II, 
do thy@ 
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As this definition is slightly cumbersome we give a more natural one which will 
serve as the framework for this note. The convex set C admits a normal cycle 
N(C), which is an integral current of dimension m-l in the tangent sphere bundle 
SM of M. If C has interior then N(C) is the unique Legendrian cycle in SM such 
that rr*N(C) = al[Cg and spt N(C) n r-l(p) n Tan(C,p) = 0 for all p E bdryC. 
Given a vector co E SM, consider a positively oriented orthonormal frame field 

ei(t),... ,e,(<) = < E S r(~~M, defined for < close to to. Let wij denote the 
connection forms for this frame. Then the (m - I)-form win A.. . AW(,,-~)~ =: G 
is independent of the choice of the complementary vectors ei, . . . , e,_i. Thus w 
is well-defined globally on SM, and the total curvature of C is the evaluation of 
the normal cycle of C against this form: It(C) = N(C)(w). 

The equivalence of this definition with the one of the previous paragraph may 
be seen as follows. Let &@ : W x SM + SM denote the natural lift of the 
exponential map. Then N(P) = ez,,N(C) for small s > 0, so 

(1.2) k(P) = N(C')(G) = ez,*N(C)(w) -+ N(C)(a) = k(C) 

as s 40, since @5, -+ the identity. 
We are obliged to remark that in dimension 3 the Chern-Gauss-Bonnet formula 

[Ch] yields a simpler expression for It(C) that does not involve the normal cycle. 
For sets B c M3 with smooth boundary the formula of [Ch] reads 

(1.3) k(B) + 
J 

K, dx = 47rx(B), 
BB 

where x is the Euler characteristic and K, is the sectional curvature of M in the 
2-plane T,aB. Since the boundary of a convex set C is rectifiable, the second 
term on the left is well-defined in this case, and (1.3) remains valid with B re- 
placed by C, so we may solve for k(C). The Euler characteristics of the sets C, 

satisfy x(G) = x(C), so k(Ct) is nondecreasing iff sac, K, is nonincreasing. It is 
tempting to think that this less technical definition might yield a correspondingly 
less technical proof of our theorem, but this seems an illusion: in the present 
framework J K, may also be expressed as an integral over the normal cycle of a 
universal form C;r on the sphere bundle. The idea of the proof of [Ch] is to apply 
Stokes’ theorem on the graph of an appropriate section of the sphere bundle via 
the basic identity d(w+L;I) = dG +dLz, = 0. The idea of the proof presented here is 
to integrate dij over a graph associated to the distance function and apply Stokes’ 
theorem; there is obviously nothing to be gained by integrating dG instead. 
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Our method is to work on the graph of the function p := -fi, or more precisely 
on the graph of its gradient. Although p is not everywhere differentiable, it 
is nevertheless semiconvex on intC - that is, about any given point there are 
smooth local coordinates 4 : C >> U + Iwm, such that 

(2.1) po@i=f+(Y, 

where f is smooth and cy is the restriction to 4(U) c EP of a convex function. 
This fact is well known; for instance it is a consequence of the proof of Prop. 1.2 
of [Full (cf. also [Ba]). Th ere ore there is a closed Lagrangian current [Vpl E f 
ll,(T(intC)) that represents the graph of the gradient of p. Here T int C c TM is 
endowed with the symplectic structure arising from the identification TM x-+ T’M 
induced by the Riemannian metric. In fact, in the semiconvex case the structure 
of this current is very simple: it is given by integration over a closed oriented 
Lagrangian Lipschitz submanifold Q c T*(intC). This Q is precisely equal to the 
graph of the Clarke gradient Vp of p, i.e. 

VP(Z) := convex hull{w : w = lim Vp(xi) for some sequence 
i+cc 

xi 4 x, p differentiable at xi}. 

The orientation of Q is determined by the condition that the projection r of 
the tangent bundle induce an orientation-preserving map Q + intC. Moreover, in 
view of the convexity of CY, the orientation of Q is given explicitly as follows. For 
almost every < E Q the tangent space TcQ exists and is a Lagrangian subspace of 
the symplectic vector space TcTQ. Put V := ker r* nTtQ c ker r+ N T?,(EjM and 

I%’ := G&Q) c T?,((, M. The fact that TtQ is Lagrangian implies that V and W 
are orthogonal. Thus TcQ is canonically isomorphic to Tx(cjM. The orientation 
is now induced from that on the latter space. This corresponds to the fact that 
all curvature measures of a convex body are nonnegative. 

We write 

UQD = I[Vd, 
with this orientation understood. 

We will also make use of the following basic fact. Suppose K c llP is a closed 
convex set. Put C” := {x 1 dimNor(K,x) = m - k}. Then C’” is a /r-dimensional 
set which is C2 rectifiable in the sense of [AS], i.e. 

(2.2) c”c G&UN, 
i=l 
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where each Vi is a k-dimensional submanifold of class C2 and ?fk(N) = 0, where 
?-ik denotes k-dimensional Hausdorff measure. For a proof of this fact see [A]. 
Applying this result to the epigraph of the function cr appearing in (2.1), if we 

Put 
R”:={z~intC(dimVp(x)=m-k-l}, k=O,...,m, 

then each R” is locally the image under $-l of a k-dimensional, C2-rectifiable 
subset of Iw”, and is therefore itself a k-dimensional, C2-rectifiable subset of M. 
Moreover, decomposing Rk as in (2.2), each pi& rl R” is the restriction of a C2 
function pi on Vi. 

3. 

The distance function p is differentiable at a point ~0 iff there is a unique 
minimizing geodesic y from bdryC to x0, and in this case the gradient of p is 
precisely the tangent vector to y at x0. Therefore, at a general point x, the 
Clarke gradient VP(x) consists of the convex hull of the set of all tangent vectors 
to all minimizing geodesics from bdryC to x. In particular, 0 E VP(X) iff x is a 
critical point of p in the usual generalized sense. 

The convexity of C implies that p has at most one critical value pmin. Therefore 
the normalizing map v(u) := /I 1 u v is well-defined and locally Lipschitz on Q, at 
least away from this critical set. Thus the normal cycles of the sets Ct arise as 

(3.1) N(G) = hi&l, P O r, t), t E (Pmin, 0)~ 

N(C) = p$v(Ct). 

Therefore if 0 5 s < t < -pmin then 

k(t) - k(s) = (N(G) - N(C,))(G) 

= ((y*iIQIl> POT,--~) - hlI&Jl, PO~>-S))(~) 
= -a(~*[&] L n -l&-t, -s))(w) 

(3.2) = -(z+[Q] L x -lp-1(-t, -s))(i=q 

where 

(3.3) n:=~(-~)~+~,,,n...Aw(j-l)mARj,AW(i+l)mA...AW(m-l)n2r 
j=l 

since fi = d6 for C2 frames ei. However (3.2) remains valid even if the frame is 
only C’, as may be proved easily by approximation. 

Our main result is the following. 
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Theorem 3.1. If m = 3 then the U-current (signed measure) ~~*(v*[QI L a) is 
non-positive. 

The proof is given in the next two sections. 

4. 

Put &I := V(Q) for the corresponding rectifiable set of unit vectors. By 
[F2,3.2.22], for X3 a.e. t E Qi n r’-l(Ri) the image under r, of the approxi- 
mate tangent S-plane TcQl has dimension at most i. Since the curvature 2-forms 
Ri, are horizontal it follows that 

a/Q1 fl rwl(Ri) = 0, i = O,l. 

It remains to compute the contributions due to R2 and R3. We shall see that 
both are nonpositive. 

We deal first with R3. From the first paragraph of $3 we see that Qi nrm1(R3) 
consists of all values 71 = -&@(t, -<) such that 5 E Nor(C) n SM, i. > 0, and 
y(s) := exp(-st) is th e unique minimizing geodesic from bdryC to ~(7). There- 
fore, for 7i3 a.e 71 E Qr n rp1(R3), the tangent space TV& is the direct sum of 
the tangent line to the lifted geodesic @(sv) and the tangent plane T,Nor(C,), 
where t = p o T(V). 

We claim first of all that for X3-a.e. such 17 the base point ~(77) is not a fo- 
cal point of bdryC. In other words the restriction of the derivative D(G?p_,) to 
Tc(Nor(C)) is nondegenerate. If not, then the usual second variation argument 
implies that t must be the smallest parameter for which this derivative degener- 
ates. However if we put for tangent m-planes P to TM, 

b(P) := inf{t : the restriction of D(@_,) to P is singular}, 

then 6 is clearly lower semicontinuous, hence Bore1 measurable. So z : 5 ++ 
G(Tc(Nor(C))) is a measurable function. In particular the graph of x has R3 
measure zero in Nor(C) x R. So the image of this graph under the smooth map 
6?p also has ‘?f3 measure zero, as claimed. 

Therefore the projection Dr is nondegenerate on II := T,Nor(C,). Hence 

Dr : T,Q -+ T,(,) M is nondegenerate and orientation preserving. Choose a local 

frame field ei($),ez(q’), es($) = 7’ for q’ near 77, in such a way that ei($), ez(n’) 
are principal directions for Ct at ~(7’) and eg is the tangent vector field along 
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geodesics normal to Ct. Then wi3 ( II = 8i := r*(ez), i = 1,2. Therefore 

fi[rI = fl13Aw23-w13Ail23 

= 013 A kg& - klt$ A 023 

= -(k&13 + kdh)~*(~&), 

where the Kij are sectional curvatures of M and the ki principal curvatures of C, 
at &. Since these quantities are all nonnegative, and XI& is orientation-preserving, 
we conclude that fi[Q rl nP1(R3) I 0. 

5. 

We write R2 = 6 Vi U IV, where the Vi are as in the last sentence of $2. Since 
i=l 

ii is horizontal in two slots, the null set N may be neglected and we have the 
corresponding decomposition of O-currents 

(5.1) 

We will show that each of these terms is nonnegative. 
Fix V = vi. For simplicity we again denote by p the C2 function on V extending 

p/V rl R2. By the first paragraph of $3, given x E R2 the set Q n x-‘(x) is a line 
segment with endpoints u,, v, E S,M. Since Q is Lagrangian, if x E V n R2 then 
cr, is perpendicular to the tangent 2-plane T,V c T,M. Therefore 

UZ - v, = c(x)n(x), 

where R. is a unit normal to V and c(x) > 0. Furthermore the gradient Vvp(x) := 
V(pIV)(x) is th e common orthogonal projection to T,V of the elements of gZ. 
Thus if we determine the positively oriented frame field EI, ~2, ~3 by 

and put 

62 (x) = n(x), 

63(X) = VVP(~)llVVP(~)l7 

& := arcsin(c(x)/2) E [--:, 51 

for the angle that U, and v, make with the tangent plane T,V, then Qlncl(Vn 
R2) is the intersection with re1(R2) of the C1 submanifold 

SM > v := ((2, COS~Q(X) + sin&(x)) : z E V, -& 5 4 5 q&}. 
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Finally, note that if L is the C1 involution of TMIV defined by 

L(2,uEl+bE2+C~3)=(2,uEl-bbE2+CE3), 

then 

(5.2) L*[Pjj = -[V]. 

Let 4 := arcsin(f, ez(~([))) be the C1 function on e determined by the relation 

< = cos 4~3 + sin +a. 

Now define the modified frame 

e1([) = f1(4E)), 

e2(E) = - Sin &3(~(<)) + ~06 &2(74~)), 

es(E) = I. 

If Wij, Rij denote the connection and curvature forms for this latter frame then 
obviously 

w13(0 . 2, = 0 

for vertical vectors v E Tcv. Therefore the summand ~13 A 032 of fi vanishes 
when restricted to v. Denote by Oij the curvature forms of M relative to the 
frame E. Then 

%3(t) = coS$O13(71(5)) + Sin$Ol2(r(t)). 

Therefore we may write 

013 = (CoS 4K13 + sin @1312)& A 03, 

where the curvature tensor and sectional curvature are given in terms of the 
frame E. Finally, on v we have ~32 A 0l3 = dq5 A R13 since the curvature forms 
are horizontal. To sum up, we may express the contribution of V by 

[V] L !7 = -I[?] I_ W32 A a13 

= - [?] L (cos q5Kl3 + sin qSRisi2) 191 A 03 A dq5 

Examining orientations and recalling the determination of the orientation of Q 
in the second paragraph of $2, we find that the contribution of the cosine term is 
nonpositive. As for the sine term, using (5.2) we may calculate 

27r* ([VI L sin $R1312d$ A 81 A 193) 

= r* ([ql - L* IF]) 
( 

L sin $R1312dq5 A 191 A 193 
> 

= T, ([PI L sin c$R1312dg5 A 01 A O3 - [[VI L L* (sin +R1312dc,h A O1 A S3)) 
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= 7T* [V] L (sin$R1312d$ A 01 A 19s - sin(-#)R 1312d(-4) A ‘% A 03,) = 0. 
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