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1. INTRODUCTION 

In [ 21, Chern and Tenenblat found a relation between foliations on a surface 
of constant curvature and the MKdV equation. They gave a class of such foli- 
ations such that the geodesic curvature of the leaves of a foliation in this class 
satisfies the MKdV equation, if one chooses a coordinate system on the surface 
accordingly. Similar relations between foliations on a surface of constant curva- 
ture K # 0 and the sine-Gordon equation, and between foliations on a surface of 
constant negative curvature and the KdV equation, were given by Tian in [ 91. 
Naturally, one would like to know if any other (real) nonlinear partial differential 
equations, especially any other soliton equations such as the sinh-Gordon equa- 
tion, the Calogero-Degasperis-Fokas equation, the Sawada-Kotera equation, and 
the Kaup-Kupershmidt equation, are related to classes of foliations on a surface 
of constant curvature. If there are more, then one would like to have constructive 
procedures to find a class of foliations for a given nonlinear partial differential 
equation (PDE). 

In this paper, we first observe that in order for a nonlinear PDE to de- 
scribe a class of foliations on a surface of constant negative curvature (pseudo- 
spherical surface) or a surface of constant positive curvature (spherical surface), 
the equation must be the compatibility condition for a special type of s1(2,W)- 
or su(2)-linear system. Then, we look for necessary and sufficient conditions 
for the existence of a class of foliations on a pseudo-spherical or spherical sur- 
face described by a given nonlinear PDE of the form ut = F(u, r~,, . . , u,...,) or 
u,t=_?(lL,tL,,..., u,...,) or u,t = 3(u, u,, ut). Under two technical assumptions 
(one of them will be given in $2 and the other in the theorems in §3-5), we show 
that the existence of such a linear system for an equation of one of the above forms 
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together with some minor restriction(s) on the entrices in the coefficient matri- 
ces of the linear system form necessary and sufficient conditions. Moreover, our 
proof in each case gives a general way for computing the class of foliations. These 
general ways are unified treatments of the known examples and yield many new 
examples. In particular, we obtain four classes of foliations on a pseudo-spherical 
surface described by the sinh-Gordon equation, the Calogero-Degasperis-Fokas 
equation, the Sawada-Kotera equation, and the Kaup-Kupershmidt equation, re- 
spectively. 

We note that Pinkall recently gave in [ 71 a very interesting relation between 
evolutions of an alfine curve and the KdV equation, and that relations between 
soliton equations and classes of surfaces in lIX3 are discussed in [ lo]. 

The organization of this paper is as follows. In 52, we review an example 
and give a general definition. We treat nonlinear PDE’s of the form ut = 

F’(% ‘11X,. ‘. 1 IL,...,) in $3, while $4 is devoted to nonlinear PDE’s of the form 
U,t =.?(u,u,,..., u,...,). Finally, nonlinear PDE’s of the form ~,t = 3(~, u,, Ut) 
are discussed in $5. 

We are indebted to Josef Dorfmeister for his interest in this work, and would 
like to thank Qiming Liu for bringing the references [ 1 ], [ 41 and [ 6 ] to our 
attention and for suggesting that the Kaup-Kupershmidt equation be included 
as a concrete example. We are also grateful to the referee, whose suggestions led 
improvements in our presentation. The author was partially supported by NSF 
Grant DMS-9205293. 

2. AN EXAMPLE AND A GENERAL DEFINITION 

In this section, we first review the example of Chern and Tenenblat in [ 21, 
then give the general definition to be used in the sequel, and finally present a 
necessary condition for a nonlinear PDE to describe a class of foliations. 

Let M be a surface endowed with a Riemannian metric of constant Gaussian 
curvature K. Locally, let {er, ez} be an orthonormal frame field and {WI, wz} its 
dual coframe field. The structure equations of M can then be written as 

(2.1) dwr = wrs A wz, dwp = wr A ~12, dw12 = -KWI A ~2, 

where ~12 is the corresponding connection form on M. 
Given a foliation of M by curves, suppose that at each point y E M, el is 

tangent to the leaf through y of the foliation; namely, the foliation is defined by 
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w2 = 0. Let 

(2.2) w12 = PWI + qw2, 

then p and q are the local invariants of the foliation (under a fixed local orienta- 
tion). 

Assume that p and q satisfy 

(2.3) 

then there is a (local) coordinate system (z,t) on M satisfying 

(2.4) 
a a 

z = 77e1, 5 = v3 ( - K f fp2) el + v3dlp. e2, 

where 77 # 0 is a free (real) parameter and one needs the assumption 

(2.5) 4P # 0. 

Moreover, u = 772, is a solution to the MKdV equation 

(2.6) 
3 

Ut = -u%, + U,,,. 
2 

Proofs of these claims can be found in [ 11. 
Conversely, given a domain D C Iw2 and a solution u : D -+ R to the MKdV 

equation satisfying 

(2.7) ‘1Lx # 0 

at each point of D, if we define a Riemannian metric on D by specifying an 
orthonormal frame field {el , e2) via 

(2.8) 
then one can verify that D has constant curvature K, the geodesic curvature p of 
the z-lines is equal to u/q, and the foliation of D by the z-lines satisfies (2.3). 

Altogether, we see that the class of foliations on M satisfying (2.3) is described 
by the MKdV equation. 

With the above example in mind, we are ready to give a general definition, in 
which we will not write down any obviously necessary assumptions like (2.5) or 
(2.7). 

Definition 1. The class of foliations on a surface M of constant curvature K 
satisfying 

(2.9) F(P, 4, alp, a2P, . . . . a; ’ . . ah) = 0 
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is said to be described by the nonlinear partial differential equation 

(2.10) F(u,d,u,&u, . . . . az”a,“u) = 0 

if there exist (real) smooth functions (Y, 6, y, ;U, S, 8 and f such that for every 
foliation satisfying (2.9) there holds 

(2.11) HP, 4) el, Y(P, 4, . . . . a;. . .@del + 6(p,q, . . . . ~3; . . . @q) e-21 = 0, 

and if we define 

(2.12) $ = a(p,q)ei, 

(2.13) $ = y(p,q ,..., 8;...@q)el+S(p,q ,..., &...$q)e2, 

(2.14) u = f(P, 4, dlP7 &P, “‘I 8;. . . ad, 

then u satisfies (2.10), and that for every solution u : D G EX2 + Iw to (2.10) if we 
define a Riemannian metric on D by giving an orthonormal frame field {er,e2} 
via 

d 
da:= 

&(u, &u, &u, . . . . drdpu)el, 

(2.15) ; = v(u,& U, a,~, . . . . a;apu)el + i(‘1~, a,~, atu, . . . . a,“dTu)e2, 

then D has constant Gaussian curvature K, the foliation of D by the z-lines 
satisfies (2.9), and u can be expressed in terms of the corresponding p and q by 
(2.14). 

Remark. We avoid considering foliations consisting of t-lines by interchanging the 
variables 2 and t in (2.10) when necessary. 

Every nonlinear PDE considered in this paper is assumed to have solutions to 
all its smooth initial value problems in a certain range, no matter how small the 
range is. This is our first technical assumption mentioned in the introduction. 
Moreover, from now on, we only look at the cases K # 0. By resealing, we can 
then assume K = -1 or 1. If K = -1, the structure equations of M form the 
compatibility condition for the linear system 

(2.16) dV==V 

on V : M -+ SL(2,Iw), where 

(2.17) fl=l w2 ( w - w2 

2 Wl +w12 ) 
; 

-w2 
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if K = 1, the structure equations of M form the compatibility condition for the 
linear system 

(2.18) dW=OW 

on W : M -+ W(2), where 

(2.19) @=’ 
( 

iwz WI + iwl2 
2 -WI + iwi2 -iw2 ) 

In the soliton theory, this kind of linear systems with a free parameter are called 
scattering systems and used intensively. As a consequence of this observation, we 
have the following necessary condition for a nonlinear PDE to describe a class of 
foliations on a pseudo-spherical or spherical surface. 

Proposition 2.1. If a nonlinear partial differential equation describes a class of 
foliations on a pseudo-spherical surface, then it is the compatibility condition for 
an s1(2,lR)-linear system 

(2.20) 

if a nonlinear partial differential equation describes a class of foliations on a 
spherical surface, then it is the compatibility condition for an su(2)-linear system 

(2.21) 

PROOF. (2.15) 

WI = 

(2.22) w2 = 

can be rewritten as 

&(zL,d,U,&U, . ..) a:a:~) dx + ?(u, azu, atu, . . . . a;agh) dt, 
Zcu, azu, atu, . . . . a;aFu) dt. 

So, the corresponding linear system (2.16) or (2.18) has the form (2.20) or (2.21) 
after these substitutions. cl 

Rem&. Some existing s1(2,lR)-linear systems not of the form (2.20) or (2.21) are 
equivalent to ones of the form (2.20) or (2.21). For example, the s1(2,lR)-linear 
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(2.23) 

is equivalent to 

(2.24) 

via the transformation 

(2.25) v= ; ‘1 v. ( > 
In this way, one obtains sl(2,W)-linear systems of the form (2.20) for the MKdV 
equation and the sine-Gordon equation from their usual scattering systems (see 
Example 3 of §3 Example 7 of 54). A similar transformation (involving a free 
parameter) works for the KdV equation. 

Remark. In general, the existence of this kind of linear systems for a given nonlin- 
ear PDE can be discussed via the method effectively used by Chern and Tenenblat 
in [ 31. For example, detailed calculations along their lines yield, among others, 
the s1(2,lR)-linear system 

_a0 
Jzrl cos u 

sin u 0 V, 
1) 

(2.26) 

where 

B(u, Kc, ‘LLm )=q(-&sin”u+JZsinu+-$cosuu~-fisinuu,,), 

(2.27) C(u, uz, ‘1~zz ) = i(&cos3u- Jzcosu- -$sinuu: - &cosuu,,), 

for the Calogero-Degasperis-Fokas equation [ l] & [ 41 

(2.28) 
3 . I 3 

ut = 2 sm(2u) u, + 2uz + u,,,, 
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for which an explicit B6cklund transformation is given in [ 113. 

In the next three sections, we want to give some necessary and sufficient con- 
ditions that yield classes of foliations described by nonlinear PDE’s from such 
linear systems for these equations. 

3. SOME EQUATIONS Q = ~(u,u~,...,~L~...~) DESCRIBING FOLIATIONS 

Consider a nonlinear PDE 

(3.1) ut = 7(U, u,, . ..) U,...,). 

By Proposition 2.1, we can assume that it is the compatibility condition for an 
sl(2,R)-linear system of the form (2.20) or an su(2)-linear system of the form 
(2.21). First, for the case of an sl(2,lR)-linear system, we have the following 
result. 

Theorem 3.1. A nonlinear partial d$erential equation ut = 3(u, u,, . . . . u,...,) 
describes a class of foliations on a pseudo-spherical surface via an s1(2,lR)-linear 
system 

(3.2) 

for it if and only if 

B(u,uz, .,., u,...,) 
-A(u,u,, . . . . u,...,) 

v 

(3.3) -P(u) + ‘(‘IL) # constant 
P(u) + Y(u) . 

Note that here we only consider an s1(2,lR)-linear system whose first equation 
coefficient matrix involves u only. This is our second technical assumption men- 
tioned in the introduction. In each of the other theorems of this paper, there will 
be a similar assumption. 

PROOF. Assume that the nonlinear PDE in question is the compatibility condi- 
tion of an s1(2,R)-linear system (3.2) satisfying (3.3). For a general solution U, 
define a metric on its domain by giving an orthonormal frame field {el, ez} via 

d - = 
da: 

0(u) + YWel 
2 ’ 

(3.4 = 
B(u,&u, . ..) a,nu> + C(u,&u, .‘.) QL) 

2 
el + A(u, L&u, . . . . dzu)ez, 
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then the corresponding orthonormal coframe field {wi,w2} is given by 

Wl = 
p(‘) + r(u) dx + 

2 
B(u, &u, . . . . a,nu> + C(u, L&u, . . . )  @) dt 

2 I 

(3.5) w2 = A(u,&u, . . . . d,nu)dt. 

The corresponding connection form of the metric is w12 = pwi + 4w2 with 

(3.6) 
-P+-/ and 

-yB + PC 
p= ,f3+r ‘= (P+y)A ’ 

and the Gaussian curvature is -1, i.e., 

(3.7) d2p=&q+p2+q2-1. 

By the first equation in (3.6), our assumption (3.3), and the Inverse Function 
Theorem, there exists a smooth function f such that 

(3.8) ‘1L = f(P). 

Hence, the first equation in (3.4) becomes 

(3.9) 
where 

(3.10) 

d 
- = G(p)el, 
dX 

(y(p) = P(f(P)) + -/(f(P)) 
2 ’ 

Thus, by the second equation in (3.6), (3.8) and (3.9), the foliation consisting of 
the x-lines satisfies 

(3.11) 

q = -r(f(~)Mf(~), “‘7 (~(P>&)~~(P)) + PU(P))W(P), “‘7 (~(P)W”~(P)) 

(PC~(P)) + r(f(~)))4f(~), “‘7 (~(PFW.UP)) 

Using (3.11), one can rewrite (3.7) as 

(3.12) n 
82P = c 

%I(P, alp, “‘7 @P) g+lp + p2 + q2(p 

WP) l 
, 

alp 
7 “‘7 a;p) - 1. 

j=o 

By (3.8) and (3.9), the second equation in (3.4) becomes 

(3.13) 
d 

- = ;Y(p, dip, . . . . d?p)ei + QP, alp, . . ..Tp) e2, 
at 

where 

Y(p, . ..) a;p) = B(f(p), .“T (qPFw.f(P)) + W(PL..v (4PYwf(P)) 
2 

7 



FOLIATIONS ON CONSTANT CURVATURE SURFACES 73 

(3.14) i(p, . . . . d;p) = AU(p), . ..> (G(p)%)“f(p)). 

In view of (3.9) and (3.13), [&, g] = 0 implies 

& 
( 

@p + . . + &3:+1 
1 

p 
1 

- yzjp - &‘a2P = gi& 

(3.15) $$a,p + . . + ao ab an+lp = $, 1 

Also by (3.8) and (3.9), the values of p, alp, . . . . dy+‘p at a point can be treated 
as independent variables since the values of u, t&u, . . . . a:+‘, at a point are 
independent from each other. So, substituting (3.11) and (3.12) into (3.15) yields 
four partial differential equations 

(3.16) 

(3.17) 

-6Cr’ C?:l -k-@+lp + p2 + 42 _ 1 
( J--o a(a;p) ) 

= p.i 
> 

(3.18) 

(3.19) 

86 -0 
a(a;P) - ’ 

C;:i &a{+lp = q6 

satisfied by the functions q, 15, T, and 8 of p, alp, . . . . a;p in general. Therefore, 
(3.15) is a consequence of (3.11) and (3.12). 

We now prove the converse. Given a foliation on a pseudo-spherical surface 
satisfying (3.11), there hold (3.12) and, hence, (3.15). By (3.15), 

(3.20) [G(P) el, %P, alp, . . . . a;p) el + QP, alp, . . . . a:p) e2] = 0, 

i.e., there is a coordinate system (x,t) satisfying (3.9) and (3.13). Define u by 
(3.8), then (3.5) and (3.6) hold. Therefore, ‘~1 is a solution to the nonlinear PDE 
in question-the compatibility condition of (3.2). 

Hence, (3.11) is a class of foliations on a pseudo-spherical surface described by 
the given nonlinear PDE. 

Next, assume that the nonlinear PDE describes a class of foliations on a pseudo- 
spherical surface via an sl(2,lR)-linear system (3.2). There hold (3.4)-(3.7). We 
want to prove that (3.2) satisfies (3.3). If not, i.e., 

(3.21) 
-P(u) + Y(U) P(u) + y(u) = constant, 

then by the first equation of (3.6), p is constant, and hence, by (3.7), 

(3.22) alq=1-P2-q2. 
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By the first equation of (3.4) and (3.22), 

(3.23) qz = N”) + d”) (1 _ p2 _ q2), 
2 

The invariant q can not be constant: otherwise, the u’s obtained from the foli- 
ations are only constants. Thus, substituting the second equation of (3.6) into 
(3.23) yields a nontrivial restriction on the U’S obtained. This contradicts Defini- 
tion 1. Hence, (3.2) must satisfy (3.3). 0 

Remark. It is very lengthy and requires a lot of details about (3.2) to verify 
directly (3.15) or the fact that u is a solution. Therefore, the second half of the 
proof of the sufficiency in Theorem 3.1 is of interest itself. 

Example 1. Each equation in the KdV hierarchy is the compatibility condition for 
an sl(2,R)-linear system (3.2) satisfying (3.3), so it describes a 
on a pseudo-spherical surface. For example, the KdV equation 

class of foliations 

(3.24) 
3 

Ut = ~UU, + U,,, 

is the compatibility condition for 

X=&“. ;)lC 

(3.25) 
1 

K = 2 ( 

+ 

(7 - U)(7j + $4) - u,, 

77++ v 

> ;uz ’ 

where Q # 0 is a free parameter, and hence describes the class 

(3.26) q,ap_P 1” 3&P 

%P P-l 

of foliations on a pseudo-spherical surface with 

(3.27) P+l 
u=p_l+v. 

As mentioned in the introduction, this example was first given by Tian in 19 
Example 2. For any smooth function u = u(u, u,, . . . . u,...,), the equation 

(3.28) 
1 

ut = -u,o + UC, + ~,,, 
2 
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is the compatibility condition for the s1(2,R)-linear system 

(3.29) 

v, = 1 O IL v, 
( > 2 -u 0 

vt = ; _1Uj_x0, 
( 

--(T ;u 

> 
V. 

2 12 f& 

Thus, by Theorem 3.1, the equation (3.28) describes the class 

(3.30) 4= 
(1 - P)Uzz 

ux 
of foliations on a pseudo-spherical surface, where 

u=p+l and 
d 1 

- = - 
P-l dX 1 _ pel. 

The equation (3.28) has appeared in [ 61 and some special cases of it follow. First 

of all, as shown above, the equations in the KdV hierarchy are examples of (3.28). 
Secondly, if we take cr(u, u,, u,,) = u2/8 + u,, in (3.28), then we get the Sawada- 

Kotera equation [ 8] 

(3.32) Ut = $Ls2L, + ;W&, + ;u,,,,, + u,,,,z, 

a soliton equation closely related to the fifth order KdV equation 

(3.33) ut = +L, + +L&,, f ~,,,,,, + ~zzzzz 

obtained from (3.28) with c = 3u2/4 + ul,,. Hence, (3.30) with c = u2/8 + u,, 
is a class of foliations on a pseudo-spherical surface described by the Sawada- 
Kotera equation. Thirdly, setting cr(u,u,,uzz) = 2u2 + u,, in (3.28) yields the 
Kaup-Kupershmidt equation [ 51 

(3.34) ut = 5u%, + $l,,,,, + 5uu,,, + Wzxxxx 1 

another soliton equation similar to the fifth order KdV equation. Thus, (3.30) 
with ~7 = 2u2 + u,, is a class of foliations on a pseudo-spherical surface described 
by the Kaup-Kupershmidt equation. Moreover, by taking c(u,u,) = f(u) + u, 
in (3.28) one gets the class 

Ut = (ij(u) + uf’(u))u, -I- ;,I: + f”‘(U)U: 

(3.35) +(u + 3f”(U)U,)U,, + f’(U).ILzz, + %Xzz 

of nonlinear PDE’s, where f is any smooth function. So, each of these equations 
describes a class of foliations on a pseudo-spherical surface. Since there are few 
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soliton equations of order 4, it is interesting to find out if (3.35) can be a soliton 
equation for some choice of f. 

Example 3. Each equation in the MKdV hierarchy is the compatibility condition 
for an s1(2,R)-1 mear system (3.2) satisfying (3.3), so it describes a class of foh- 
ations on a pseudo-spherical surface. For example, the MKdV equation (2.6) is 
the compatibility condition for 

(3.36) 

v,=l 77% 73 - 77% + A 2P2 - $3 - IL,, 
2 7+ + $11 + ;rjus + fU3 + u,, -WZ 

V, 

where 77 # 0 is a free parameter, and the class of foliations on a pseudo-spherical 
surface yielded by Theorem 3.1 for the MKdV equation via (3.36) is (2.3). 

Example 4. For any (real) constant c and any smooth function u = CJ(U, u,, . . . . 
IL,...,), the equation 

(3.37) 
Ut = cu, - (2u, - 3U%, - 2u,& - (U - u3 - 5u,,)crz + 4u,(r,, + ucrzzz 

is the compatibility condition for the sl(2, R)-linear system 

v, = 1 O ( 2 1+u 
l-u v 

0 > ’ 

(3.38) vt = f 2%u;% ( I3 
-2u.g - uu, ) 

V, 

where 

B = ~-cu+(~~-~~-2u&-3u,a,-u~,,, 

(3.39) c = c+cu+ (u” + u3 + 2%) g + 3u,u, + U(T,,) 

and hence describes the class 

(3.40) 
2u,,a + 3u,(T, + uu,, 

q= 2u.g + ucl, 

of foliations on a pseudo-spherical surface, where 

(3.41) 
8 

u=p and 
aa: =el. 
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The equations in the MKdV hierarchy are examples of (3.37). And by choosing 
other o’s in (3.37), one gets many more nonlinear PDE’s describing classes of 
foliations on a pseudo-spherical surface. 

Example 5. The class of foliations on a pseudo-spherical surface described by the 
Calogero-Degasperis-Fokas equation (2.28) via the sl(2, R)-linear system (2.26) 
with q = 1 is 

(3.42) 4= 
sin 21 B(u, u,, u,,) -t- cos 21 C(u, u,, u,,) 

(sin u - cos u)uz 1 

where B and C are defined by (2.27), 

(3.43) 

u = arc tan s, 

E = -+(cosarctan’$ -sinarctan’s)er. 

Next, for the case of an su(2)-linear system, we have the following result similar 
to Theorem 3.1. 

Theorem 3.2. A nonlinear partial differential equation ut = 3(u, u,, . . . . u,...,) 
describes a class of foliations on a spherical surface via an su(2)-linear system 

w, = 1 
2 -,B(u,o+ ir(u) 6 ( 

P(u) + i?/(u) w 
) ’ 

The proof of Theorem 3.2 is almost the same as that of Theorem 3.1, except 
that the basic equations now are 

w1 = /3dx + Bdt, w2 = Adt, w12=ydx+Cdt, 

p’Y -yB + PC 
P’ 

4= PA . 

Example 6. Each equation in the MKdV hierarchy is the compatibility condition 
for an su(2)-linear system (3.44) satisfying (3.45), so it describes a class of fo- 
liations on a spherical surface. For example, the MKdV equation (2.6) is the 
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compatibility condition for 

w,=l O ( 2 -q+iu 
q+iu v 

0 1 ’ 

(3.46) 

w, = 1 mu, -n3 - iq2u + k77u2 + $u3 + iu,, 
2 n3 - in2u - $7~~ + $u3 + iu,, -inu, . ) 

~ 
, 

where 77 # 0 is a free parameter, and the class of foliations on a spherical surface 
yielded by Theorem 3.2 for the MKdV equation via (3.46) is (2.3). 

4. SOME EQUATIONS uzt = T(u, u,, . . . . u,...,) DESCRIBING FOLIATIONS 

In this section, we consider a nonlinear PDE 

(4.1) U,t = 3(u, u,, . ..) uL,...,). 

First, assume that it is the compatibility condition for an s1(2,lR)-linear system 

v, = @(%)K 

(4.2) v, = @(u,u,, . ..) u,...,)V, 

where 

(4.3) and 

with p, y, A, B and C being smooth functions. Then, we have the following 
result. 

Theorem 4.1. A nonlinear partial differential equation u,t = .F(u, u,, . . . . u~...~) 
describes a class of foliations on a pseudo-spherical surface via an sl(2, I!%)-linear 
system (4.2) for it satisfying (4.3) if and only if 

-PC%) + Y(Uz) # 
P(G) + r(uz) 

constant 
1 

(4.4) & -Y(~B;;;w~; +~;~;A+&‘(~~~~~~ ur,~-+.~-.) _+ o. 

7 2 2 

The main idea in the proof of Theorem 4.1 is the same as that in the proof of 
Theorem 3.1. However, since the general procedures for computing the classes of 
foliations produced are different, here we give the corresponding part of the proof 
of Theorem 4.1. 
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PROOF. For a general solution u, the relations between the natural frame { 6, &} 
and the orthonormal frame {ei,e9} are 

and hence 

wi = P(8zu) + r(%u) dX + B(u,d,u, . ..) QL) + C(u,&u, . ..) a,nu> 
2 2 dt, 

(4.6) ~2 = A(u,d,u, . . . . @)dt. 

The corresponding connection form of the metric is w12 = pwl + qw2 with 

(4.7) 
-P+-Y 

p= P+r 
and 4= 

-yB + PC 
(P-tyP . 

By (4.7), our assumptions in (4.4), and the Inverse Function Theorem, there exist 
smooth functions f and g such that 

(4.8) %u = f(P), u = g(q, E&u, . ..) a$) 

Hence, the first equation in (4.5) becomes 

(4.9) 
where 

(4.10) 

a 
- = G(p)el, 
da: 

qp) = P(f(P)) + ?tf(P)) 
2 ’ 

and the second equation in (4.8) is equivalent to 

(4.11) u = 9(41 f(P), ~(P)W(P), “‘> (~(P)W-lf(P)) = h(q, P> dlP, .‘.> (VP)? 

where h is a smooth function. Thus, by the first equation in (4.8), (4.9) and 
(4.11), the foliation consisting of the x-lines satisfies 

(4.12) 
n-1 

fib) (%Gm G, “‘9 a;-‘d&q + c ~a:pWw, dip, ...I a;“-‘P)@+‘P) = f(p). 
j=o 

As in the proof of Theorem 3.1, we can show that (4.12) is a class of foliations 
described by the nonlinear PDE in question-the compatibility condition of (4.2). 

q  
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Example 7. The sine-Gordon equation 

(4.13) uzt = sin u 

is the compatibility condition for the sl(2, JR)-linear system 

(4.14) 
v 

t 
= _l_ sinu 

( 

cos u 
217 cosu -sinu 1 

v, 

where 7 # 0 is a free parameter, and describes the class of foliations on a pseudo- 
spherical surface defined by 

(4.15) 

with 

(4.16) 

4&P &q= - - P2 - q2 
P 

u = -arccot 4 
1 1 

P’ 
p = --u,, 

71 q = 2 cot u. 

This example first appeared in [ 91, as mentioned in the introduction. 

Example 8. Just like the sine-Gordon equation, every other equation in the sine- 
Gordon hierarchy is the compatibility condition for an sl(2, JR)-linear system (4.2) 
satisfying (4.3) and (4.4), so it describes a class of foliations on a pseudo-spherical 
surface. 

Next, assume that the equation (4.1) is 
su(2)-linear system 

the compatibility condition for an 

(4.17) w, = ~(U,Uzr . . . . u,...,)W 

of the form (2.20), i.e., 

(4.18) Q = ; (_,“+ iy P ‘0 “> and 
B + iC 

> -iA ’ 

where p, y, A, B and C are smooth functions. Similar to Theorem 4.1, we have 
the following result. 

Theorem 4.2. A nonlinear partial differential equation uzt = 3(u, u,, . . . . u,...~) 
describes a class of foliations on a spherical surface via an su(2)-linear system 
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(4.17) for it satisfying (4.18) if and only if 

-Y(ux) 
PC%) 

# constant, 

Example 9. The sine-Gordon equation (4.13) is the compatibility condition for 
the su(2)-linear system 

(4.20) 

wz=; O ( 77 - iu, 
-q-- iu, 0 > 

W 

Wt 
1 

=2;; 
( 

-isinu -cosu 
cos u isinu ) 

W 

where 17 # 0 is a free parameter, and the class of foliations on a spherical surface 
yielded by Theorem 4.2 for the sine-Gordon equation via (4.20) is (4.15) together 
with the relations in (4.16). This example first appeared in [ 91, as mentioned in 
the introduction. 

Example 10. Just like the sine-Gordon equation, every other equation in the sine- 
Gordon hierarchy is the compatibility condition for an su(2)-linear system (4.17) 
satisfying (4.18) and (4.19), so it describes a class of foliations on a spherical 
surface. 

5. SOME EQUATIONS F(u, IL,, ut, Q) = 0 DESCRIEING FOLIATIONS 

The sinh-Gordon equation 

(5.1) u,t = sinhu 

is the compatibility condition for the sl(2, IR)-linear system 

v, = 1 O e” v, 
( 1 27 e-” 0 

(5.2) v, = 1 Ut 77 v. ( > 2 17 -ut 

However, Theorem 4.1 does not apply to the sinh-Gordon equation via (5.2). 
(Even though the imaginary solutions of the sinh-Gordon equation correspond to 
the real solutions of the sine-Gordon equation, here we are considering real solu- 
tions of the sinh-Gordon equation.) For this kind of cases, we have the following 
result. 
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Theorem 5.1. A nonlinear partial differential equation u,t = F(u, u,, ut ) de- 
scribes a class of foliations on a pseudo-spherical surface via an s1(2,IR)-linear 
system 

(5.3) 
v 
t 

for it if and only if 
-p(u’ + y(u) # constant, 
P(u) + r(u) 

(5.4) 
a -r(uP(u, ut) + P(UM’LL, ut) f; 0. 

8% (P(u) + du))A(u> ut) 

The main idea in the proof of Theorem 5.1 is also the same as that in the proof 
of Theorems 3.1. However, since the general procedures for computing the classes 
of foliations produced are still quite different, the corresponding part of the proof 
of Theorem 4.1. 

PROOF. For a general solution u, define a metric on its domain by specifying an 
orthonormal frame field {er , e2} via 

(5.5) & = p(u) g y(“)el, & = B(“‘ut) l c(u7ut)er + A(u,ut)ez, 

then the corresponding orthonormal coframe field {WI, ~2) is given by 

(5.6) 
w1 = B(u) + Y(U) dz + B(% ut) + C(u, W) dt 

2 2 
, w2 = A(u, ut)dt. 

The corresponding connection form of the metric is wrs = pwl + qw2 with 

(5.7) 
-P+,Y -yB + PC 

p= P+r 
and 

‘= (P+y)A 

By (5.7), our assumptions in (5.4), and the Inverse Function Theorem, there exist 
smooth functions f and g such that 

(5.3) u=fb) and Ut = S(P, Q). 

Hence, (5.5) becomes 

(5.9) 
a - = G(p)el, 
ax 

-FJj = “i(p, 4) el + J(P, 4) a, 
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where 

(5.10) G?(P) = P(f(P)) + ,-df(P)) 
2 ’ 

(5.11) %P,q) = 
B(f(Ph S(P, 4)) + C(f(PL dP> 4)) 

2 , 

(5.12) i(P, 4) = M(P), s(Pi q)). 

Thus, by (5.8) and the second equation of (5.9), the foliation consisting of the 
s-lines satisfies 

(5.13) f’(P) (%P> d&P + Z(P7 dd2P) = dP> 4). 

As in the proof of Theorem 3.1 again, we can show that (5.13) is a class of 
foliations described by the nonlinear PDE in question-the compatibility condition 
of (5.2). 0 

&rumple 11. By (5.2) and Theorem 5.1, the sinh-Gordon equation (5.1) describes 

the class 

(5.14) P82P - 4dlP = 
p2 - 1 P 

of foliations on a pseudo-spherical surface with 

(5.15) u = -arctanhp, p = -tanhu, 
77 tanh u q=- 

ut . 

The following result is similar to Theorem 5.1. 

Theorem 5.2. A nonlinear partial differential equation uzt = 3(u) u,, ut) de- 
scribes a class of foliations on a spherical surface via an su(2)-linear system 

w, = 1 ( 0 P(u) + b(u) 
2 -P(u) + h(u) 0 > 

w 

7 

(5.16) w, = 1 iA(u, ut ) B(u, ut) + iC(u, ut) w 

2 -B(u, ut) + iC(u, ut) -iA(u, ut) 

for it if and only if 
y(u) 
P(u) 

# constant, 

(5.17) 8 --Y(‘IL)B(% %) + P(u)C(u, ut) # o, 
8% P(‘IL)~u, 4 
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