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ABSTRACT. Let 1, be the identity operator on an n-dimensional Banach 
space E,. In this paper we establish upper estimates, in terms of the co- 
type of E,, for some ideal norms of In. This results are applied to study 
absolutely summing operators on Besov spaces. 

1. INTRODUCTION 

The class of all (bounded linear) operators between arbitrary Banach spaces is 
denoted by C, while C(E, F) stands for the space of those operators acting from 
E into F, and which is equipped with the usual operator norm 

The set -T,(E, F) consists of all S E C(E, F) such that S(E) := {SE : 2 E E} is 
at most mdimensional. The dual of E is denoted by E’. 

We refer to [7] for definitions and well-known facts of the operator ideals 

P4-,S~ P?“,Sl~ Fb,w np,q 1 and [Z, &I Of ( T, s )- mixing, absolutely (p, q)- summing 
and r-integral operators, respectively. For p = q we have the operator ideal 
[II,, rrP] of absolutely p-summing operators (for p = 1 we simply speak of an ab- 
solutely summing operator). We shall freely make use of the results given there, 
omitting specific references. 

Let us recall that a Banach space E is said to be of (Rademacher) cotype q, 
with 2 5 q < co, if there exists a constant Ic such that 
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for all finite families of elements 21, . . . ,5, E E, where r-i denotes the i-th 
Rademacher function. We put K,(E) := inf Ic. 

If 1 5 p 5 03, then the dual exponent p’ is defined by l/p + l/p’ = 1. 

BY c,cl,cq ,... , we always denote positive constants, eventually depending on 
certain exponents, but not on other quantities like operators, Banach spaces, or 
natural numbers. 

2. COTYPE AND UPPERBOUNDS FOR SOME IDEAL NORMS 

In this section, In denotes the identity operator on an n-dimensional Banach 
space E,. We start our considerations with the 

Lemma 2.1. Let 1 < s 5 2 and n, m = 1,2,. . . . Then for every operator 
T : lz + E, one has: 

(i) r,(T) < cq Kq(E,) nl/s-l/‘J IITII, where 2 < q. 
(ii) r,(T) 5 cK2(En) [l + log Kz(E~)]‘/~ n1/3-1/2 jlT[l. 

PROOF. (i) We have 7rq,i(In) I Kq(E,). From [9, p. 1501 and [3] (see also [9, p. 
1601) we obtain 

rz(T) 5 cn1’2-1/q x9,2(T) 

< cq n1/2-1/q rq,l(T) 

< cq Kq(E,) n1/2-1/q lITI/. 

Using the multiplication formula 

[Z2,i2] 0 [n2,7r2] c [&,il] 

and the fact that i2(In,) = n1i2, we also have 

ii(T) < cq Kg(&) nllq’ ]]T]]. 

Given 1 < s < 2, we define 0 by l/s = (1 - 0) + O/2. Combining the above 
inequalities we arrive at 

n,(T) 5 ~i(T)'-'7r2(57)' 

< cq Kq(E,) n’/‘-‘/q IITII, 

concluding the proof of (i). 
(ii) A result of Maurey [4] (see also [9, p. 691) states 

7r2(7') 5 cK2(%)[1+ log K2(-&)]"" IlTll. 

The result follows in a similar way to the proof of part (i), using now the above 
inequality. q  
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We also have the 

Lemma 2.2. Let 2 < q, 2 I s 5 q and n, m = 1,2,. . . . Then for every operator 
T : lg -+ E, one has 

ns,l(T) I c&(E,) nl/s-l/q jlTl[. 

PROOF. As in the proof of Lemma 2.1(i) we have 

~q,dT) L cl rq,l(T) 5 ~1 Kq(E,) IlTll, 

and from [9, p. 1501 we get 

rs,l(T) < 7rs,2(7’) < c2 nl/s-l/q 7rq,2(T). 

From this estimates we obtain the result. 

The next inequalities are the key for our later work. 

Proposition 2.3. Let 1 5 s 5 2 and n = 1,2, . . . . Then 
(i) /&l,l(In) 5 Cq Kq(E,) nl/s-l/q, urhere 2 < q. 
(ii) psl,l(ln) I cK2(E,) [l + log K2(En)]‘/” n1/s-1/2. 

PROOF. (i) Given x1,. . . , 2, E E,, we define X : lz + E, by 

xy := -gosi for y= (VI,... ,7jm) E 1:. 
i=l 

Note that 

IIXII I SUP 
{ 

2 I (Zi,a) 1: llall 5 1 . 
i=l 1 

Let S be a linear map from E, into a Banach space G. Then it follows from 
Lemma 2.1(i) that 

rr(SX : 1: t G) 5 rs(X : Zg + E,)7rs,(S: E, -+ G) 

< cq Kq(E,) nl/s-l/q [IX : l”, + E,ll 7rst(S : E, -+ G). 

Hence, if (ei) denotes the standard basis of Zz,, we have 

2 IlSziII = 2 IlSXeiII 5 rl(SX : Zz + G) 
i=l i=l 

< cq Kq(E,) nl/s-l/q IIX : Z”, + E,ll 7rsf(S : E, + G) 

and this implies that 

7rr(S : E, + G) < cq K,(E,$z~‘~-~‘~ rrsl(S : E, --f G). 
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This and the formula 

[4~,1,PLs’,ll = [~s5%~l-1 0 [nl,m] 

yield part (i). 
From Lemma 2.l(ii), one can proved 

Remark. Upper estimates for ~~,~(l~), 
obtained in [l] by a different method. 

similarly (ii) q  

without use of cotype constants, where 

Proposition 2.4. Let 2 < q, 2 5 s 2 q and n = 1,2,. . . . Then 

7r,,1(In) 5 cK4(E,) nl/s-l/q. 

PROOF. For m = 1,2,. . . , we define X E fZ(Zg,, E,) as in Proposition 2.3. From 
Lemma 2.2 we obtain 

(2 11% IISY 5 ns,l(X) 5 c&(E,) nl/s-l/q l/XII 
i=l 

5 cKg(E,) nl’s-l/g sup 
i 

5 1 (xi, a) I: [Iall < 1 , 
a=1 1 

which yields the desired inequality. 0 

For every operator S E C(E, F) the n-th approximation number is defined by 

a,(S) := inf {IIS - LII : L E 3,_1(E, F)}. 

We put 

and 

Cpj := {S E C : (a,(S)) E 1,,,} 

-$4(S) := II(an(~))llp,g for S E $i, 
where [I,,,, II . IIP,g], 0 < p, q 5 CQ, stands for the quasi-normed Lorentz sequence 
space (cf. [8, (2.1)] (for p = q we get the classical space of psummable sequences 
denoted by Zp). Then [f$i, L$$] b ecomes a quasi-normed operator ideal (see also 
c8, (2.3)1). 

For later use we state the 

Proposition 2.5. Let E be a Banach space. 
(i) If F is a Banach space of cotype q, with 2 < q, and 1 5 s < 2, then 

@,)(E F) & M,r l(E F) > ’ > 9 7 

where l/t := l/s - l/q. 
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(ii) If F is a Banach space of cotype 2 and 1 5 s < 2, then 

@(E,F) G M,f,l(E,F), 

where l/r := l/s - l/2. 
(iii) If F is a Banach space of cotype q and 2 2 s < q, then 

Cf”,(E F) C M,I_, l(E F) 3 ’ - 1 7 7 

where l/t := l/s - l/q and E > 0. 

PROOF. (i) Let S E Fn(E, F). We have the factorization S = JISc : 

S: E so, S(E) r, S(E) 4 F, 

where So is the astriction of S, I is the identity operator on S(E) and J is the 
natural injection. From Proposition 2.3(i) we have 

II,,,I (S) I II Jll PY,I (1) llsoll 
I cp K,(S(E)) nl/s-l/q \\So\\ 

I cq K,(F) nllt IlSll. 

Given T E Lj”,) (E F) an d using a representation theorem of Pietsch [8, (2.3.8)], 
we have T = C’pf, L?!‘k (convergence in the operator norm) with Tk E Fzk(E, F) 
and (2”lt llTk[l) E II. Hence 

2 11,‘,r(Tk) < cq K,(F) 2 2klt llT/cll < cm, 
k=O k=O 

and then cr=“=, Tk is convergent in the Banach space Ms,,l(E, F). Therefore 
T E Ms,,l(E, F). This completes the proof of (i). 

Similarly we obtain (ii) and (iii), employing now Proposition 2.3(ii) and Propo- 

sition 2.4, respectively, and using 

(inclusion 

3. 

BII,,I(E, F) C_ J%-,,r(E, F) 

given in [7, (20.1.12)]). III 

ABSOLUTELY SUMMING OPERATORS BETWEEN BESOV SPACES 

Let E be any Banach space. Let -co < D < +co and 1 I p,u 5 00. As in 
[5] (cf. also [8, (5.4)]) the Besov sequence space [b,“,,, E] consists of all E-valued 
sequences (zcm,h) indexed by 

P := {(m, h) : m = 0, 1,. . . ; h = 1,. . . ,2”} 
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such that the norm 

II(XMJll[b~,,,E] := {go [2.-c (~,,x~,h,,p)l’p]u)‘-” 
is finite. In the cases p = CO or u = CO the usual modifications are required. If E 
is the scalar field, then we simply write b;,,. 

Let A = (crm,hin,k) be any matrix. By am& we denote the scalar sequence 
(crm,hin,k) where (m,h) is fixed. We define a := (am,h). We say that the matrix 
A belongs to [b,“,,, b:,,] if this is true for the bXv -valued sequence a. 

Putting 

SA : (%,k) + 

( 

bn,h := 5 5 %n,h;n,k %,k 

n=O k=l ) 

we get an operator SA E II, (b-’ q,,v,, b&J, where s := max (p, u) (see [5]). 
In the following we deal with the natural embedding I from b& into b;,,, which 

exists if the condition u - r > max (l/q - l/p, 0) holds. 
In order to study the cotype of b,“,,, with 1 < p,u < CO, we consider the 

following facts: 
Let (Ei) be a sequence of Banach spaces with i E N. Then [Zp, Ei] denotes the 

Banach space of all sequences x = (xi), with xi E E, for i E IV, such that 

IlXlll, := fy IIXillP ( ) 
llP 

< 00, 
i=l 

where 1 5 p < co. If we suppose that every space Ei is of cotype q and 
sup{K,(Ei) : i E W} < 00, then [Zp, Ei] is of cotype max(p,q). The proof of 
this result is given in [S] for p < q, and the case p > q can be obtained in a similar 
form. 
We apply the above consideration to the special sequence of the 2”-dimensional Ba- 
nach spaces 2 mu Z;m with m = 0, 1, . . . (see [8, (B.1.4)]). Since bp” 11 := [Zu, 2mb ZEm], 
we easily get that the cotype of b:,, is max (p, u, 2). 

Now we are in a position to prove the 

Theorem 3.1. Let -oo < 0, r < +co, 1 5 p, u 5 cm and 1 < q, w 5 cm. 
Let s := max(p,u), t := max(q’,v’,2) and suppose that one of the foZZowin,g 
conditions is satisfied: 

(a) ~22 ift>2. 
(b) s > 2 iift = 2. 
(c) 2 < s’ < t. 
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Let A E [b,“,,, bi+] and 
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lfr:= o 
{ 

1 -l/q- l/P tf Q'<P 
if Pid. 

Ifa+r>l+l/r-l/s-l/t, then 

RA : (%z,k) --f 

( 

&n,h := 5 5 &n,h;n,k %,k 

n=O k=l 

verifies RA E lI,(b,“,,, b&J. 

PROOF. First we assume that the conditions (a) or (b) are verified. We have the 
factorization RA = 5’~ I: 

RA : bp”,, A b,lTw, Sa, b,” 11 

with SA E n,(b;:,,, b,“,,). 
By [2] there exists a constant c such that, for all n, 

n”+7-1’r a,(1) 5 c. 

Hence I E L~~~l(b,“,,, b;Tv,) if u + T - l/r > l/t 0, and from Proposition 2.5(i) or 
2.5(ii) we obtain 

1 E Ms,l(b;,~, b.&) 

whenever l/s’ = l/to + l/t. 
Using the inclusion 

we finally obtain RA E n,(b,“,,, bi+) whenever 

c + 7 > l/r + l/s’ - l/t. 

This concludes the desired part of the proof. 
If condition (c) is satisfied, the proof follows using the same method and Propo- 

sition 2.5(iii). 0 

Let 0 > 0 and 1 5 p,u 5 co. The Besov function space [Bg,,(O, l),E] consists 
of certain E-valued functions defined on the unit interval [0, l] (see [8, (6.4)]). If 
E is the scalar field, then we simple write B&(0,1). 

For m > g + 1 - l/p, the Ciesielski-Ropela transform is denoted by C,, which 
establishes an isomorphism between 

B,“,(O, 1) and Zp” @ b,“,&1’P+1/2. 
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Further information is also given in [8, (6.4)]. 
A kernel K defined on the unit square [0, l] x [0, l] belongs to 

[B,q,(OT l), B;,TJ(Ol1)1 

if the function-valued function 

Kx : E + K(t, .) 
below to [B&CO, 11, B&,(0,1)1. 

In the following we deal with the embedding 1~ from B&(0,1) into Bi,y(O, 1)’ 
which exists if the condition u + T > l/p + l/q - 1 is satisfied. 

Finally, we formulate the 

Theorem 3.2. Let c, T > 0, 1 < p, ‘1~ < co and 1 < q, v < co. Let s := max (p, u), 
t := max (q’, v’, 2) and suppose that one of the following conditions is satisfied: 

(a) s > 2 ij t > 2. 
(b) s > 2 ijt = 2. 
(c) 2 < s’ < t. 

Let K E PPqu(O, I), B&,(0,1)1 and 

l/r := o 
{ 

l-l/q- l/p if q’s P 
if p<q’. 

If c + 7 > l/p + l/q + l/r - l/s - l/t, then 

TK : f(v) + j-’ K(t, 17) f(v) dv 

verifies TK E rIl(B&(O, l),B&(O, 1)): 

PROOF. First we assume that the conditions (a) or (b) are verified. Let m > 
max (C + 1 - l/p, T + 1 - l/q). From [8, (6.4.13)] the embedding 1~ is related to 
embedding operators I, and It, acting between sequence spaces by 

B&4(0, I) 3 B,‘,W(O, 1)’ 
c-1 Tck 

F $ b;,uP+‘/2 
p, (1:)’ cl3 (b;,1’q+1’2)‘. 

Since (bG,1’q+1’2 )’ = b,-,:,fVs-112, we obtain from CL that BG,,(O, 1)’ has cotype 

By [2] we have for the embedding 
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that exists a constant c such that, for all n, 

n~f~-llP-llq-ll~+l an(Jb) 5 c, 

Hence, from the above diagram 

II? E Q;,(~;,,(O, l), B,‘,,(O, 1)‘) 

if c + r - l/p - l/q - l/r + 1 > l/to, and consequently applying Proposition 2.5(i) 
or 2.5(ii) we have 

IES E Ms,r(B;,,(O, l), &(O, 1)‘) 

whenever l/to = l/s’ - l/t. 
The operator TK admits the factorization TK = SK Ig: 

TK : B&(0,1) Ig, Bi,,(O, 1)’ SK, Bi,,(O, l), 

where SK(U) := (Kx(.),a), and we know by [8, (6.4.16)] that 

SK E %(B;,v@, I)‘, B;,,(O, 1)). 

From the preceding considerations and the inclusion 

P-L~sl 0 IJ%,I,P~,I~ C [&ml, 

we obtain that TK E II,(B&(O, l), B&(0,1)) if u + r - l/p - l/q - l/r + 1 > 
l/s’ - l/t. This proves the desired part of the assertion. 

The proof under the condition (c) is analogous, using now Proposition 2.5(iii). 
0 

Remarks. (1) Adaptation of the proof of Theorem 3.2 yields the corresponding 
result for appropriate kernels [B&(0, I), L,(O, l)] of Besov-Hille-Tamarkin type. 

(2) We do not know whether the conditions given in Theorems 3.1 and 3.2 are 
necessary for the absolutely summing property of the operator. 
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