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ABSOLUTELY SUMMING OPERATORS ON BESOV SPACES
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ABSTRACT. Let I, be the identity operator on an n-dimensional Banach
space E,. In this paper we establish upper estimates, in terms of the co-
type of En, for some ideal norms of I,. This results are applied to study
absolutely summing operators on Besov spaces.

1. INTRODUCTION

The class of all (bounded linear) operators between arbitrary Banach spaces is
denoted by L, while L(E, F) stands for the space of those operators acting from
E into F, and which is equipped with the usual operator norm

151 =I5 : E = F|| := sup {|iSzll : ||=|| < 1}.

The set F,(E, F) consists of all S € L(E, F) such that S(E) := {Sz:z € E} is
at most n-dimensional. The dual of E is denoted by E’.

We refer to [7] for definitions and well-known facts of the operator ideals
Mes,pirsl, (Hpqy7pql and [Z,,4,] of (r,s)-mixing, absolutely (p,q)- summing
and r-integral operators, respectively. For p = ¢ we have the operator ideal
(IT,,, 7] of absolutely p-summing operators (for p = 1 we simply speak of an ab-
solutely summing operator). We shall freely make use of the results given there,
omitting specific references.

Let us recall that a Banach space F is said to be of (Rademacher) cotype g,
with 2 < ¢ < o0, if there exists a constant k such that

n 1/q 1 n
(Zuw) <k /0 1Y ri(t)zs| dt
=1 =1
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for all finite families of elements z1,...,z, € E, where r; denotes the #th
Rademacher function. We put K (E) := inf k.

If 1 < p < oo, then the dual exponent p’ is defined by 1/p+1/p’ = 1.

By ¢,c1,¢y, ..., we always denote positive constants, eventually depending on
certain exponents, but not on other quantities like operators, Banach spaces, or
natural numbers.

2. COTYPE AND UPPER BOUNDS FOR SOME IDEAL NORMS

In this section, I,, denotes the identity operator on an n-dimensional Banach
space E,. We start our considerations with the

Lemma 2.1. Let 1 < s < 2 and n,m = 1,2,... . Then for every operator
T:17 — E, one has:

(3) 7s(T) < cq Ko(Ep) nt/s=Y2 || T\, where 2 < q.

(i1) 7(T) < ¢ Ko(Bn) [1 + log Ka(En)]V/2nt/s—12||T].
ProoF. (i) We have 7, 1(I,) < Kq(Ey). From [9, p. 150] and [3] (see also [9, p.
160]) we obtain

w2 (T) ent/?-1/4 7g,2(T)

Cq nt/2-1/q 7q,1(T)
cq Ko(Bn)n'/ >~ 19 |T|.

Using the multiplication formula

[Z2,42] o [a, ma] C [Zy,141]
and the fact that ip(I,,) = n!/?, we also have
i1(T) < ¢q Ko(Ba) /7 ||T.

Given 1 < s < 2, we define # by 1/s = (1 — 8) + 8/2. Combining the above
inequalities we arrive at

7s(T)

IAN A A

my(T) =0 mo(T)?
cq Ko(En)n'/s=1aT|,

IA A

concluding the proof of (i).
(ii) A result of Maurey [4] (see also [9, p. 69]) states

mo(T) < e Ky(Ey) (1 + log Ko(Ex)Y?||T).

The result follows in a similar way to the proof of part (i), using now the above
inequality. O
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We also have the

Lemma 2.2. Let2<q,2<s<qandn,m=1,2,... . Then for every operator
T:13; — E, one has

T5,1(T) < ¢ Ky(En) nt/s=1/4 I7ll-
PROOF. As in the proof of Lemma 2.1(i) we have
7Tq,2(T) <c ﬂq’l(T)

and from [9, p. 150] we get

< a1 Ko(En) [IT,

T, 1(T) < 752(T) < o nl/s—1/q 7q,2(T).
From this estimates we obtain the result. O
The next inequalities are the key for our later work.

Proposition 2.3. Let 1 <s<2andn=1,2,... . Then
(2) psr1(In) < g Kq(En) nt/*=19 where 2 < q.
(id) ps1(In) < cK2(Ep) [1 +log Ko(En )]/ nl/o1/2,

PRroOF. (i) Given zy,... ,zy € E, we define X : I - E,, by

m
Xy :=Z7h‘mi for y= (721,--- )nm) € 12-
=1

Note that

1 X|| < sup {Z | (zi,0) | [lal < 1} :
=1
Let S be a linear map from E,, into a Banach space G. Then it follows from
Lemma 2.1(i) that
m(SX : I — Q) T X 1 le = Ep) e (S: Ep = G)
cg Ko(Bp)n/ s~V X 17 = E || 7 (S : Ep = G).

Hence, if (e;) denotes the standard basis of 2, we have

PR EEA]
=1

<
<

D> ISXeill < m(SX I — G)

i=1
< g Ko(ER)nt/*~ Y IX 1™ 5 B, || 70 (S : By = G)
and this implies that
71(S : En = G) < cg Ky(En)n* " Yi7,(S : E, - G).
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This and the formula
[Ms’,lnus’,l] = [Hs’; 71'31]_1 o [Hl) ﬂ-l]

yield part (i).
From Lemma 2.1(ii), one can proved similarly (ii). a

Remark. Upper estimates for u, ;(I,), without use of cotype constants, where
obtained in [1] by a different method.

Proposition 2.4. Let2<q,2<s<qgandn=1,2,... . Then
7s,1(In) < c Ky (Ep) ntfs=tla,

PROOF. For m =1,2,... , we define X € L(I}, E,,) as in Proposition 2.3. From
Lemma 2.2 we obtain

m
Q Nl < w1 (X) < eKy(By)nt/s1a )X ||
i=1
m
< cKy(Bn)n/*14 sup {Z | (zs,a) | lafl < 1},
=1
which yields the desired inequality. O

For every operator S € L{E, F) the n-th approzimation number is defined by
an(S):=inf{||S-L||: L € F,_1(E,F)}.

We put
L) ={S € L: (an(S)) € b}
and
LE(S) := l(an(S)lpg for S € L),
where [l; 4,1 - |lp,q], 0 < p,g < 00, stands for the quasi-normed Lorentz sequence

space (cf. [8, (2.1)] (for p = ¢ we get the classical space of p-summable sequences
denoted by I,). Then [£%%), L{*)] becomes a quasi-normed operator ideal (see also

8, (2.3)]).

For later use we state the

Proposition 2.5. Let E be a Banach space.
(i) If F is a Banach space of cotype q, with 2 < q, and 1 < s < 2, then

LB, F) € My, (E, F),
where 1/t :=1/s — 1/q.
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(i) If F is a Banach space of cotype 2 and 1 < s < 2, then
L) (B, F) € My (B, F),

where 1/r:=1/s —1/2.

(¢i¢) If F is a Banach space of cotype q and 2 < s < q, then

LB, F) C My_cu(E, F),
where 1/t :=1/s—1/q and € > 0.
PROOF. (i) Let S € F,,(E, F'). We have the factorization S = JISj :
S:E28(8) L sE)-LF
where S is the astriction of S, I is the identity operator on S(E) and J is the
natural injection. From Proposition 2.3(i) we have
psr,1(S) 1l st 2 (1) 1Sl

cqg Ko(S(E)) nt/*=Ha)|So)|
cq Kq(F)nM/*||S]).

IANIAIA

GivenT € z:§j‘1)(E, F) and using a representation theorem of Pietsch [8, (2.3.8)],
we have T' = 3 77 ( Tk (convergence in the operator norm) with Ty € Fpx(E, F)
and (2%/t||Tx||) € ;. Hence

o0 [e¢}
Z“S’,I(Tk) < cq Ko(F) sz/t Tkl < oo,
k=0 k=0

and then » 77 (T is convergent in the Banach space M, 1(E,F). Therefore
T € My 1(E, F). This completes the proof of (i).

Similarly we obtain (ii) and (iii), employing now Proposition 2.3(ii) and Propo-
sition 2.4, respectively, and using

I 1(E, F) C Mg _e1(E, F)
(inclusion given in (7, (20.1.12)]). O

3. ABSOLUTELY SUMMING OPERATORS BETWEEN BESOV SPACES

Let E be any Banach space. Let —00o < ¢ < 400 and 1 < p,u < co. As in
[5] (cf. also {8, (5.4)]) the Besov sequence space (b5 ,, E] consists of all E-valued
sequences (Z,,») indexed by

P:={(m,h):m=0,1,...;h=1,...,2™}
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such that the norm

%) 2™ 1/p
l@m)ling, oz = 3 27 (Z nzm,uv’)
h=1

m=0

uy 1/u

is finite. In the cases p = 0o or u = 0o the usual modifications are required. If E
is the scalar fleld, then we simply write b7

Let A = (@m nnk) be any matrix. By a,, 5, we denote the scalar sequence
(@m,hin k) Where (m, h) is fixed. We define a := (a,, »). We say that the matrix
A belongs to [b7 ,, b7 ] if this is true for the b] ,, -valued sequence a.

Putting

oo 2"
Sa (k) = <§m,h =3 Amink nn,k)

n=0k=1
we get an operator Sa € IL;(b,7,, b5 ), where s := max (p, u) (see [5]).
In the following we deal with the natural embedding I from by into b7, which
exists if the condition ¢ — 7 > max (1 / g — 1/p,0) holds.
In order to study the cotype of b by, with 1 < p,u < oo, we consider the
following facts:
Let (E;) be a sequence of Banach spaces with i € N. Then [l,, E;] denotes the

Banach space of all sequences z = (z;), with z; € E; for i € N, such that

1/p
llzlls, : (Z Hﬁll”) < 00,

where 1 < p < oco. If we suppose that every space E; is of cotype g and
sup {K,(E;) : i € N} < oo, then [l,, E;] is of cotype max (p,q). The proof of
this result is given in {6] for p < g, and the case p > g can be obtained in a similar
form.
We apply the above consideration to the special sequence of the 2™-dimensional Ba-
nach spaces 277 I2” withm = 0,1,... (see 8, (B.1.4)]). Since b7, := [L,, 2™ I2"],
we easily get that the cotype of b7 , is max (p,u,2).

Now we are in a position to prove the

Theorem 3.1. Let —00 < 0,7 < +00, 1 < pu < 0 and 1 < q,v < o0.
Let s := max(p,u), t := max(q’,v,2) and suppose that one of the following
conditions is satisfied:

(a) s>2ift > 2.

b)) s>2t=2.

(e)2<s <t.
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Let A€ [b5,,b],] and

yul vq,v
1-— - ; ' <
1r = Ya-1/p i da<p
0 i p<dq.
Ifo+7>1+41/r—1/s—1/t, then

co 2"
Ra: (nn,k) - <§m,h = Z Zam,h;n,k nn,k)

n=0 k=1
verifies Ry € 111 (b3 ., b5 ,,)-

PrOOF. First we assume that the conditions (a) or (b) are verified. We have the
factorization Ry = Sa I:

. O 1 -7 SA led
Ryg:bp, —b —= by

q,,'U’
with Sy € L, (b7,,b5.,).

q v pu
By [2] there exists a constant ¢ such that, for all n,

not Vg (I) < c

Hence I € Egg?l(bg,u,b;,,’v,) if o + 7 — 1/r > 1/ty, and from Proposition 2.5(i) or

2.5(ii) we obtain
Ie Mg 1(b3,,6.7,)

p’u) ql’vl
whenever 1/s" = 1/tg + 1/t.
Using the inclusion

[H.sa ﬂs] o [Ms,h ,u's,l] g [H17 7I'1]

we finally obtain Ra € II; (b ,, b5 ,,) whenever

c+71>1/r+1/s —1/t.

This concludes the desired part of the proof.
If condition (c) is satisfied, the proof follows using the same method and Propo-
sition 2.5(iii). O

Let ¢ >0 and 1 < p,u < co. The Besov function space [Bg’u(O, 1), E] consists
of certain E-valued functions defined on the unit interval [0, 1] (see [8, (6.4)]). If
E is the scalar field, then we simple write By (0, 1).

For m > o+ 1—1/p, the Ciesielski-Ropela transform is denoted by C,,, which
establishes an isomorphism between

o m o—1/p+1/2
BZ,(0,1) and I @by /P2
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Further information is also given in [8, (6.4)].
A kernel K defined on the unit square [0, 1] x [0, 1] belongs to

[Bp..(0,1), By ,(0,1)]
if the function-valued function
KX : 6 — K(Ea )

belongs to [By ,(0,1), B ,(0,1)].

In the following we deal with the embedding I from By (0, 1) into By (0, 1)’
which exists if the condition 0 + 7 > 1/p + 1/¢g — 1 is satisfied.

Finally, we formulate the

Theorem 3.2. Leto,7 > 0,1 <p,u<ooandl < q,v < 0o. Let s := max (p,u),
t := max (¢’,v',2) and suppose that one of the following conditions is satisfied:
{a) s>2ift>2.
(b) s >2ift =2.
(c)2<sd <t.
Let K € [By ,(0,1),B7 ,(0,1)] and

_J1-1g-1/p ¥ ¢<p
Hr= { 0 i p<q.
Ifo+7>1/p+1/q+1/r—1/s—1/t, then

1
Tic: f() > [ K€ fln)dn
0
verifies Ty € 11;1(By ,(0,1), By ,(0,1)).

PrOOF. First we assume that the conditions (a) or (b) are verified. Let m >
max (o +1~—1/p,7+1—1/q). From [8, (6.4.13)] the embedding I is related to
embedding operators I,,, and I, acting between sequence spaces by

BZ,(0,1) LN B;,(0,1)
Cm | Ten
e bpa T — ) @ (65
Since (b5 /7Ty = b;?&rl/q_l/z, we obtain from C;, that B7 ,(0,1)" has cotype
: By [2] we have for the embedding

. po—1/p+1/2 —T+1/9-1/2
Jp: bp,u — bq,,v,
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that exists a constant ¢ such that, for all n,
na+1’—1/p—l/q—1/r+1 an(Jb) <ec.
Hence, from the above diagram
I5 € £,71(B,(0,1), B} ,(0,1))
ifo+7-1/p—1/9—1/r+1 > 1/ty, and consequently applying Proposition 2.5(i)
or 2.5(ii) we have
Ip € M,1(B7,(0,1), B7,(0,1))
whenever 1/to = 1/s' — 1/t.
The operator Tk admits the factorization Tk = Sk Ig:

Tx : BS,(0,1) & By (0,1) 25 B? (0,1),
where Sk (a) := (Kx(-),a), and we know by [8, (6.4.16)] that
Sk € I14(Bg,(0,1Y, By ,(0,1)).
From the preceding considerations and the inclusion
(Is, ms) o [M 1, ps1] € [Ty, m],

we obtain that Tx € IIi(Bg,(0,1), By, (0,1)) if o +7-1/p—1/g-1/r+1 >
1/s’ — 1/t. This proves the desired part of the assertion.

The proof under the condition (c) is analogous, using now Proposition 2.5(iii).

O

Remarks. (1) Adaptation of the proof of Theorem 3.2 yields the corresponding
result for appropriate kernels [B7 ,(0,1), Ly(0, 1)] of Besov-Hille-Tamarkin type.

{2) We do not know whether the conditions given in Theorems 3.1 and 3.2 are
necessary for the absolutely summing property of the operator.
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