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ON THE EXPONENTIAL DECAY OF C1 CUBIC LAGRANGE 
SPLINES ON NON-UNIFORM MESHES AND FOR 

NON-UNIFORM DATA POINTS 

SANG DONG KIM AND BYEONG CHUNG SHIN 
COMMUNICATED BY RIDGWAY SCOTT 

ABSTRACT. The space of C’ cubic splines on a given arbitrary mesh for [0, l] 
provides a unique interpolant to arbitrary data given at 0 and 1 and at two 
arbitrary points in the interior of each mesh interval. Sufficient conditions 
for the exponential decay of the corresponding Lagrange functions are given, 
in terms of the distribution of the data points. 

1. INTRODUCTION 

Consider the C1 cubic Lagrange splines {&}~~I for a partition n := {ti},NO 

of I := [0, l] satisfying 

(1.1) $&j) = si,3 (i = 1,. . ,2N, j = 0, 1, “. ) 2N + l), 

where 
A : 0 = to < tl < .. < tN_1 < tN = 1, 

and {[z}~~oo+’ are given by [O = 0, &iv+1 = 1 and for i = 1,. . , N, 

6z-1 = ti-1 + h,pi E Ii and & = ti_1 + h,q, E Ii 

with hi := ti - ti-1, 1, := (t,_l,ti) and 0 < p, < qi < 1. Let 

A, := {(pi, qi) 10 < pi < qi < 1, i = 1,. , iv} 

and IAl := maxi {h,}. 
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The existence and uniqueness of the Lagrange spline defined in (1.1) can be 
checked by using Schoenberg-Whitney conditions with respect to the space S of 
C1 cubic splines for the given partition {ti, ti, t2, t2,. . . , tN_1, tN_1) (see [Bl], 
[SW]). Denote by i* := L(i + 1)/2] th e 1 argest integer less than or equal to 
(i + 1)/2. The exponential decay of such a Lagrange spline comes from de Boor 
and Birkhoff’s observation (see [BB], [B2], [B3]) in the sense that the spline +,(t) 

on I, defined in (1.1) decays exponentially by (~)“*~“’ where w > 1 as j moves 
away from i’. Of the exponential decay of the C1 cubic Largange spline defined 
in (l.l), one may choose the w > 5 when &-i and & are chosen symmetrically 
with respect to the mid-point of 1, (see [KK]). The goal of this paper is of the 
following. In the exponential decay of C1 cubic Lagrange spline satisfying (l.l), 
the sufficient conditions are given when any two interior points &_i and Jzr 
(&-r < &) are chosen on a non-uniform mesh of I. As a consequence of this 
result, following the idea in [B3], one may easily check a convergence of the C1 
cubic Lagrange spline interpolant Pag defined by 

for a given function g on the mesh. For the fundamental cubic splines, such a 
question was studied by many authors (see, for example, [A], [Kl], [K2] and [L]). 

As a practical application of its exponential decay on C1 cubic Lagrange 
spline, one may use it to develop a theory on the preconditioning cubic collo- 
cation method by other numerical method for an elliptic type partial differential 
equation(see [KP] for more detail). 

The rest of this paper consists of the following way. In section 2 analyzing $+ 
on 1, in detail, we will give a condition on the general two interior points &_i 
and <zZ in I%, which leads to the exponential decay of $+ on I. In section 3, using 
the results in section 2, we will extend the previous result of [KK]. 

2. A CONDITION ON THE INTERIOR POINTS 

In this section we give a condition on two points p and q (p < q) in (0,l) 
which leads to the exponential decay of C1 cubic Lagrange spline. With an affine 
transformation we have a condition on two local interpolatory points [+i and 
[z2 on I,. Therefore a condition on p and q also holds for the local interpolatory 
points. 

Let f be a cubic polynomial on I satisfying f(p) = f(q) = 0. With a notation 

f’ct, := U(t), f’(t))” f or a function f defined on I, an easy calculation leads to 
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the following relation between f( 1) and f(O) such that 

f’(l) = D(P>q) f(O) 

where the elements of 2 x 2-matrix D(p, q) are given by 

&(P, q) = 1 + (p++;fq~@+pq 

(2.1) 
&(p,q) = 1 + 9 

d2l(P,d = 
3(P+q)-z(P+4)*+2Pq 

dz2(p,q)= 1+ +. 

Define two functions g and h on [0, l] such that 

S(P) = 
2-P-&G=%j l-P+f(l+3P)(l-P) 

2 
and h(P) = 

2 

Let 

EL = 1 (p,q) I 0 < 4 < h(P), 0 <P < 4 < 1 1, 
ER = { (P>d I S(P) < 4 < 1, 0 < P < 4 < 1 ) 

and 

E := EL n ER = { (P, 4) I s(p) < q < h(p), 0 < P < q < 1 }. 

Then E is a symmetric set with respect to the line P + q = 1, i.e., 

(P, q) E E if and only if (1 - q, 1 - P) E E. 

Contracting the set E by S for p and q-directions, we define 

E(S) := 1 (P, 4) E E I s(p - 6) + d 5 q < h(p + 6) - 6, q > p + 26). 

Then E(6) is also a symmetric set with respect to the line p + q = 1. For the 
two curves q = g(p - 6) + S and q = h(p + 6) - S, we can find the intersection 
point (~(6), 1 - ~(6)) which is located on the line q = 1 - p, where 

K(S) := 
1 - Jl - 46(1 + 36) 

2 

Moreover, from the equation p+26 = l-p, we have p = l/2-6. Since ~(6) 5 i -6, 
we have 

5-G 
and 0 < ~(6) 5 8. 
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The shapes of sets E and E(6) for S = 0.05 will be presented at the end of the 
last section. Furthermore, for any (p,q) E E(b) we have 

(2.2) K(6) 2 p 2 ; - 28, ; + 26 5 q < 1 - K(6), 

and 

(2.2u) 26 < q - p 5 1 - 2IG(b). 

Now, by considering (2.1) we have the following results. 

Lemma 2.1. For any (p,q) E E(6) th ere is a positive constant w, only dependent 
on S, satisfying 

(2.3) 1 < w I du(p, q) I dz(p, q) 

and 

(24 1 < w I dll(l - q, 1 -P) I dzz(l - q,l -P). 

Moreover, we may choose w 2 5 if q = 1 - p, i.e., p and q are symmetric points. 
In particular, we may choose w = 7 if p and q are Legendre-Gauss points, i.e., 

(2.5) 

Furthermore, D(p, q) and D(1 - q, 1 - p) for (p, q) E E(6) are positive matrices. 

PROOF. An easy calculation yields the conclusions (2.3) and (2.4). The stronger 
results(w > 5, w = 7) are found in [KK] and [KP]. 0 

Corollary 2.2. Let f be a cubic polynomial on I vanishing at p and q where 
(p,q) E E(S). Then iff(O)f’(O) >_ 0, we have 

(2.6) f(l)f’(l) > 0 and 

and ij f(l)f’(l) 5 0, we have 

(2.7) f(O)f’(O) < 0 and 

PROOF. Using the positivity of 
(2.3) and (2.7) from (2.4). 

If( 2 w If”‘(O)l, (r = 61) 

If(‘)(O)1 2 w If(’ (r = O,l). 

D(p, q) and D(1 - q, 1 - p), we have (2.6) from 
0 

From now on, we assume that (pi,qi) E A, c E(b) for all i. Following the 
arguments in [KK], we will show that the exponential decay of the function values 
of & and # at knots tj as j goes away from i* if the local interpolation points are 
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chosen arbitrarily on a non-uniform mesh of I. By the linear change of variables 
from LO, 11 to iti- , tz] f or any g E S vanishing at E2i-r and Jsi, we have 

(2.3) s’(G) = whi,Pi,q%MLl), 

(2.9) D(hi,pi,q,) := A(h,)-lD(p;,qi)A(hi) and A(hi) := . 

For the C1 cubic Lagrange spline $i defined in (l.l), by (2.6), (2.8), (2.9) and 
mathematical induction, we have 

(2.10) ~i(tz*-l)~~(ti*--l) > 01 

and 

j < i*, (T = 0,l). 

Then (2.11) implies the decay of the function values of $i and $J; at tj as j goes 
away from i* to 1. 

Using (2.7), the change of variables t -+ (1 - t) in (2.10) and (2.11) implies 
that 

and 

lcli(k*)$$&*) < 0 

0 
(j-i’) 

(2.12) \?p’(tj)\ < 1 2 _ w \lf!Ji”(ti*)\, j 2 i*, (r = 071). 

Then (2.12) implies the decay of the function values of $i and $I: at tj as j goes 
away from i’ to N. 

We will put the above observations as the following proposition. 

Proposition 2.3. Assume that Al c E(6). For the C’ cubic Lagrange splines 
{$i},2=“, defined in (i.l), there is a positive constant w > 1, only dependent on 6, 
satisfying the inequalities (2.11) and (2.12) for all i = 1,. . . ,2N. 

3. EXPONENTIAL DECAY 

From now on we assume that Al c E(6) for some 6, 0 < 6 < w. The main 
goal in this section is to show the exponential decay of a cubic Lagrange spline 
$i defined in (1.1). With (2.11) and (2.12), two estimates are required for the 

exponential decay of $i. One is a bound for j$il on I,. and the other is a bound 
for l+il on Ij*, (i # j) in terms of $i(tj* -1) and +i(tj* ). The linear change of 
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variables which converts q& on Ii* to a cubic polynomial f on [0, l] yields such 
bounds for f. Without loss of generality, we may assume that 

(3.1) f(p) = 1, f(q) = 0, (J&q) 

and 

(3.2) f(O)f’(O) L 0, f(l)_f’(l) 

Lemma 3.1. Let f be a cubic polynomial on [0, l] 

E E(d) 

< 0. 

satisfying (3.1) and (3.2) for 
(p, q) E E(6). Then there is a constant C(6), only dependent on S, such that 

(3.3) m={If (O)l, If (l)l> < C(b) 

where 
1 

C(b) := sic(6)’ 

PROOF. By the Budan-Fourier theorem (see, for example, [BE]), f has only one 
zero q in (O,l), so that f (0) > 0 > f (1). Then f can be written as 

(3.4) f(t) = (t - q)(at2 + bt - & - ap2 - bp). 

Let F = F1 II F2 n F3 n F4 where 

Define 

FI = {(a, b)lf (0) L 01, F2 = {(a, b)lf’(O) 2 01, 
F3 = {(a, b)lf (1) I O), F4 = {(a, b)lf’(l) 2 0). 

(3.5) T,,(a, b) := f (0) = p2qa + pqb + --!!- 
q-p 

and 

(3.6) TI(a, b) := f(1) = (1 - q)(a + b - bp - ap2 - ~ l ). 
q-p 

Since To and Tl are bilinear on F, and since F is the convex set bounded by 
straight lines, TO has the maximum value at the intersection point of f’(0) = 0 
and f (1) = 0 and also T1 has the maximum value at the intersection point of 

f (0) = 0 and f’(1) = 0 such that 

(3.7) 
2 

max 
(a,b)EF ]To(u,b)] = l(q-P)(l-;)(P+q+Pq) 

< &12 2 

Q - P < p(q - P) 
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and 

(3.8) ($T& ITl(% b)I = 
-Cl - 4Y 

p(q - P)(3 - 2P - 2q + Pd 
< 3(1 - d2 

P(!I - PI 
4 

< 3P(q -P) . 
By (2.2) the estimates (3.7) and (3.8) yield the conclusion. Cl 

Corollary 3.2. For @i on Ii* satisfying (l.l), there is the same constant C(6) 
as in (3.3), only dependent on 6, satisfying 

max-!l$~,i(ti*-l)l, I+i(h*)\ < C(6). 

PROOF. The change of variables yields the conclusion. 0 

Lemma 3.3. Under the assumption of Corollary 3.2, there is the same constant 
C(6) as in (3.3) satisfying 

(3.9) Wz(t)l < iC(6) (t E A*). 

PROOF. By the change of variables, it is enough to consider f satisfying (3.1) 
and (3.2) for (p,q) E E(6). From (3.4), for t E [0, 11, we have 

(3.10) 
1 

If(t)1 5 I(t+p)a+bl+- 
q--p 

5 max{lpa+bl,I(l+p)a+bl}+~. 

From (3.5) and (3.7), we have 

(3.11) Ipa+ = i jf(o) - -&/ < i (& + ‘) 
9-P 

4 

< P(q- 
Since 0 < p < 213 and l/3 < q < 1 by (3.6) and (3.8), we have 

(1 - q) l(l+p)a+bl = (l_p;(l_q) f(l)+- 

(3.12) 
1 

( 

3(1 - 4)2 
< (l-P)(l-q) P(q-P) + 

(1 - Q) 

q--p ) 
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Applying (3.11) and (3.12) to (3.10) and considering the ranges of p and q with 
respect to ~(6) and 6 in (2.2), we have 

9 9 
If(t)\ < --!-- 1 ~ ~ 

p(q - P) + 4 - P < p(q - P) < 2f5 K(6). 

Therefore we have the conclusion. 0 

Lemma 3.4. Let f be a cubic polynomial on [0, l] vanishing at p and q for (p, q) E 
E(b). Then there is a constant K(b), only dependent on 6, such that 

(3.13) If(t)1 < K(6) max{If(o)l, l.f(l)lI 
where 

K(6) := -& 
K(V 

PROOF. Since f(p) = f(q) = 0, f can be written as 

f(t) = t(t - p)(t - 4) f(l) + (t - p)(t - q)(l - t, f(O), 

(l-p)(l-q) Pq 

Since 0 < p < 213 and l/3 < q < 1, we have 

to - p)(t - 4) 
< (Zq)I 

(t - p)(t - q)(l -t) 
(l-P)(l-q) 

< 3 
Pq P 

Therefore we have 

If(t)I < 3 ~ ((1 - dlJY0)l+ PI/O) < & (If( + If m). 
P(l - 4) 

Observing p > ~(6) and 1 - q 2 ~(6) in (2.2), we have the conclusion. 13 

Corollary 3.5. For $i on Ij (j # i’) satisfying (l.l), there is the same con- 
stant K(b) as in (3.13) such that 

(3.14) Ivk(t)l < K(6) max{IV4(tj-1)17 Idh(tj)lI. 
’ PROOF. It comes immediately by the change of variables applied to Lemma 3.4. 

0 

Theorem 3.6. Let {$J~}Z~~ be the C1 cubic Lagrange splines satisfying (1.1) with 
A, C E(6). Then there is a constant M(b), only dependent on 6, such that 

(3.15) Iy&(t)l < M(6) A li’-j’ 
0 

for t E Ij 
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where 

M(6) := w C(6) K(6) = &. 

PROOF. For the case 13 (j <_ i’ - l), using (3.14), (2.11) and (3.3) we have 
.* 

(3.16) I?/!%(t)] < K(6)C(S) i z -j-l. 
0 

For the case Ij (j > i* + l), using (3.14),(2.12) and (3.3) we have 

(3.17) I&(t)] < K(d) C(6) A 
0 

3--i’-I. 

For the case Ii*, using (3.9) and observing K(6) > 5 in (3.13) we have 

(3.18) bh(t)l < K(qC(o 
Now, (3.16)-(3.18) with IM(b) := w C(b) K(6) yield the conclusion. Furthermore, 
using C(6) and K(b) defined in (3.3) and (3.13), respectively, we can express the 
constant M(6) as s$&3, which completes the conclusion (3.15). 0 

Now let us state stronger results on the exponential decay for the C’ cubic 
Lagrange spline satisfying (l.l), where & are chosen as Legendre Gauss points or 
the local symmetric points in 1, (see [KK] and [KP]). 

Corollary 3.7. Let {+i},“=I be the C1 cubic Lagrange splines satisfying (1.1). If 
p and q are chosen as Gauss-Legendre points as in (Z.5), then there is a positive 
constant &I such that 

(3.19) I&(t)/ 5 Q1 ; li*-” 
0 

on Ij. 

Ifp+q=landO<p_<p<p<1/2f or all (p, q) E A,, then there is a positive 
constant Q2, dependent on p and j?j, such that - 

(3.20) 
1 Ii’-i 

Mi(t)l 5 Q2 i 
0 

on Ij. 

PROOF. Suppose that p and q are Legendre-Gauss points, as in (2.5). Solving 
the equation K(&) = p, we have 

1 (P,9) > c E(h), 61 = q. 
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Then we have w = 7 from Lemma 2.1 and (3.19) from (3.15) with 

For the second case, S, can be chosen as a positive number satisfying ~(8,) = 
min{p_, i}. Letting 62 = min{S,, f -p}, we have Al c IS(&). Then (3.20) comes 
from Theorem 3.6 with Qs = M(g) and w = 5. q  

0.9 
q = h(P) 

0.8 

0.7 E( 0.05 f 

,:: 

0.6 
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1 

FIGURE 1. The shapes of sets E and E(S) when b = 0.05. 
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