
HOUSTON JOURNAL OF MATHEMATICS 
@ 1998 University of Houston 

Volume 24, No. 2, 1998 

CLOSED GEODESICS ON 2-DIMENSIONAL X-GEOMETRIC 
POLYHEDRA 

CHARALAMBOS CHARITOS AND GEORGIOS TSAPOGAS 
COMMUNICATED BY GILES AUCHMUTY 

ABSTRACT. For 2-dimensional finite x-geometric polyhedra of curvature K < 
x < 0 it is shown that the polygonal flow, applied to a closed curve, con- 
verges to a geodesic. Moreover, it is shown that there exists a finite number 
of closed geodesics with length smaller than a given positive B. As an ap- 
plication of the polygonal flow, a way of constructing closed, in particular 
simple, curves is given as well as a condition which implies that a curve is 
non-homotopic to a point. 

1. INTR~DUOTI~N AND PRELIMINARIES 

Classical questions about closed geodesics on Riemannian manifolds are about 
existence, uniqueness in each homotopy class, and about counting the number 
of closed geodesics with length bounded by a given real. See number [ll] and 
[12] for results in these directions in the context of a Riemannian manifold. In 
this work we are concerned with similar questions in the context of 2-dimensional 
X-geometric polyhedra (see definition 2 below) and with the application of a 
curve-shortening process on these spaces namely, the polygonal flow, originally 
introduced on surfaces by J.Hass and P.Scott in [lo]. For such spaces with curva- 
ture K satisfying K < x < 0 we show that the unique closed geodesic contained 
in each non-zero homotopy class of closed curves can be obtained by applying the 
polygonal flow of Hass and Scott on any closed curve in the homotopy class. Then, 
using the notion of the developing surface associated to a closed curve we show 
(see theorem 3.2 below) that in each finite 2-dimensional X-geometric polyhedron 
X with curvature K satisfying K < x < 0 there exists at most a finite number 
of closed geodesics of length less than a given constant B > 0. From the proof 
of this theorem, it is easily deduced that the number II(B) of closed geodesics 
of length less than B in a a-dimensional X-geometric polyhedron X, satisfies the 
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inequality 

II(B) < ehB 

for some constant h depending on X, provided the curvature K of X satisfies 
K 5 x < 0. It remains to be examined whether the following asymptotic behavior 
of II (B), which is true for Riemannian manifolds, namely 

II (B) 3 h > 0 such that Jim eh~ = 1 
I 

(see [13]), holds also for 2-dimensional x-geometric polyhedra with curvature K 
satisfying K 5 x < 0. 

On the other hand, for an important class of 2-dimensional geometric poly- 
hedra constructed in [2, 3, 91, we give a method to construct closed, in particular 
simple, geodesics. From this construction and for 2-dimensional simplicial com- 
plexes which satisfy a purely topological condition, namely that each vertex is 
incident with at least ten l- simplices, we obtain a way to identify closed, in 
particular, curves which are not homotopic to a point. We conclude this section 
with the necessary definitions. 

Let (X, d) be a metric space. A geodesic segment in X is an isometry c : I + X, 
where I is a closed interval in Iw. A geodesic in X is a map c : It8 + X such that 
for each closed interval I c R, the map c 11 : I -+ X is a geodesic segment. A 
local geodesic segment (usually called geodesic arc) in X is a map c : I + X such 
that for each t E I there is an E > 0 such that ~l[~_~,~+~l~~ : [t - E, t + E] n I -+ X 
is a geodesic segment. 

A local closed geodesic in X is a periodic map c : Iw + X such that for each 
t E IL! there is an E > 0 such that c restricted to the subinterval [t - E, t + E] c IR is 
a geodesic segment. A closed geodesic in X is a periodic map c : R -+ X such that 
for each closed interval I c IR the map cl1 : I + X is the shortest geodesic arc in 
its homotopy class with endpoints fixed. For the notion of CAT(x) -inequality 
and curvature in a geodesic metric space see [l, ch.101, where the following lemma 
is also shown. 

Lemma 1.1. Let X be a geodesic space with curvature K < x. For each p E X 
there is E > 0 such that the open ball B (p,~) is a convex neighborhood around p. 

Let X be a finite 2-dimensional polyhedron. A l-dimensional simplex o of X 
is said to have index k,, k, E N, if k, faces of 2-simplices (i.e. triangles) of X are 
glued together to form CT. A l-dimensional simplex ~7 of X is called singular if 
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k > 3. We will denote by X 111 the singular l-skeleton of X i.e., the union of all 
singular 1-simplices of X. 

Definition 1. We will say that a closed curve c in X is simple if either c has 
no self-intersections or, in the case c(t) = c(s) for some t # s then c(t) E 
XL11 and there exists E > 0 sufficiently small such that the triangles containing 
c(t-s),c(t+~)donotcontainbothc(s-s)andc(s+s). 

For each point x E u which is not a vertex, there exists a neighborhood of x in 
X, which is homeomorphic to k, half discs glued together along their boundary. 
If r~ E X is a vertex, then a closed neighborhood of u in X is piecewise linear 
homeomorphic to a cone on G, where G is a simplicial graph. 

Definition 2. A polyhedron X is called X-geometric polyhedron if each k-simplex 
of X, for all k, is isometric to a simplex in iWG. The number X E Iw is fixed 
for a given polyhedron and iVl[ denotes the unique complete simply connected 
k-dimensional Riemannian manifold of constant sectional curvature x. In partic- 
ular, if X is 2-dimensional then every 2-simplex of X is isometric to a geodesic 
triangle in Mi. 

The following proposition is a useful property for simply connected polyhedra, 
which follows from [4, page 4031. 

Proposition 1.2. Let X be a simply connected polyhedron of arbitrary dimension 
which satisfies CAT (x) -inequality, x < 0, and which has finitely many isometry 
types of simplices. Then each local geodesic segment in X is a geodesic segment. 

2. THE POLYGONAL FLOW ON X-GEOMETRIC POLYHEDRA 

In this section we apply the polygonal flow to 2-dimensional X-geometric poly- 
hedra. The importance of the polygonal flow lies on the fact that it allows control 
on the number of self-intersection points of the curve. For surfaces, this is ex- 
plained in the original work [lo] of Hass and Scott and for singular spaces in [6]. 
In order to define the polygonal flow on a space X one must cover the space with 
convex neighborhoods. Here we shall only describe these neighborhoods and refer 
the reader to [lo] and [6] for the full definition of the polygonal flow. Throughout 
this section X will denote a 2-dimensional x-geometric polyhedron. The union 
of all singular l- simplices of X will be denoted by Xlll. A vertex of X which 
belongs to at least one singular l-simplex will be called singular vertex. 
A closed neighborhood N of a point x in X is homeomorphic to either : 

(a) a closed disc D (x, E) if 2 lies in X\Xlil, or 
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(b) a bouquet b (z, E) of closed half discs each of radius E if z belongs to a 
singular l- simplex without being a singular vertex , or 

(c) a cone G (z:, E) formed on G = {y E X 1 d (z, y) = E} if 2 is a singular vertex 
of x. 

Moreover, by choosing E sufficiently small (cf. lemma 1. l), we may assume that 
the neighborhood of any point is convex. 

Let N (z,E) be a neighborhood of X of type (a), (b) or (c). If 0 < b < 1, 
denote by bN = N (x, bs) the shrinking, by the factor 6 , of the neighborhood 
N (x, E). X can be covered by a finite collection of neighborhoods N,, i = 1,. . , n 
such that 

(1) UT=“=, +Ni = X 
(2) ‘d i, V x, y E Ni, there exists unique geodesic segment, which lies 

entirely in Ni, joining x and y. 
(3) No neighborhood of type (a) intersects a singular l-simplex of X and each 

singular vertex of X lies in exactly one neighborhood of type (c). 

Achieving condition (1) is just a matter of increasing n and letting the neigh- 
borhoods Ni overlap. Condition (2) follows from the fact that an X-geometric 
polyhedron satisfies locally the CAT(x) -inequality (see lemma 1.1) and there- 
fore, we can choose the neighborhoods N, to be convex. 
Let N be any such neighborhood of a point x in X and let y denote a finite 
collection of piecewise linear arcs in N. Suppose no two arcs have a common 
boundary point. Since N is simply connected and convex, there exists a homotopy, 
with end points fixed, from y to a union of geodesic arcs (see lemma 1.6 of [lo] 
and 2.1 of [S]). Th’ h is omotopy is called neighborhood straightening process (NSP) 
on the collection y in N. Let now y be a closed curve in X. Performing NSP 
repeatedly on yn N for all N and pasting the homotopies together we obtain the 
polygonal flow Yt, t E [O,cx3). 

A simple application of the Arzela-Ascoli theorem shows that ^(t converges 
uniformly to a rectifiable curve ,B and using the argument given in [lo, thm. 1.81 
/3 is shown to be a local geodesic. Hence we have the following 

Proposition 2.1. Let X be a Sdimensional x-geometric polyhedron and y be a 
closed curve in X which is not homotopic to a point. Then the polygonal flow it 
lies arbitrarily close to a local closed geodesic. 

We conclude this section with a corollary concerning x-geometric polyhedra of 
negative curvature. Note that existence of closed geodesic mentioned in part (ii) 
of the corollary below is proved in [8]. 
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FIGURE 1 

Corollary 2.2. Let X be a finite x-geometric polyhedron with curvature K sat- 
isfying K 5 x < 0. Then 
i) Each closed local geodesic of X is a closed geodesic 
ii) The polygonal flow of Hass and Scott applied to closed curve y non-homotopic 
to a point, converges to a closed geodesic which is unique in the homotopy class 

Of-Y. 
PROOF. Let g be a local closed geodesic of X and let 5 be its lifting to the 
universal cover X of X. By proposition 1.2, 9 is a geodesic. Since _% is simply 
connected, it satisfies the CAT - (x) inequality globally. Hence, any two points 
in _? U ax can be joined by a unique geodesic (see for example [5, prop.21). 
Combination of the above statements implies readily that g is a closed geodesic 
in X and it is unique in its homotopy class. 0 

3. COUNTING GEODESICS 

We begin with the definition of the developing surface associated to a closed 
curve p, provided that ,0 is transverse to the l-skeleton X(l) of X and does not 
have a back and forth. Recall that, a curve p : I + X has a back and forth 
if 3 tl, tz E I : /3((tl, t2)) 1’ Ies in the interior of a single triangle T of X and 

,6 (tl) , ,l? (tz) belong to the same side of T. X will always denote a 2-dimensional 
x-geometric polyhedron with curvature K < x < 0. 

Let p : [0, l] + X, p (0) = p(l), b e a closed curve. Assume /3 is transverse to 

X(l), the l-skeleton of X, with p(O) $! X cl). Let To be the triangle containing 

p = p (to), to = 0. Let tl be the smallest number in (to, l] = (0, 11 such that ,6’(tl) 
belongs to Xc’), and let Tl be the unique triangle (TO # TI) containing 0 (tI + E) 
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FIGURE 2. Non-contributing Contributing 

for E arbitrarily small. Glue Te with Tr along their common l-simplex (or vertex) 
which contains (resp. is) p (tr). C on mue, in this way, attaching triangles Ti to t’ 
TI u T2 u . . . U Ti-1 along the common face of Ti-1 and Ti, (T,_l # T,), which 
contains /3 (ti), until all triangles Ti intersected by the image of p are attached. 

Definition 3. The process described above gives a singular surface Sp which we 
call the developing surface associated to p. 

The singularities of S appear when ,B (ti) . 1s a vertex and T,- 1, T, have no common 
l-simplex (see figure 1). 

When p is a closed geodesic its developing surface is defined even in the case 
,B is not transverse to X(l). For if p is a closed geodesic not transverse to X(l), 
its image of p must contain entire singular l-simplices. We will be viewing p as 
a curve in So and use the same letter to denote it. The following lemma relates 
the length of a geodesic with the number of triangles in its developing surface. 

Lemma 3.1. Let X be a finite 2-dimensional x-geometric polyhedron with cur- 
vature K 2 x < 0 and B a positive real number. There exists a natural number 
NB such that any local geodesic ,B in X whose developing surface consists of at 
least NB triangles has length C(p) > B. 

For the proof of this lemma we will need some terminology which we introduce 
next: A common l-simplex g of triangles Ti, Ti+l in the developing surface So 
associated to a local geodesic p is called contributing if the image of the curve p 
intersects 1-simplices r and p of Ti and Ti+l, respectively, which have no vertex 
in common (apparently, r # g # p). Otherwise, i.e. when r and p do have a 
common vertex, it is called non-contributing (see figure 2). 

Let a be the minimum angle formed among all pairs of 1-simplices of X and 
set m to be the integer m = [z] . 
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CLAIM. In the developing surface 5’0 associated to a closed geodesic /3, there can 
be at most m non-contributing l-simplices which have one vertex in common. 

PROOF OF CLAIM. Suppose there exists exactly m + 1 (any integer bigger than 
m+l can be treated similarly) contributing l-simplices with a vertex Y in common. 
Then there exist triangles 2’0, Ti, . . . , T,+l glued together, consecutively, along 
non-contributing 1-simplices and triangles T-1 and Tm+2 glued with To and T,+l, 
respectively, along contributing 1-simplices. Let &, be the part of the image of 
p which lies in T-1 U To U Tl U . . . U Tm+l U Tm+2, see figure 3. Denote by flVz 
and PVY the geodesic segments joining U, 2 and ‘u, y respectively. The sum of the 
angles at v is bigger than ([z] + 1) a, and therefore, the angle formed by pVz 
and ,OVY at w is bigger than 7r. By [l, page 1971, ,k& is not a geodesic segment, a 
contradiction, since p is a closed geodesic and, hence, &, is a geodesic segment. 
This completes the proof of the claim. 

PROOF. (OF LEMMA 3.1) Let two triangles Ti and Tj of X be glued together 
along a common l-simplex. By compactness of X there exists a positive lower 
bound, say lij, for the lengths of the curves with endpoints on 1-simplices of T, 
and Tj which have no common vertex. Set L = mini,j {Zij} where Ti, Tj range 

among all 2-simplices of X. Note that L is smaller than or equal to the length of 
any l-simplex of X. Define NB to be the integer NB = (1 + [s]) (m + 1). 

Let /3 be geodesic in X whose developing surface So consists of at least NB 
triangles. By the claim above, any family of m + 1 consecutive triangles in So 
contains a non-contributing l-simplex. Hence, the length of the part of /3 which 
lies in the union of any m + 1 consecutive triangles of So is at least L. Since Sp 
contains at least (1 + [+I) f am1 ies of m + 1 consecutive triangles, it follows that ‘1’ 
l(P) > (1+ [;I) L > B. 0 

Theorem 3.2. Let X be a finite 2-dimensional x-geometric polyhedron. Assume 
the curvature K of X satisfies K 5 x < 0. Then, given B > 0 there exists at 
most a finite number of closed geodesics with length smaller than B. 

PROOF. Let B be given and let NB be the natural number provided by lemma 
3.1. Each geodesic ,6 in X determines a developing surface Sp which is the union 
of, say, k triangles So = Tl U . . . U Tk. If X is the union of n triangles X = 
TI U. . . UT,, for some n E N, then each geodesic determines a unique permutation 
with repetition (i.e. a triangle can appear more than once) of k triangles chosen 
out of n. Therefore, by lemma 3.1, the number of geodesics in X with length 
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FIGURE 3 

< B, is bounded by the number of permutations of k chosen out n with k < Ng. 
Obviously these permutations are finitely many. cl 

4. APPLICATION TO SIMPLICIAL COMPLEXES 

In this section we present, as an application of the polygonal flow, a condition 
which implies that a closed curve in a 2-dimensional simplicial complex is non- 
homotopic to a point. Moreover, if at least ten 1-simplices are attached to each 
of the vertices of the complex, a way of constructing closed, in particular simple, 
curves non-homotopic to a point is given. We need the notion of convex developing 
surface which we introduce next. 

A developing surface SD, for some closed curve p, will be called con’uez if 
there exists a convex polygon P in the 2-dimensional model Mz and vertices 
vi, vi+i, vj, vj+i of P such that 

(i) wi, vi+1 and ~j, ~~j+i determine non-consecutive sides of P 
(ii) 5’~ can be obtained from P by identifying zti+ivi with vjvj+i 

or, by identifying vivi+i with vjvj+i 
(iii) <i + v&j 5 T, Cj + v?r 5 rr, if zli+i is identified with v~j 

or, v^, + Cj 5 T, ~71 + wxi 5 rr, if vi is identified with vj 
where 53 denotes the angle of P at the vertex v. Examples of curves whose devel- 
oping surface is convex can be seen as follows. 
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CONSTRUCTION. Let X be a 2-dimensional simplicial complex with at least ten 
1-simplices attached to each of its vertices. According to [7, page 1211, X admits 
a hyperbolic structure such that 

(1) any angle of any triangle in X is 5 x/5 

Assume further that 

(2) each 1 - simplex of X is incident with at least two 2 - simplices 

Consider a sequence of triangles as follows : let Tr be arbitrary triangle in X with 
vertices xi, yi, zi (notation Ti = (xi, yi, zi)) and let T2 = (x2, yz,z2) be a triangle 
attached (in X) to Tl with the side [xi, yi] of Tl identified with the side [x2, yz] of 
Tz (by property 2, there is at least one such triangle). Next, let T3 = (x3, y3, ,213) 
be a triangle attached to Tz with the side [y2,z2] of T2 identified with the side 
[ye, zs] of Ts (notation [y2, zz] - [ys, zs]). Observe that all three vertices yi, ~2, y3 
coincide. The next triangle T4 is a triangle (~4, y4, z4) with [zs, x3] identified with 
[z4,24] Continuing in this way we obtain a sequence of triangles {Ti} such that 

(3) T, is attached to T,+l in X with [xi, yi] N [xi+l, yi+l] ti i = lmod3 
[yi, ~1 - [Y~+I, G+I] @ i = hod3 
[zi, xi] - [zi+l, xi+11 w i = Omod3 

We stop this procedure when we reach a triangle Tk+l for which 3 Ice < Ic : Tk, = 
Tk+l. Since X is a finite polyhedron, such triangle Tk+i will always exist making 
the sequence {Ti} finite. By discarding all triangles Ti with i < IGO we may assume 
that Ice = 1 or 2. 

If ke = 1 denote by S the surface obtained from Uf=iTz by gluing together Ti 
with Ti+l Vi according to (3) and then by identifying one (of the two) free sides 
of Tk (i.e. not identified with a side of Tk_i) with the side [xi, zi] of Tl or, [zi, yi] 
of Tl. Similarly, if /Q = 2, S is obtained from Ufz2Ti by gluing together Ti with 
T,+l Vi according to (3) and by identifying one (of the two) free sides of Tk (i.e. 
not identified with a side of Tk-1) with the side [xz,z~] of T2. It is readily seen 
that the angle at any vertex of S consists of at most five angles of triangles in X. 
By (1) it follows that the angle at any vertex of S is 5 r and, hence, S is convex. 
Moreover, given any sequence of triangles as above with corresponding surface S, 
one can define a closed curve y in X so that S, = S. 

The following proposition gives a condition on a closed curve which implies 
that the closed curve is not homotopic to a point. 

Proposition 4.1. Let X be any 2-dimensional x-geometric polyhedron and let 
y be any closed curve in X with S, convex. Then 
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(i) y is not homotopic to a point 
(ii) the unique closed geodesic yW in the homotopy class of y has the property 
s, = s,,. i.e. y and yoo intersect the same ordered sequence of triangles in X. 

PROOF. Consider the subcomplex X, of X which is the image of the natural 
projection p, : S, + X. Cover X-, with X7-convex neighborhoods and apply the 
polygonal flow on y within X,. For all times t during the flow, -n will intersect 
the same ordered sequence of triangles, i.e. S, = S,, V t. In particular, there 
is a lower bound for the lengths of the curves yt. Thus, proposition 2.1 can be 
applied to obtain a curve yoo which is a local closed geodesic in X,. Moreover, 
S, = Srrn and it remains to verify that yoo is a closed geodesic in X. There is 
a unique closed curve Too in S, which is a local closed geodesic in S, and has 
the property p, (roe) = yo3. By convexity of S,, it follows that the projection 
p, (ym) = yo3 is also a local closed geodesic in X. Then by proposition 2.2, yoo 
is a closed geodesic in X. 0 

Remark. The above proposition implies that if y, y’ are closed curves with S,, $1 
convex then 

(4) y, y’are homotopic w S, = S-,1 

Moreover, given a 2-dimensional simplicial complex admitting a geometric 
structure with curvature K 5 x < 0 and a closed curve in it, one can use propo- 
sition 4.1 above in order to detect if the given closed, in particular simple, curve 
is not homotopic to a point. 

The construction described at the beginning of this section can be performed 
with the same starting triangle in at least three distinct ways. Thus, we obtain 
three distinct convex (developing) surfaces Si, i = 1,2,3. Moreover, we may choose 
closed curves n, i = 1,2,3 such that S,, = Si, V i = 1,2,3. Property (4) implies 
that 7iyi, i = 1,2,3 are pairwise non-homotopic and by proposition 4.1 each pi is 
not homotopic to a point. Hence, we have proved the following 

Corollary 4.2. Let X be a 2-dimensional simplicial complex having at least 
ten 1-simplices attached to each of its vertices. Then, there are at least 3 sim- 
ple closed curves intersecting any given triangle of X which are pairwise non- 
homotopic and each not homotopic to a point. 

Remark. Let X be a (not necessarily finite) 2-dimensional x-geometric polyhedron 
with curvature K satisfying K 5 x < 0. Let y be a closed curve without back 
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and forth and transverse to the l-skeleton X(l) of X. Then for each singular 
l-simplex 0 of X, the singular number K, (y) of y at (T is defined by 

K, (y) := card{s E R]y (s) E a} 

Let it, t E [0, oo) be the polygonal flow on y. If the developing surface S, is 
convex, then it is easy to see that for all t, S, = S,, and K,, (y) = K, (rt) ,Vu. 
Moreover, by proposition 4.1, y is not homotopic to a point. Using the argument 
of [6, thm.3.11 we obtain the the unique closed geodesic in the homotopy class of 
y has at most B intersection points more than y, where 

B = -z ,,(,; - l) 
uEX[‘l 

and R, = K, (7). 

[II 

PI 

[31 

[41 

[51 

bl 

[71 

PI 

PI 

PO1 
Pll 
P21 

P31 

REFERENCES 

W. Ballman, E. Ghys, A. Haefliger, P. de la Harpe, E. Salem, R. Strebel et M. Troyanov, 
“Sur les groups hyperboliques d’apres Gromov“ (Seminaire de Berne), Qdite par E. Ghys 
et P. de la Harpe, (a paraitre chez Birkhluser), 1990. 
N. Benakli, “Polyedre a geometric locale donnee”, C.R.Acad. Sci. Paris, t. 313, Serie I 
(1991), p. 561-564. 
N. Benakli, “Groupes hyperboliques de bord la courbe de Megner ou la courbe de Sierpinski, 
Preprint, Paris 1991. 
M.R. Bridson, “Geodesics and geometry in metric simplicial complexes”, in “Group Theory 
from a Geometrical Viewpoint”, (ICTP, Trieste, Italy, March 26.April 6, 1990), E.Ghys and 
A.Haefliger eds (Word scientific 1991). 
C. Charitos, “Closed geodesics in ideal polyhedra of dimension 2”, Rocky Mountain Journal 
of Mathematics, Vol. 26,#1 (1996), p. 507-521. 
C. Charitos and G. Tsapogas, “Complexity of geodesics on a-dimensional ideal polyhedra 
and isotopies“, Math. Proc. Camb. Phil. Sot. 121 (1997), p. 343-358. 
M. Gromov, “Hyperbolic groups “ in “Essays in group theory“, Qdite par S.M. Gersten, 
M.S.R.I. Publ. 8 (Springer 1987), pp. 75-263. 
M. Gromov, “Structures metriques pour les varietes riemanniennes“, written with J. La- 
fontaine and P. Pansu, Cedic/ Fernand Nathan, Paris, 1981. 
F. Haglund, “Les polyedres de Gromov”, C.R.Acad. Sci. Paris, t. 313, SQrie I (1991), p. 
603-606. 
J. Hass and P. Scott, “Shortening curves on surfaces“, Topology 33 (1994) pp. 25-44. 
W.Klingenberg, Lectures on closed geodesics, Springer, Berlin 1978. 
W.Klingenberg, Riemannian Geometry, DeGruyter Studies in Mathematics, DeGruyter, 
Berlin 1982. 
W. Parry and M. Pallicott, “An analogue of Prime Number Theorem for closed orbits of 
Axiom A flows“, Ann. of Math. 118 (1983) pp. 573-591. 



196 CHARITOS AND TSAPOGAS 

[14] F.Paulin, Constructions of hyperbolic groups via hyperbolization of polyhedra, in “Group 
Theory from a Geometrical Viewpoint”, (ICTP, Trieste, Italy, March 26-April 6, 1990), 
E.Ghys and A.Haefliger eds (Word scientific 1991). 

Received March 26, 1996 

(Charitos) AGRICULTURAL UNIVERSITY OF ATHENS, DEPARTMENT OF MATHEMATICS. 75 IER.~ 

ODOS, ATHENS 11855 GREECE 

E-mail address: gmat2xaxQauadec. ma. ariadne-t . gr 

(Tsapogas) UNIVERSITY OF THE AEGEAN, DEPARTMENT OF MATHEMATICS, KARLOV.4SSI. 
SAMOS 83200 GREECE 

E-mail address: gtsapQaegean.gr 


