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ABSTRACT. We consider a function U = e-f0 ny,, f,“’ on a real affine 
space, here fo, .., fP are linear functions, or, . . . . ap complex numbers. The 
zeros of the functions fr, . . . . fP form an arrangement of hyperplanes in the 
affine space. We study the period matrix of the hypergeometric integrals 
associated with the arrangement and the function U and compute its de- 
terminant as an alternating product of gamma functions and critical points 
of the functions fo, .., fp with respect to the arrangement. In the sim- 
plest example, p = 1, fe = fl = t, the determinant formula takes the form 

so00 e -’ taPi dt = r(a). We also give a determinant formula for Selberg type 
exponential integrals. In this case the arrangements of hyperplanes is spe- 
cial and admits a symmetry group, the period matrix is decomposed into 
blocks corresponding to different representations of the symmetry group on 
the space of the hypergeometric integrals associated with the arrangement. 
We compute the determinant of the block corresponding to the trivial rep- 
resentation. 

1. INTRODUCTION 

The Euler beta function is an alternating product of Euler gamma functions, 

where the Euler gamma and beta functions are defined by 

O3 (2) r(Q) = 
s 

1 
tap1 ept dt, B(%P) = J P-l (1 - t)O-’ dt. 

0 0 

There is a generalization of formula (1) to the case of an arrangement of hyper- 
planes in an affine space, see [Vl, V2, DT]. 
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Example. Consider an arrangement of three points ~1, ~2, z3 in a line. The 
point zj is the zero of the function fj = t - z3. Set 

Ai = [z1,zzI, Al = [z2,23]r 

u, = (t - z1)“‘(t - Z2y(t - z3y3, 

Wl = a1U,dt/(t - Zl), w2 = a2U,dt/(t - zz), 

then 

det 
(S ) 

wj = 
qa1+ 1) r(Q2 + 1) qa, + 1) 

Ai qa1 + 02 + a3 + 1) n A%). 
i#.i 

In this paper we describe a generalization of the first formula in (2) to the case 
of an arrangement of hyperplanes in an affine space. 

Example. Consider an arrangement of two points zi, zz in a line. Let fj = 
t - zj. Set 

Ai = [zl,zz], A2 = b2,031, 

u, = (t - Zp(t - z2p, 

WI = alU,dt/(t - ZI), wz = agU,dt/(t - ~2). 

Let a be a positive number. Then 

det (L eeatwj) = qal + ~)r(~~ + 1) e- +I+%) *-(w+an) ~f?W 
I i#j 

The determinant formulas are useful, in particular in applications to the Knizh- 
nik-Zamolodchikov type of differential equations when a determinant formula al- 
lows one to conclude that a set of solutions to the equation given by suitable 
multidimensional hypergeometric integrals forms a basis of solutions, cf. [SV], 
[TV], [V3], see also [L], [LS], [V4], [V5]. 

The paper is organized as follows. Sections 2 - 5 contain definitions of the 
main objects: arrangements, critical values, and hypergeometric period matrices. 
The main result of the paper is Theorem 6.2. The proofs of all statements are 
presented in Section 7. In Sections 8 and 9 we discuss two determinant formulas 
for Selberg type integrals. In this case the configuration of hyperplanes is special 
and admits a symmetry group. The symmetry group acts on the domains of the 
configuration and on the hypergeometric differential forms associated with the 
configuration. Therefore the period matrix of the configuration ( s,, wj ) splits 
into blocks according to different representations of the symmetry group. We 
compute the determinant of the block corresponding to the trivial representation. 
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2. ARRANGEMENTS 

In this section we review results from [FT] and [Vl]. 

2.1. Let fI,. . , f, be linear polynomials on a real affine space V. Let I de- 
note (1,. . ,p} and let A be the arrangement {H2}iE1, where Hi = ker fi is the 
hyperplane defined by fi. 

An edge of A is a nonempty intersection of some of its hyperplanes. A vertex 
is a O-dimensional edge. Let L(A) denote the set of all edges. 

An arrangement A is said to be essential if it has vertices. Until the end of 
this paper we suppose that A is essential. 

An arrangement A is said to be in general position if, for all subarrangements 
{Hi,,..’ ,Hi,} of A, we have codim (Hi, IT . . . nHi,)=Icifl<k<dimVand 
Hi, n... CT Hi, = 0 if k > dim V. 

Let 

(3) M(A) = V - uielHi. 

The topological space M(A) has finitely many connected components, which 
are called domains. Domains are open polyhedra, not necessary bounded. Their 
faces are precisely the domains of the arrangements induced by A on the edges 
of A. More generally, in any subspace U c V the arrangement A cuts out a new 
arrangement AU consisting of the hyperplanes {Hi n U [Hi E A, U @ Hi}. AU 
is called a section of the arrangement. For every edge F of A the domains of the 
section AF are called the faces of the arrangement A. 

Let F be an edge of A and I(F) the set of all indices i for which F E Hi. The 
arrangement AF in V consisting of the hyperplanes {Hi \ Hi E A, i E I(F)}, is 
called the localization of the arrangement at the edge F. 

Every edge F of codimension 1 is associated to an arrangement in an 
(1 - 1)-dimensional projective space. Namely, let L be a normal subspace to F 
of the complementary dimension. Consider the localization at this edge and its 
section by the normal subspace. All of the hyperplanes of the resulting arrange- 
ment (AF)~ pass through the point w = F n L. We consider the arrangement 
which (AF)L induces in the tangent space T,L. It determines an arrangement 
in the projectivization of the tangent space, which is called the projective normal 
arrangement and denoted PAF. The arrangements corresponding to different 
normal subspaces are naturally isomorphic. 

A face of an arrangement is said to be bounded relative to a hyperplane if the 
closure of the face does not intersect the hyperplane. It is known [Vl, Theorem 
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1.51 that if A = {H } z Zen is an arrangement in a real projective space, then the 
number of domains bounded with respect to Hi does not depend on i. This 
number is called the discrete length of the arrangement. The discrete length of 
the empty arrangement is set to be equal to 1. 

Let F be an edge of an arrangement A in a projective space. The discrete 
length of the edge is defined as the discrete length of the arrangement AF; the 
discrete width of the edge is the discrete length of the arrangement PAF; and 
the discrete volume of the edge is the product of its discrete length and discrete 
width. These numbers are denoted Z(F), s(F), and voZ(F), respectively. 

If F is a k-dimensional edge of an arrangement A in an affine space, then its 
discrete length is the number of bounded k-dimensional faces of the arrangement 
AF. Its discrete width is the discrete length of the arrangement PAF, and its 
discrete volume is the product of its discrete length and discrete width. 

Another more invariant definition of the above quantities could be given as 
follows (see [OT]). Consider the complexification and then the projectivization 
of the affine space V. Denote it IW. Let l& = {fi = O}iel be hyperplanes in 
PV, W, the infinite hyperplane and A the arrangement in PV defined by all 
these hyperplanes. Let x(A) denote the Euler characteristic of PV - U,,lk&, 
whereT=l,..., p,co. IfFisanedgeofA, then 

l(F) = tX(AF)lr s(F) = IX(PAFl> woZ(F) = l(F)s(F). 

2.2. The beta-function of an arrangement. An arrangement is caIIed weight- 
ed if a complex number is assigned to every hyperplane of the arrangement. The 
complex numbers are called weights. The weight of a hyperplane Hi is denoted 
(Yi. 

The weight of an edge F of a weighted arrangement is the sum, a(F), of the 
weights of the hyperplanes which contain F. 

Let A be a weighted arrangement in an aIfine space V. Make V into a projective 
space by adding the hyperplane H, at infinity: v = V U H,. For all i E I 

- - 
denote Hi the projective closure of Hi in v. Let z = {Hi}iEl U {H,} be the 
corresponding projective arrangement in V. The arrangement A is called the 
projectivization of A. Set CY, = -((_yr + . . . + CQ,). Let L_ denote the set of all 

edges at infinity of the arrangement ?i and L+ the set consisting of all the other 

edges. 

Definition 1. (i) Let the weights ~1,. . . ,a* of the hyperplanes be complex 
numbers with positive real part. The beta-function of an afine arrangement A 
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is defined by 

B(A; cx) = n r(cr(F) + l)“O1(F)/ n I’+(F) + l)VO1(F); 
FeL+ FEL_ 

- 
(ii) In addition, let HO be a hyperplane in V and Ho its closure in V. The 
beta-function of an afine arrangement A relative to the hyperplane Ho is defined 

by 

B(A;cu; Ho) = n IT((Y(F) + l)“O1(F)/ n l?+(F) + l)“Ol(F). 
FeL+ FEL-,FcHo 

EXAMPLE. Let n = dim V. For an arrangement A of p hyperplanes in general 
position the above formulas take the form 

B(A; CE) = 
rycyl + I). . qap + 1) 

r(al + . + (yp + 1) 

B(A; CU; fo) = (qcyl + 1). qa, + i))(E1i) 
2.3. Trace of an arrangement at infinity relative to a hyperplane. As- 
sume that an additional non-constant linear function fo on V is given. Denote 
the hyperplane {fo = 0) by Ho. 

Let A be an affine arrangement in the affine space V Consider the projec- 
tivized arrangement A in V and its section ZH, The intersection of 2 with the 
affine space W = H, - Ho n H, is called the trace of the arrangement A at 
infinity relative to the hyperplane HO and is denoted tr(A)Ho. 

Lemma 2.1. If the afine arrangement A is given by the linear functions { fi}tEI 
on V, then the afine arrangement tr(A)HO is given by the linear functions {hi = 

f,“/.f,” Ii E I; f,“/.f,” # const} on W, where f,” denotes the homogeneous part of 

fi. 

3. PROPERTIES OF AN ARRANGEMENT 

In this section we examine the properties of the unbounded domains of an 
arrangement A on which an additional linear function fo tends to -too. 

Let A be an arrangement in an alIme space V. Consider its projectivization 
z in the projective space v. Let A be an unbounded face of the arrangement A. 
Take the closure x of A in v. Consider the intersection An H,. It is a union of 
faces of the arrangement XH,. There is a unique one of highest dimension. We 

call it the trace of A at infinity and denote tr(A). 



202 MARKOV, TARASOV, AND VARCHENKO 

An unbounded face A of A is called a growing face with respect to fo if fo(x) 
tends to +W whenever x tends to infinity in A. A face at infinity C is called a 

- 
bounded face at infinity with respect to fo if c n HO is empty. In other words, 
C is a bounded face at infinity if and only if it is a bounded face of the affine 
arrangement tr(A)HO. 

If C is a face of A, denote FE the unique edge of the smallest dimension which 
contains C. Define the discrete length, the discrete width and the volume of the 
face as the same quantities for the corresponding edge. 

Theorem 3.1. The trace map from the unbounded faces of A to the faces of 2 
in H, has the following properties: 

(i) The trace of a growing face is a bounded face at infinity. 
(ii) For any bounded face at infinity, C, there exist exactly s(C) growing do- 

mains with trace C, where s(C) denotes the discrete width of this face. 
(iii) The number of growing domains of A is equal to the sum of the volumes - 

of all edges of 2 at infinity which do not lie in Ho: 

# growing domains = c wol(F). 

FLH,, KL% 

Theorem 3.1 is proved in Section 7.1 

4. CRITICAL VALUES 

The aim of this section is to define the critical values of the functions 

f?,... X” on the bounded domains of an arrangement A and the critical values 
of the same functions, with respect to an additional linear function fo, on the 
bounded and growing domains of A. 

Let an arrangement A be given by linear functions {fi}iEI and let cy = {cy,},e~ 
be a corresponding set of weights. 

For every i E I, a face of the arrangement A on which fi is constant is called a 
critical face with respect to fi and the value of fi on that face is called a critical 
value. In particular, each vertex is a critical face for every function fi. 

Assume that a function \fil is bounded on a face C of A. The subset of c on 
which lfil attains its maximum is a union of critical faces. Among them, there is 
a unique one of highest dimension. It is called the external support of the face C 
with respect to fi. 

Denote Ch(A) the set of all bounded domains of A. Let P(A) = lCh(A)I. 
Enumerate the bounded domains by numbers 1,. . . , P(A). For every i E I and 

j E {I,... ,P(A)), h c oose a branch of the multi-valued function f,F’ on the 
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domain Aj and denote it gi,j. Let Ci,j be the external support of Aj with respect 
to fi. Define the extremal critical value of the chosen branch gz,l on A3 as the 
number c(gz,J, A,) = g2,3 (&,j). Denote c(A; a) the product of all extremal critical 
values of the chosen branches, 

B(A) 
44 o) = n n c(gi,j, Aj ). 

j=l iEI 

Assume that an additional non-constant linear function f. on V is given. Let 
A be bounded or growing domain of A. Then f. is bounded from below on A. 
The subset of h on which e-f0 attains its maximum coincides with the subset 
of h where fo attains its minimum. This subset has a unique face of highest 
dimension; it is called the support face of fo on A and denoted CA. Define the 
extremal critical value of e-f0 on A as the number c(e-fo, A) = e-fo(‘A). 

Denote Ch(A; fo) the set of all bounded or growing domains of A. Let r(A) = 
ICh(A; fo)l. Enumerate these domains by numbers 1,. . , y(A). For every i E I 
and j E (1,. . . ,$A)}, choose a branch of the multi-valued function f,“’ on the 
domain Aj and denote it gi,j. Assume that 1 fil is bounded on Aj. Let C,,j 
be the external support of Aj with respect to fi. Define the extremal crit- 
ical ualue of the chosen branch gi,j on Aj with respect to fo as the number 

c(gt,j, Aj, fo) = gi,j(G,j). N o ice that, if Aj is a bounded domain of A, then t’ 
c(gz,j,Aj) =c(gi,j,Aj,fo). 

Now assume that (fil . IS unbounded on A3. Thus, Aj is a growing domain of 
A and tr(Aj) is a bounded face of tr(A)Ho. Denote M = fo(Ea,). Consider the 
rational function & = fi/(fo - M) on Aj. Notice that h;l,r(a,) coincides with 
the restriction of the linear function hi = f,“/f,” to the same set tr(A,). Since 
the sign of h, on Aj is the same as the sign of fi on Aj we can choose a branch of 

h, - cI’ on A, which has the same argument as gi,j and denote it gyj. Let C, be the 
external support of tr(Aj) with respect to hi in the affine arrangement tr(A)Ho. 
Define the the extremal critical value of the chosen branch gi,j on Aj with respect 
to fo as the number c(gi,j, A, fo) = gTj(Cj). 

Denote c(A; a; fo) the product of all extremal critical values with respect to fo 
of the chosen branches, 

-r(A) 
c(A; a; fo) = n e-fo(cA~) 

j=l 
j$(gi,jA, fo)) . 
iEI 
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5. HYPERGEOMETRIC PERIOD MATRIX 

5.1. /3nbc-bases. Let A be an essential arrangement in an n-dimensional real 
affine space V. Define a linear order < in A putting Hi < Hj if i < j. A 
subset {Hi}iE~ of A is called dependent if niE.lHi # 0 and codim(nzeJHz) < )J). 
A subset of A which has nonempty intersection and is not dependent is called 
independent. Maximal independent sets are called bases. An intersection of a 
basis defines a vertex. 

A Ic-tupleS = (HI,... , Hk) is called a circuit if (HI, . , Hk) is dependent and 
if for each 1, 1 5 1 5 k, the (Ic - I)-tuple (HI,. . . , E,. ’ , Hk) is independent. A 
Ic-tuple S is called a broken circuit if there exists H < min(S) such that {H} U S 
is a circuit, where min(S) denotes the minimal element of S for <. 

The collection of subsets of A having nonempty intersection and containing no 
broken circuits is denoted BC. BC consists of independent sets. Maximal (with 
respect to inclusion) elements of BC are bases of A called nbc-bases. Recall that 
n is the dimension of the affine space. 

An nbc-basis B = (Hi,, . , Htn) is called ordered if H,, < Hi, < < Htn. 
The set of all ordered nbc-bases of A is denoted nbc(A) 

A basis B is called a Pnbc-basis if B is an nbc-basis and if 

(4) ‘~HEB~H’< Hsuchthat(B-{H})U{H’}isabase. 

Denote /3nbc(A) the set of all ordered ,Snbc-bases. Put the lexicographic order 
on pnbc(A) 

The definition and basic properties of the /3nbc-bases are due to Ziegler [Z]. 

For a basis B = (Hi,,... , Hi,,), let Fj = f&+, Hi, for 0 5 j 5 n - 1 and 
F, = V. Then t(B) = (Fo c Fl c ... c F,) is a flag of affine subspaces of V 
with dim Fj = j (0 < j 5 n). This Ilag is called the fiag associated with B. 

For an edge F of A, remember that I(F) = {i E I 1 F C Hi}. Introduce a 
differential one-form 

For a basis B = (Hi,, ... , Hi,,), let E(B) = (Fo c Fl c ... c Fn) be the 
associated flag. Introduce a differential n-form E(B, A) = wa(Fo, A) A A 

wa(Fn-I, A). 
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If pnbc(A) = {Bl,. . . , Bg(A)} and q$ = c$~(A) = E(Bj, A) for 
j E (1,. . ,P(A)}, define 

(5) @(A) = {#‘l,... &(A)). 

EXAMPLE. For an arrangement. A of p hyperplanes in general position, the set 
,Bnbc(A) coincides with the set {(H,,, . . . , Hin) 12 5 il < . . < i, 5 p}. The lat- 
ter corresponds to all vertices of A away from the hyperplane HI. The differential 
n-forms are 

dfi, f 
Q(A) = {% . ‘. ain fi, A.. A 2 12 < il < . . < i, < p}, 

5.2. The definition of the hypergeometric period matrix. Let < = (PO c 
Fl c . . c F,) be a flag of edges of A with dim F, = i (i = 0,. . . , n - 1; F, = V). 
Let A be a domain of A and A its closure in V. We say that the flag is adjacent 
tothedomainifdim(F,nA)=ifori=O,...,n. 

The following proposition from [DT, Proposition 3.1.21 allows us to enumerate 
the bounded domains of a configuration A by means of pnbc(A). 

Proposition 5.1. There exists a unique bijection 

C : @be(A) + Ch(A) 

such that for any B E pnbc(A), the associated flag E(B) is adjacent to the bounded 
domain C(B) . 

Let t > 0 be a number which is larger than the maximum of fo on the closure of 
any bounded domain of A. Then the hyperplane Ht = {fo = t} does not intersect 
the bounded domains of A. Consider the affine arrangement At = A U {Ht}. The 
set of its bounded domains consists of two disjoint subsets: the first is the subset 
of all bounded domains of A; the second is formed by the domains of At which are 
intersections of unbounded domains of A and the half-space {fo < t}. Notice that 
the intersection of an unbounded domain A of A and the half--space {fo < t} is 
nonempty and bounded if and only if A is a growing domain. Thus P(A,) = y(A). 

Define an order < on At as Ht < HI < . . . < Hp. Consider the set pnbc(At) 
with respect to this order. If B E pnbc(At), then Ht 6 B because of condition (4) 
and the minimality of Ht with respect to the order <. This observation implies 
that /?nbc(At) and @(A,) do not depend on t. Denote them ,Onbc(A; fo) and 
@(A; fo) respectively. Notice that pnbc(A) and @(A) are subsets of @nbc(A; fo) 
and @(A; fo) respectively because the order on A is a restriction of the order 
on At to its subset A and because of condition (4). We also have an analog of 
Proposition 5.1. 
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Proposition 5.2. There exists a unique bijection 

c : pnbc(A; fo) --+ Ch(A; fo) 

such that for any B E pnbc(A; fo), the associated flag J(B) is adjacent to the 
domain c(B). Moreover, clonbc(A) = C. 

Let the set pnbc(A; fo) = {B1,. . , BY} b e 1 exicographically ordered as in 
section 5.1. For i = 1,. ,y, define a domain Ai E Ch(A; fo) by A, = C(B,). 
This gives us an order on the set of the growing and bounded domains of A. The 
order is called the pnbc-order. 

We give an orientation to each domain A E Ch(A; fo) as follows. Let A = C(B) 
with B E pnbc(A; fo). Let J(B) = (Fo c Fl c ... c F,) be the associated flag. 
The flag J(B) is adjacent to the domain B and defines its intrinsic orientation 
[V2, 6.21. The intrinsic orientation is defined by the unique orthonormal frame 
{el,. . , e,} such th a each ei is a unit vector originating from the point FO in t 
the direction of Fi n h. 

Let ,B = P(A). A ssume that Ch(A) = {A,, . , A,} is the ,Bnbc-ordered set of 
the bounded domains of A and Q(A) = (41,. . ,40} is the pnbc-ordered set of 
differential n-forms constructed in Section 5.1. Assume that the weights {cx,},~I 
have positive real parts. For every i E I and j E { 1, . . . , /3}, choose a branch 
of f,“% on the domain Aj and the intrinsic orientation of the domain AJ. Let 
U, :zY fp’ . . . fpaP. The choice of branches of the functions f,“” on all bounded 
domains defines a choice of branches of the function U, on all bounded domains. 
Define the hypergeometric period matrix by 

PM(A; CX) = 

Since Re c-r, > 0, all elements of the period matrix are well defined. 
Let y = y(A). Let Ch(A; fo) = {A,, . . ,A,} be the ,0nbc-ordered set of 

the bounded and growing domains of A and let @(A; fo) = (41,. . . ,&} be the 
pnbc-ordered set of differential n-forms constructed in Section 5.2. Assume that 
the weights {cx~}~~I have positive real parts. For every i E I and j E (1,. . . , r}, 
choose a branch of f,Fi on the domain Aj and the intrinsic orientation of each 
domain Aj. The choice of branches of the functions fzFi on all bounded and 
growing domains defines a choice of branches of the function U, on all bounded 
and growing domains. Define the hypergeometric period matrix with respect to fo 
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(7) PWA;a;fo) = [lJ eeiocl,&]~,jxl~ 
Since Reai > 0 and fe tends to +oo on the growing domains of A, all elements 
of the period matrix are well defined. 

6. THE MAIN THEOREM 

In [DT], Douai and Terao proved the following theorem, cf. also [Vl,V2]. 

Theorem 6.1. Let A be a weighted arrangement given by functions {fi}zEI and 
weights (Y = {cxi}iE1 such that Reoi > 0 for all i E I. Fix branches of the 
multivalued functions { fzyi}iEI on all bounded domains of A. Then 

(8) det PM(A; cy) = c(A; a)B(A; a). 

The main result of this paper is the following theorem. 

Theorem 6.2. Let A be a weighted arrangement given by functions {fi}iEl and 
weights a = {cY~}~~I such that Recri > 0 for all i E I. Let an additional non- 
constant linear function fo be given. Denote II0 the hyperplane {fa = 0). Fix 
branches of the multivalued functions {fFi}iEl on all bounded and growing do- 
mains of A. Then 

(9) det PM(A; CY; fo) = c(A; CY; fa)B(A; CY; Ho). 

We will deduce this formula for the determinant of the period matrix with 
respect to fc from Theorem 6.1 by passing to a limit. 

7. PROOFS 

7.1. Proof of Theorem 3.1. 

Lemma 7.1. Let A be a growing face. Then tr(a) n ?& = 0, i.e. tr(A) is a 
bounded face at infinity. 

PROOF. Let x0,.. . ,x,-l be affine coordinates on V such that fo(x) = ~0. Let 
(to : tl : ... : tn) be th e corresponding projective coordinates in v: {xi = 
t,/t,}~~~. Let A be a growing face. Assume that tr(a) n & # 0 and P = 
(pa : p1 : . . . : pn) is a point of this intersection. Thus, ~0 = p, = 0. Let 
Q = (q. : q1 : ... : qn) be any point inside A. Thus qn # 0. Since a is a closed 

polyhedron in V it contains the segment PQ. This segment is parametrized by 
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the points PX = (Xpo + (1 - X)qo : Xpl + (1 - X)ql : ... : Xp, + (1 - X)q7),), for 
X E [0, I]. The point PA tends to P E H, when X ~--t 1. We have 

fo(Px) = xJ% + (l - X)qe = J$ = constant. 
JV% + (I - A)% 9n 

This contradicts to the assumption that A is a growing face. So m n Ho = 0. 
Part (i) of Theorem 3.1 is proved. 0 

Lemma 7.2. Let A be an unbounded domain of A. Let tr(A) be a bounded face 
at infinity with respect to fo. Let fo be unbounded on An {fo > 0). Then A is a 
growing domain of A. 

PROOF. Since tr(A) is bounded at infinity, we have An H, n Ho = 0. For a real 
t, let Ht = {fo = t}. Then 

(IO) AnH,nH,=0. 

Let {~}:i be a sequence of points in A such that 2, tends to 03 when i H 03. 
Choose a positive T. Assume that T is larger than the supremum of f. on all 
bounded domains of A. Consider the arrangement AT = AU {HT}. Formula (10) 
implies that HT n A is a bounded domain of the section (AT)HT. Since AT is 
essential, Proposition 9.9 [BBR] is applicable. It implies that there is a bounded 
domain AT of the arrangement AT, such that HT n A is a subset of the boundary 
of AT. This bounded domain must be A n { fo < T}, because of the choice of T. 

Since AT is bounded, there exists a positive integer NT such that for every 
integer n 2 NT we have x, E A - AT. Since A - AT = A n {f. > T}, we have 
fo(z,) > T for all n > N T. This proves that A is a growing domain. 0 

Lemma 7.3. For any bounded face at infinity, C, there exist exactly s(C) growing 
domains with trace C, where s(C) denotes the discrete width of this face. 

PROOF. Let C be a bounded face at infinity of codimension k. Choose projective 
coordinates (to : tl : ... : tn) on V such that ?& = {to = 0}, H, = {t, = 0}, and 
FE is given by ti = . . = t&l = t, = 0. 

Let Y be a point in C and B an open ball around w. If the ball is sufficiently 
small, then the domains of A which intersect B are precisely those for which 2, 
belongs to their closure in v and the hyperplanes of 2 which intersect B are 

--FE exactly those belonging to A . Local affine coordinates on B are given by 

{Yi = r+o}~=“=1. S ince FE is given by the equations yi = ... = Y&i = yn = 0, 
the subspace L through v spanned by the coordinate vectors ei, . , e&l, e, is a 
normal subspace to FE. Then the number of open domains in B is equal to the 
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number of open domains of the arrangement induced in the tangent space T,L 

by the arrangement zFE. On B the function fo has the form to(y) = l/y,. We 
are interested in the domains in B on which fo ti fco when yn H 0. So, on 
this domains we must have yn > 0. If the codimension of C in H, is 0, then the 
number of such domains is equal to 1, which is exactly the discrete width of the 
empty configuration. Assume that the above codimension is positive. Then the 
number of domains in B on which yn > 0 is equal to the number of the domains of 

the projective normal arrangement PAP”. Finally, we want to count only those 
domains for which c is the only part of their closure in V, lying in H,. Thus, 
they are the projective domains away from the hyperplane yn = 0. Their number 

is equal to the discrete length of P?iFE. By definition this number is equal to the 
discrete width of C. Lemma 7.2 implies that the corresponding domains of A are 
growing. 0 

Lemma 7.4. The number of growing domains of A is equal to the sum of the 
volumes of all edges of 2 at infinity which do not lie in Ho. 

PROOF. Let F be an edge at infinity with non-zero volume which do not lie in 
- 
HO. Then, by definition, there are exactly l(F) bounded faces at infinity which 
generate F. For each of them, C, there exist exactly s(F) growing domains of 
A with trace C. Thus there exist exactly vol(F) = l(F)s(F) growing domains 
whose traces generate F. Finally, in order to count all growing domains of A, we 
have to sum over all edges at infinity which have non-zero volume and do not lie - 
in HO. Theorem 3.1 is proved. 0 

7.2. Asymptotic behavior of critical values. Let A be an arrangement in 
the affine space V. Let fo be an additional non-constant linear function on V. 
Define ft = l-9 and Ht = {ft = 0). C onsider a new weighted arrangement At = 
A U {H,} where we assume that the weight of Ht is equal to t. For a sufficiently 
big t, the hyperplane Ht intersects only some of the unbounded domains of the 
arrangement A. Moreover, the intersection creates a new bounded domain if and 
only if the intersected domain is a growing one. So if A is a growing domain, 
we will denote the corresponding bounded domain of At by A, and will call it 
a growing bounded domain. If A is a bounded domain of A, then it is also a 
bounded domain of At. This correspondence between the bounded domains of At 
and the bounded or growing domains of A is a bijection. 
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Lemma 7.5. Let A, be a bounded domain of the arrangement At. Let A be the 
corresponding bounded or growing domain of A. If t > 0 and (1 - fa/t) is positive 
on A, choose the positive branch gt of (1 - fa/t)t on At. 

Then the external support of At with respect to ft is a face of the arrangement 
A. For every big enough t this external support coincides with the support face, 
CA, of fa on A. Moreover, limt+++oo c(gt, A,) = e-fa(ca). 

PROOF. For a fixed t, the external support of At with respect to ft lies outside 
Ht. Thus, it is a face of the arrangement A. 

The set of all critical faces of A with respect to fo is finite. Let M be the 
maximum of fa on this set. Assume that t > M. Then all bounded domains of 
At lie inside the positive half-space with respect to ft. Let ft = 1 - felt attains - 
its maximum on a critical face CA of A,. This is equivalent to the condition that 
fa attains its minimum on the same face. So CA is the support face of A with 
respect to fo. On the other side, it is the external support of Ai with respect to 
.ft. Hence 

,:F~ c(gt, At) = ,;ym (l_yq=e-fo,w. 

Lemma 7.6. Let the hyperplane H = {f = 0) belongs to the arrangement A. Let 
A be a growing domain of A and At the corresponding growing bounded domain 
of At. Let 1 f ( be unbounded on the growing domain A. 

Then there exists a unique face C of highest dimension, belonging to the closure 
of A, such that for every big enough t, the external support of the face At with 
respect to f is Ct = C f~ At. Moreover, tr(C) is the external support of tr(A) with - 
respect to h in the afine space W = H, -HonH,, where h = f”/f,“. The asymp- 
totic behavior of f(Q) when t tends to +co is given by f (C,) = h(tr(C))t(l+o(l)). 

PROOF. The set of critical faces with respect to f of the arrangement A is finite. 
If 1 is bounded on this set. Since If 1 is unbounded on A the external support of 
At with respect to f lies on Ht for t big enough. 

Let Ct, be a critical face of A,, which lies on Ht, for some tl fixed. Then 
Ct, = Ht, n C, where C is a face of x. Consider the face Ct = Ht n C of A, for an 
arbitrary t. It is a critical face of At because Ct is parallel to Ct, and the latter 
is parallel to H. Let us compute the asymptotic behavior of f(Ct) when t tends 
to +oo. 

Choose affine coordinates {zj}~~~ in V such that fa(x) = x0. Let f = f” + b 
be the sum of the homogeneous part of f and the constant term. Then f = 
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XO(fO/~O + b/x0) = zo(fO/f(y + b/so). S’ mce Ht = (x0 = t}, f(&) = t(h(&) + 
b/t) = h(tr(C))t(l + o(1)). 

Let C’ be the external support of tr(A) relative to tr(H). Let C is the face of 
A for which C’ = tr(C). Then the previous computation shows that for every t 
big enough Ct is the external support of A, with respect to f. 0 

Corollary 7.7. Let the conditions be as in Lemma 7.6. In addition, assume that 
(Y is a complex number. Fix a branch of f* on A and denote it g. Fix a branch 
of (f /fo)” on A as in Section 4 and denote it ij. Fix branches of ta and (1 + 

o(l))” using the branch of the logarithm with zero argument. Then the asymptotic 
behavior of c(g, A,) when t tends to +co is c(g, A,) = c(g, A, fe)ta(l + o(1)). 

PROOF. Use the notation of the previous proof. Since c(g, A,) 
= g(Ct), c(g, A, fo) = j(tr(C)) and the arguments of g and j are the same on A, 
the asymptotic formula for f implies the statement of the corollary. q  

Lemma 7.8. Let the hyperplane H = {f = 0) belongs to the arrangement A. Let 
a be a complex number. Let A be a growing domain of A and A, the corresponding 
growing bounded domain of At. Fix a branch of f a on A and denote it g. Then 

1 f 1 is bounded on A if and only if tr(A) c tr(H). The latter condition is 
equivalent to the equation h(tr(A)) = 0 where h = f”/f,” is a linear function of 
the arrangement tr(A)Ho. Moreover, if 1 f 1 b as ounded on A, then for every big 
enough t, c(g, A,) equals the constant c(g, A, fo). 

PROOF. 1 f 1 is bounded on A if and only if A is placed between two hyperplanes 
H’ and H” parallel to H. Denote the domain between these two hyperplanes by 
D. Since A c D we have tr(A) c tr(D) = tr(H). 

The reverse part is a consequence of Lemma 7.6. 
Let C be the external support of A with respect to f. Then for every big 

enough t, c(g,A,) = g(C). The latter equals c(g,A, fo). 0 

7.3. Proof of Theorem 6.2. We prove Theorem 6.2 applying Theorem 6.1 to 
the arrangement Ai and then passing to the limit when t H +m. 

First study B(At; a, t). 

Lemma 7.9. (i) The only factor in the numerator of B(At; a, t) depending on t, 
when t is big enough, is the factor corresponding to the edge Ht. It contributes 
r(t + l)#, where # is the number of growing domains of A. 

(ii) The factors in the denominator depending on t come from the edges at 
infinity with non-.zero volume which do not lie in HO. Each of them, F, contributes 
I’(t + 1 + Q’(F))“~~(~), where a’(F) = zHEA; Fz~ aH. 
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(iii) Th e as m y p totic behavior of B(At; a, t) when t tends to +cc is given by 

B(A,; a, t) = B(A; a; HO) 
rtL!$fGt- 

a’(FkW(1 + o(l)), 

PROOF. Recall that 

B(At; a, t) = n r(a(F) + l)+)/ n I’(-Q(F) + 1)““1(F), 
FE&+ FeLt_ 

B(A; a; HO) = n r(a(F) + l)““l(F)/ n q-Cl(F) + l)““l(F), 
FG+ FEL_;FcHo 

where Lt_, L- denote the set of all edges at infinity of the arrangements At and 
2, respectively, and Lt+, L_ denote the set consisting of all the other edges of 
the same arrangements. 

(i) Since the only weight depending on t corresponds to Ht, the factors in the 
denominator that depend on t correspond to the edges of At lying in Ht. If such 
an edge F is a proper subspace of H,, then it is decomposable [STV, Section 21, 
that is the localization of the arrangement At at the edge F is a product of two 
nonempty subarrangements where one of the subarrangements is equal to {H,}. 
According to [STV, Proposition 71, the discrete width of a decomposable edge is 
zero. Thus its discrete volume is zero. 

The volume of Ht is the number of bounded domains of the section arrangement 
(A~)H~ which is exactly the number of growing domains of the arrangement A. 

(ii) If F is an edge at infinity of At, then a(F) = -t-xiC1 ap+cHEA,; FC~ aH 
The last sum depends on t if and only if CHEAt; FC~ (YH does not depend on t, 

- - 
i.e. if and only if F @ Ht. Since Ht n H, = Ho n H,, the weight a(F) depends 
on t if and only if F @ Ho. So a(F) = -t - a’(F). Notice that such an edge is 
also an edge of the arrangement A. 

(iii) According to Theorem 3.1 the number of growing domains of the ar- 
rangement A is equal to the sum of the volumes of all edges at infinity of the 
arrangement A which do not lie in Ho. Thus the number of factors in the nu- 
merator and in the denominator containing t is equal. Sterling’s formula gives 
us I’(t + l)/I(t + 1 + a) = tpa(l + o(1)) when t tends to +oo. So we obtain the 
required formula. 

Now consider the limit of the product of the critical values, c(At; a, t). For 
every i E I and every bounded or growing domain A of the arrangement A, 
choose a branch of f,*’ on A and denote it &A. This also fixes branches of f,“’ 
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on the bounded domains of At independently on t. Notice that for every big 
enough t, ft is positive on all bounded domains of the arrangement At. Choose 
the positive branch of (ft)” on this domains and denote it gt. 0 

Lemma 7.10. c(At; a, t) has the following asymptotic behavior when t tends to 
+m: 

44; a, t) = 44 a; fo) n ta’(F)““~(F) (1 + o( 1)). 
FEL_;FcHo 

PROOF. 

C(A,; cr; t) = 
n ( 

C(St, A)n &,A, A) = n c(st,A) 

(11) X 

AECh(At) %EI ) i A&h(At) 

n nc(%A>A) 
AECh(A) iE1 

(~&ig,,A&) > 
A, a~1 

where A, in the last product ranges over the growing bounded domains of At. 
We are going to describe the asymptotic behavior of each of the three products 

in formula (11). 
Assume that A is a bounded domain of At. Lemma 7.5 

limt++W c(gt, A) = e-fo(‘A’), where A’ is the domain of A 
which corresponds to the domain A of At and CA! is the 
A’. 

asserts that 
(bounded or growing) 
support face of fs on 

If A is a bounded domain of A and i E I, then c(gi,A,A) = c(g+,A,fc) by 
definition. 

Let A, be a growing bounded domain of Ai and A the corresponding growing - 
domain of A. Let i E 1. If tr(A) $ Hi, then c(gZ,&,At) = c(g+,A,fo)ta’(l + - 
o(l)), by Corollary 7.7. If tr(A) c Hi, then c(g,,&,A,) = c(gi,A,A,fo) by - 
Lemma 7.8. Let F be an edge at infinity. Assume that F does not lie in Ho and 
has a non-zero volume. According to Theorem 3.1, there exist exactly vol(F) 
growing domains of the arrangement A, whose traces generate F. Every term in 

the last product of formula (11) depends on a growing bounded domain. Collect 
all the terms such that the trace of the corresponding growing domain generates F. 
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Then for the product of the chosen factors we have n,, F,,(AI=F ni,, c(gi,a,, A,) 

TZ n &(gi,A, 4 fo) j-J n t-(1 +0(l)) 
A, F,,(A)=F GI A, Ftr(a)=F i, FcZH, 

=( n j-&(gi,a,A,fo) I-I @)(1+ o(1)) 
A, F,,(A)=F ieI )C 4 F,,(A)=F 

= ta’(F)“ol(F)(l + o(l)) n n c(gi,A, A, fe) 
A, F~,(A)=F iEI 

Collecting the asymptotic behavior for the three products in (ll), we obtain 
the statement of the lemma. 

PROOF OF THEOREM 6.2: Apply formula (8) to the weighted arrangement 
Ai. Lemmas 7.9 and 7.10 show that the terms dependent on t in the asymptotic 
formulas for B(At; a, t) and c(At; CY, t) cancel out. Thus, 

which gives us the right hand side of formula (9). 
Let us study the entries of the period matrix PM(At; CY, t): 

PM/q(t) = _/A ~a,t44-4), h w ere Aj is a bounded domain of At and &(At) is 
one of the n-firms constructed in Section 5.1. Remind that for a fixed k and a 
big enough t, the form &(At) is independent on t and equals &(A; fo). Since 
U,,, = (1 - fo/t)tUa, we have lim+++oo U,,, = e-f”U,. 

Since Aj is a bounded domain of At, there exists a unique bounded or grow- 
ing domain, A, of A such that Aj = A n {fo < t}. Extend ft as zero on 
A - A3. Then PMk,j(t) = JA(ft)tUa$k(A; fo). Since (ft)” < epfo on A n 

{fo > 01, L b g e es ue’s convergence theorem is applicable and limt+++oo PMk,j(t) = 
JA e_foU, &(A; fo) = PMk,j(A; au; fo). These limits give us limtH+c4 PM(At; o, t) 
= PM(A; a; fo). Theorem 6.2 is proved. 

8. DETERMINANT FORMULAS FOR SELBERG TYPE INTEGRALS 

Let ~1 < ... < .zp be real numbers. Let cq,... ,cY~,~ be complex numbers with 
positive real parts. For t E IP define 

q&z) = fi fi(h - .z,y n (t.j - tp. 
s=l i=l l<i<j<n 
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The branches of xa* and x27 are fixed by -1r/2 < arg x < 3~12 for all s E 
(1,. ‘. ,P). 

Let 2: = (1 = (11,. . , Zp) E ZP ] Zi > 0, Ii + . + I, = n}. For every 
s E {l,... ,p} denote 1” = Cr==, Zi, lo = 0. Let m E 2,P and s E (1,. . . ,p}. 
Denote Im,+ the set of integers {rn’-’ + 1,. . . , ma} and d”t = dtl A . . . A dt,. 
Define the following n-forms 

wn(t, 2) = ( c f-I $I rI (t Y Z,) d”t. 
aE$“s=l . jEr,,, OJ ) 

If m E 25’, then we identify m with the p-tuple (m, 0) E 2;. 
For 1 E 2:-l, let 

UJr = {t = (ti,. . ,tn) E IF 12, 5 tl+~+~ < ... 2 tl. 5 z,+l for s = 1,. . . ,p- 1). 

Assume that all domains in the formulas below inherit the standard orientation 
from KY. 0 

Theorem 8.1. , cf [V6]. 

(12) 

n-1 
n[ 

Iy(s + l)y)P-” I(1 + op + sy) n;:: qoj + s-y) (*+z3) s=o rw--l r(i + cp,, aj + (2n - 2 - s)y) 1 
(s - l),,) n (Zb - Z,)(a,+ab)(P~‘l;2)+2y(p+~-z). 

l<a<b<p 

Notice, that formula (12) is not symmetric with respect to ~1, . , . , CY~. To make 
it symmetric we introduce new differential n-forms, rm-,, for m E 2,-l. Namely 

P-l 

w,(t, z) = [~(ms!)a&s + 7). . . (a, + (7% - l)-/)]Wrn 

s=l 

P-1 

= c n 4% + 7). . (0, + (m, - l)y) n 
UES” s=l jgr, B (hq y .ddnt. 

Theorem 8.1 implies 

(13) det 
[S 

qt, z)w<(t, z) = 
n1 1 l,rnE2~--’ 
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n-1 JJ((s + 1)y + l)P-1 

n[ 

np,, qoj + sy + 1) P’;-;-“) 
s=o qy + 1)*-l q1+ c,“=, CYJ + (2n - 2 - s)y) 1 

(S - 1)~~) n (q, - z,)(a~+nb)(“~“;2)+2~(p+~~z), 
l<a<b<p 

Lemma 8.2. For every 1 E 2:-l, i, j E (1,. . , n}, s E { 1,. .p}, jk branches 
gj,,, h,,, of the multivalued functions (tj - z,)~, and (tj - ti)2’ ,respectively, on 
the domain Ill as at the beginning of the current section. Then the product 

I-I (zb - Z,)(an+nb)(P~“;2)+2y(p+~-2) 
l<a<b<p 

equals the product of critical values of the chosen branches 

(14) 
n P n [nn chs,er,) n c(hj.,,U) 

IE2g-l j=l s=l l<i<j<n I 

The critical values were defined in Section 4. 

Lemma 8.2 allow us to replace the last lines in formulas (12) and (13) by the 
product of critical values (14), cf. [V6]. 

For 1 E 2,P, let zo = -cc and 

&={(t=(t1,.. . ) tn) E IFP 1 Z,_l I t,s- I+~ < . < tls 5 2, for all s = 1,. ,p}. 

Theorem 8.3. Let a be a complex number with positive real part. Then 

(15) 

The next lemma allow us to replace the last line in formula (15) by the product 
of critical values (16). 
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Lemma 8.4. For every 1 E 2,P, i, j E { 1,. . . , n}, s E { 1,. .p}, fix brunches 
gj,S, h,,i of the multivalued functions (tj - z~)~s and (tj - t,)2y respectively, on 

the domain 6 as in the beginning of the current section. Then the product 

equals the product of critical values of the chosen branches with respect to the 
’ linear function -atI. 

(16) n c(eaCy=ltJ, G) fi fi c(gj,s, G, -atI) n c(hj,i, E, -atI) 
&2X j=1 s=l l<i<j<n 1 

The critical values were defined in Section 4. 

9. PROOFS OF THEOREM 8.1 AND THEOREM 8.3 

Theorem 8.1 is a direct corollary of Theorems 5.15 and 7.8 [TV]. The compu- 
tations are long but straightforward. 

The correspondence in notation between the current paper and [TV] is as 
follows: 

Object 
Dimension of the vector space 
Number of points 
Coordinates 
Weights 

Points 
Parameter 

For 1 E 2:, let za = -co and 

current notation 
n 

P 
t 
cl 

Y 
ZEIR 

a 

v, = {t = (t1,. ..,tn)EIWnlz,_lItj,<z,vs=l, 

[TV] ~ article 
1 
n 
U 

WP 
-1lP 

y/h = z E iR 

ivfp 

. ,P and j,? E r~,,}. 
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Theorems 5.15 and 7.6 [TV] imply the following formula 

(17) 

det k,exp(actj) fifi(ti-.~.)“~ n (ti-tj)2yu,(t,.z) 

[ 

= 
j=l s=l2=1 lSi<j<n 1 l,rnEZ:: 

(_l)n(P;:;l) n fi i’r b;iZ(IV) nyj [ r((;ty;J4P p 
I 

(“‘i=“) n F(%j + SY) l&g j=l s=l S-O j=1 

exp(aa(p + ; - 1) g 4 .-(“‘;-‘) CL Sas-2p(P:;;‘)7 

exp(i~[(P+~pl) $mfpZ~~~~ ‘)7]) 

n (zb _ ..)c~~+N*)(‘+~-‘)+2~(~~~~1). 

l<a<b<p 

In order to obtain Theorem 8.3 we have to pass from “rectangular” domains 
VI to “triangular” domains 6. For any 1, m E 2: we have 

~,exp(a~ti)iiii(ti-z,)Da I-J (ti-tj)2yW,= 
j=l s=l i=l l<i<j<n 

= C 

ceslX...XS~P 

S,, exp(aet,) fr fi(ti - Zsjas I_I (ti - t,12’f-h 

j=l s=l2=1 ljz<j<n. 

= &+l&vrfi 1~1 + e-2w). . (I+ e-2ri7 + . . + ,-2+U-l))] 

j=l 

~,exp(ai:ti)m(t,B)wm(t,z) 
j=l 

P lj 
= p(n-l)iq 

rIrI 

sin( -s7r’y) ’ 
I-I 

3=ls=l Si4-WI j=l 

+ylj (L3 - 1)/2 

~,exp(o~ti)m(l,r)w,(t,z) 
j=l 

This proves Theorem 8.3. 
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