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ABSTRACT. Moduli spaces M of self-dual SU(2) connections (“instantons”) 
over a compact Riemannian 4.manifold (hl, g) carry a natural L2 metric g, 
which is generally incomplete. For instantons of Pontryagin index 1 over 
a compact, simply connected, oriented, positive-definite base manifold, the 
completion M is Donaldson’s compactification; in fact the boundary of the 
completion is an isometric copy of (M, 4n2g) ([GP2]). In this paper we 
show that the boundary is, furthermore, a totally geodesic submanifold of 
the completion. Along the way, we prove a regularity theorem: the continu- 
ous extension of g to the “collar region” of M is C1,a (in the conventional 
scale/center coordinates) for small LY > 0. The proofs rely on some new 
weighted Sobolev inequalities for concentrated instantons, in which the only 
dependence of the Sobolev constants on the connection is through the con- 
centration parameter X. The exponent in the weighting function translates 
into the Holder exponent in the regularity theorem. 

1. INTRODUCTION 

The moduli spaces M of self-dual connections (instantons) over a compact Rie- 
mannian 4-manifold carry a natural metric, the ‘IL2 metric” g, analogous to the 
Weil-Petersson metric of Teichmiiller theory. This article is a sequel to [G2], con- 
tinuing the study of the Riemannian structure of the spaces (M,g). This study 
reveals a rich interplay between the elliptic analysis of self-dual connections and 
the geometry of the moduli spaces. In [G2] it was shown, for example, that “lo- 
calization” of the covariant Green operators of concentrated self-dual connections 
is reflected in boundedness of the Riemannian curvature of certain moduli spaces 
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near the ideal boundary (see Theorem 1.1 below). In this article we show how 
other features of the analysis lead to Cl>” regularity of g for these moduli spaces, 
and to a proof that the boundary dM is a totally geodesic submanifold of the 
completion of (M, g) . 

Throughout this paper, as in [G2], unless otherwise stated (1M,g) denotes a 
C” Riemannian four-manifold that we assume to be compact, simply connected, 
oriented, and having positive-definite intersection form. We let M denote the 
space of charge-l SU(2) instantons over M, a five-dimensional space. M contains 
a ‘collar’ region Mxo diffeomorphic (non-canonically) to (0, Xo] x M for some 
Xa > 0; the diffeomorphism Q : M x0 -+ (0, A,] x M assigns to an instanton its 
scale X E (0, X 0 and its center p E M as defined in [Dl]. Certain assertions we ] 
make below are true only for Xe sufficiently small; we will always assume, without 
explicit mention, that Xe has been chosen small enough. 

Let MA, denote the completion of (M, g) as a metric space and let dM denote 
the complement of MA, in MA,. It was proven in [GP2] that as X --t 0 the L2 
metric is asymptotic to a product in the Co topology: 

(1.1) (V’)*g N 47r2(2dX2 $ g). 

As a consequence, completing in the L2 metric implements Donaldson’s compact- 
ification: the collar map Q extends to a homeomorphism MA,, 2 [0,X0] x M, 
identifying the boundary dM with (0) x M. This result was extended by P. 
Feehan [F] to instantons of arbitrary charge over l-connected definite manifolds, 
and work of Donaldson [D2] suggests that this relation between L2 completion 
and compactifications should hold very generally. 

The theorems of [GP2],[F], and [D2] asserted nothing about the asymptotic 
behavior of geometric invariants involving derivatives of g, although concrete ex- 
amples M = S4 and M = CP2 suggested that the curvature of (M,g) should 
extend continuously to the boundary and that the second fundamental form of 
the boundary should be zero ([DMM],[GPl],[Gl],[Hab],[K]). The first general the- 
orems along these lines were proven in [G2] ( mo u o a technical assumption that d 1 
can now be removed; see below): 

Theorem 1.1. (Theorems 1.1-1.2 of [GZ]) Let (M,g) and MJ,, be as above. 
Then the sectional curvature of (Mxor g) is bounded above and below, and the re- 
striction of the Riemann tensor to the tangent bundle of the leaves {A = constant} 
extends continuously to the boundary. 

This theorem and the behavior of g in the S4 and CP2 examples led the author 
to conjecture in [G2] that the continuous extension of g to the completion should 
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be C2 or better. Note, however, that the completion MA, was defined above in 
the sense of Cauchy sequences; not enough is known about the regularity of g near 
8M to complete using the geodesic equation. But Cauchy completion is only a 
topological operation, not a smooth one; by itself it induces no smooth structure 
on MA,, which is a necessity if we are to discuss derivatives. Conjecturally, there 
is a ‘geometrically natural’ smooth structure given by the normal exponential 
map from the boundary, but this has yet to be proven. (In fact, a priori it is not 
obvious that this exponential map is even uniquely defined since the extended 
metric is not known to be C2.) Alternatively, we can obtain a smooth structure 
on the completion by declaring the extension to Mxo of the collar map QJ (with 
center and scale as defined in [Dl]) to be a diffeomorphism; we refer to the induced 
coordinate systems on Mxo as “collar coordinates”. 

In this paper, the regularity of g will be discussed in terms of collar coordinates. 
We use these coordinates to extend g to a metric g on MA, by using the limiting 
boundary values given by (1.1). The first main result of this paper is the following. 

Theorem 1.2. For any fixed collar map, there exists CY > 0 for which jj is Cl+ 
in collar coordinates. 

It should be noted that in collar coordinates for the S* and CP2 examples, g 
is Cl>* for any CY < 1, but is not C2 (or even Cr)l). Thus, sticking with collar 
coordinates, the only significant way to improve Theorem 1.2 would be to increase 
the Holder exponent (Y. Changing the meaning of “collar coordinates” by using 
the alternative definition of center and scale in [F] (based on cut-off versions of 
center-of-mass and standard deviation) is unlikely to improve the theorem either. 

Thanks to this theorem, the second fundamental form of the boundary-more 
precisely, of (0) x M relative to the continuous extension of (Q-‘)*g-is well- 
defined, as it involves only first derivatives of the metric. This allows us to state 
our second main theorem. 

Theorem 1.3. In the smooth structure on MA, induced by a collar map, the 
second fundamental form of the boundary 8M vanishes identically. Hence the 
submanifold 8M is totally geodesic. 

Theorems 1.2-1.3 both are corollaries of the more technical Theorem 7.1, which 
details the behavior of the metric coefficients (in collar coordinates) and the decay 
of their derivatives near dM. 

Although usually “vanishing second fundamental form” and ” totally geodesic” 
are synonomous, because of insufficient regularity of the metric the latter term 
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should be used with caution here, since another common definition of totally 
geodesic submanifold is that geodesics initially tangent to the submanifold stay 
within it. However, in general the geodesics in a Cl>* metric are not uniquely 
determined by their initial conditions, as Hartman’s two-dimensional counterex- 
ample (1 + 9X4i3)(dz2 + dX2) shows ([Harl]). In this example the submanifold 
L = {A = 0) has zero second fundamental form, but the curves X = 0 and X = x3 
both are geodesics, so L does not satisfy the second meaning of “totally geodesic”. 
It turns out that this phenomenon cannot occur for the moduli spaces above; in 
$7 we show that the combination of bounded curvature on the complement of 
8M and vanishing second fundamental form of dM imply uniqueness of solu- 
tions to the geodesic equation (in Hartman’s example the curvature is unbounded 
for X # 0). 

The original goal of this paper was to establish Theorem 1.3. However, without 
knowing that the metric is differentiable at the boundary, “second fundamental 
form” could only be defined in a formal, limiting sense. But the author found 
that the computations needed to prove Theorem 1.3 also proved Theorem 1.2, 
with only a little extra work. 

The need to refer to a fixed collar map in Theorem 1.3 is unsatisfying. The 
methods of this paper suggest that different collar maps determine the same 
Cl?” vector fields and hence the same C2>0 atlas on MA,. If true, this would 
allow us to attach meaning to %ollar coordinates” independent of the collar map, 
and would simplify the statements of Theorems 1.2 and 1.3. However, as was 
shown in [G2] for the S4 and CP2 examples, collar coordinates should not be 
expected to give optimal regularity for g; in those examples one gets four more 
orders of differentiability in the “Fermi coordinates” given by the inverse of the 
normal exponential map-i.e. coordinates in which X is replaced by distance to 
the boundary, and center-point by closest point in the boundary. (One still does 
not get C” regularity in those coordinates, proving that the metric is not C” in 
any coordinates.) Therefore the most appealing way to improve Theorems 1.2- 
1.3 would be to establish existence and regularity of the Fermi coordinate system 
more generally, eliminating the need for reference to any ad hoc collar map. At 
present the best we can say is that the normal exponential map is Lipschitz (see 
$7). With more work one can probably show that this map is at least a C1 local 
diffeomorphism, but we do not attempt that here. 

To put the regularity theorem 1.2 in context, it should be noted that in other 
settings in Riemannian geometry, global bounds on curvature and injectivity ra- 
dius are known to give C1la bounds on the metric in some coordinates, namely 
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harmonic coordinates, for any CY < 1. However, to the author’s knowledge, all 
the theorems in the relevant regularity literature assume more regularity at the 
outset than we know, a priori, for g on MAO. The original “curvature bounds 
give 0” metric bounds” result, due to Jost and Karcher ([JK]; see Theorem 
4.3 of [P] for an English translation), assumes the manifold to be compact and 
without boundary, that the metric is regular enough that the curvature is defined 
everywhere, and that normal coordinate systems exist at every point; furthermore 
the bounds produced depend on the injectivity radius. In the setting of Theorem 
1.2, however, there is a boundary, at which the metric is initially known only to 
be Co and at which the curvature and exponential map are a priori undefined. 
M. Anderson considered the case of a manifold with boundary ([A], Lemma 2.2), 
but his Cl>* bounds apply only at interior points and potentially depend also on 
distance to the boundary. It is plausible that results such as Jost and Karcher’s or 
Anderson’s (including the existence of harmonic coordinates on balls of controlled 
size) can be extended to our situation of a manifold with boundary, possessing 
a Co metric that is C” on the interior, with bounded curvature on the inte- 
rior. It is also quite likely that Cl>* compactness arguments for C2 metrics on 
closed manifolds with bounds on curvature (cf. [GW], [PI) can be adapted to our 
situation. 

There are several reasons for using collar coordinates instead of attempting an 
approach along the lines above. First, such an approach would require knowing 
boundedness of the second fundamental form of the leaves {X = const}, and in the 
course of obtaining this knowledge we’d find that we’d already proven Theorems 
1.2-1.3 directly. Second, an abstract regularity result would not by itself prove 
Theorem 1.3, for which one needs to know that certain derivatives vanish as 
X + 0, not merely that they are bounded. Third, although in general harmonic 
coordinates give optimal regularity of the metric (at least on manifolds without 
boundary), our geometric setup-in which the boundary is attached by forming 
a completion-seems to cry out for Fermi coordinates, which is what our collar 
coordinates approximate. Finally, in the computational approach using collar 
coordinates, one can see explicitly how the exponent CY in the weighting function 
of certain weighted Sobolev inequalities for concentrated connections translates 
into the exponent in the Cl>” regularity statement. 

Our approach to Theorems 1.2-1.3 involves the “approximate tangent space” 
discussed in [GP2] and [G2]. To prove Cl@ regularity of the metric we need to 
examine the metric coefficients in a basis of the tangent bundle that is itself at 
least C1la on Mxo. Coordinate vector fields provided by the collar map are of 
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course C”, but there is no obvious way to examine the metric coefficients directly 
in such a basis. This is where the approximate tangent space enters. Approxi- 
mate tangent vectors are elements of @(AdI’) with explicit local formulas that 
allow effective computation of metric coefficients. Furthermore these elements are 
close to true tangent vectors-harmonic l-forms-in a quantifiable way. The Co 
closeness of the approximate and true tangent bundles established in [G2] is not 
sufficient for our purposes here; we require closeness on the level of first derivatives 
as well. The hardest part of the proofs of Theorems 1.2-1.3 consists of showing 
that the approximate and true tangent bundles are @-close (our method gives 
the extra HGlder exponent as a bonus). This allows us to construct vector fields 
on Mxo that are Cl)* up to the boundary (in collar coordinates) and to prove 
our main theorems. 

A large part of our technical work consists of the elliptic estimates relating 
the approximate and true tangent bundles. Since the appearance of [G2], there 
have been two significant improvements in the technology of these estimates. The 
first of these is a stronger statement concerning the pointwise decay of curvatures 
of concentrated self-dual connections. In [G2] a sharp decay rate was established 
only under a technical assumption on the base metric g, the “A\2-condition”. This 
condition is unnecessary; in [GP3] it is proven that the decay estimate holds for 
arbitrary base metrics. Consequently, all theorems and estimates in [G2] remain 
true if the A”_ -condition is removed from the hypotheses. The second improvement 
occurs in estimates involving the Green operator GA on anti-self-dual two-forms 
(where A is a concentrated self-dual connection). In [G2] these estimates all 
involved integral powers of the distance to the center of the instanton, which 
in some cases led to estimates that diverged logarithmically with X (cf. (3.1)). 
The techniques of this paper circumvent this critical-exponent phenomenon by 
showing that we can increase the exponent of the distance function by a small non- 
integral amount in most cases. This strengthens certain key estimates in [G2] on 
the difference between approximate and true tangent vectors, and simultaneously 
simplifies their proofs. In particular, this approach eliminates the need for the 
parametrix method of §§S-7 of [G2] in the derivation of these estimates (though 
the parametrix may still supply higher-order information). 

The moduli spaces in Theorems 1.1-1.3 are rather special; the topologies of 
both the base manifold and the SU(2)-bundle over it are very constrained. More 
generally, the boundary of the completion is a stratified space, and an attractive 
generalization of Theorem 1.3 is the conjecture that this stratification is totally 
geodesic, at least when the strata are of the form { symmetric product of M} x 



TOTALLY GEODESIC BOUNDARIES OF YANG-MILLS MODULI SPACES 227 

{lower-degree moduli space} (as opposed to proper subsets of these spaces). This 
rather speculative conjecture is based on the observation that estimates similar 
to the ones in this paper go through for more general moduli spaces, and, as we 
see in this paper, one should expect certain types of estimates to be reflected in 
specific geometric features of the moduli space. 

The outline of this paper is as follows. In 52 we review the approximate tangent 
space and introduce the associated notation, and begin to examine how close the 
approximate tangent space is to the true one. To complete this examination, 
certain elliptic estimates are required. Since there is a very large number of 
these estimates and their applications in this paper, in $3 we describe some basic 
principles to help the reader thread his or her way through later calculations. 
All but one of these principles were derived in [G2]; we derive the remaining 
principle-essentially a collection of weighted Sobolev inequalities-in fj4. In $5 
we begin to consider how close the approximate and true tangent bundles are 
on a Ci level, and state the results of the fundamental calculations (Proposition 
5.1) that eventually lead to Theorems 1.2-1.3. In $6, we perform the actual 
calculations, which are quite long. It is unfortunate that the proofs of our main 
results require so much calculation, but the author found no way to avoid this, 
and much of the calculation is nontrivial; “obvious” approaches lead to divergent 
upper bounds on quantities that are in fact small. We have tried to limit the 
details presented to a few useful lemmas (such as Lemma 6.3) and their nontrivial 
applications, and to enough intermediate bookkeeping to display the relative sizes 
of various terms and render the computations checkable. Finally, in §7, we show 
how Proposition 5.1 leads to Theorems 1.2-1.3, proving both of these as corollaries 
of the stronger Theorem 7.1. At the end, we briefly discuss the exponential map 

on (A%, g). 
Since the approximate tangent space at a point of the moduli space involves 

functions of normal coordinates based at the center of the instanton, differenti- 
ating any expression involving this approximation requires us to vary the normal 
coordinate systems as the center point moves. This is an interesting but lengthy 
exercise in pure Riemannian geometry, so we have left it to the appendix, though 
the results are used in 56. The formula we derive is reminiscent of the expansion 
of the metric in normal coordinates. Although the coefficients of the 0(r2) term 
in this expansion are not needed for the calculations in $6, we have included a 
derivation of these coefficients anyway, since the formula may be of independent 
interest. 
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As in [G2], we allow constants c to have their values continually updated. All 
constants that could potentially depend on the connection or choice of point (or 
frame, etc.) in M are uniform in these parameters unless otherwise indicated. 
The notation (., .) is used for the L2 inner product of bundle-valued forms. 

This paper was completed while the author was visiting the Institute for Ad- 
vanced Study. The author thanks the Institute for its hospitality. 

2. THE APPROXIMATE TANGENT SPACE 

In this section we introduce notation that will be used for the rest of this paper. 
Let P + A4 be a principal SU(2) bundle of Pontryagin index 1, and let 

A, G, Ad P denote,respectively, the space of connections on P, the group of gauge 
transformations, and the adjoint bundle. Let M c d/G be the moduli space of 
self-dual connections, and let MJ,, c M denote a “collar region”, equipped with 
a diffeomorphism 9 : MA,, -+ (0, X0] x M as in [G2, p. 1401. (Q here is Q-l in 
[G2].) Letting Ax0 denote a small neighborhood of the inverse image of MA, un- 
der the projection A + d/G, the collar map QJ factors through a gauge-invariant 
map with domain Ax,, so we will write @([A]) = (X(A),p(A)); we refer to X(A) 
as the scale and p(A) as the center of A. Below, FA E R2(Ad P) denotes the 
curvature of A. 

The definition of Q involves a cutoff function, so for the rest of this paper we 
fix such a function b E C?(R) with b(t) = 1 for 0 < t < 1, b(t) = 0 for t > 2 
and 0 5 b(t) 5 1 everywhere. The cutoff b determines a certain normalization 
constant K (see [GP2, p. 5331 or [D, definition 151) appearing in the definition of 
X. and we set 

(2.1) x=KX 

We also fix a number TO such that 3~ is less than the injectivity radius of (M, g), 
and a smooth, nonnegative function p : M x M + R, with p > 0 off the diagonal, 
such that p(p, Q) = dist(p, 4) whenever dist(p, 4) 1. 2~. For each p E M we define 

rp(q) = P(P,~) and BP(q) = b(r,(q)lro); we will usually suppress the p’s to avoid 
clutter. We will refer to rp as “distance to p”, even though this is literally true 
only at small distances. 

We review certain aspects of the construction in [GP2] of the “approximate 
tangent bundle” of the collar region in M. The notation below is essentially the 
same as in [G2], except that the 4’ of [G2] is called 4 below. 
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Notation. Given [A] E MA,, a vector a E T,M (where p = p(A)), and 
au E R, we write: 

(2.2) IjJ = $r;. 
(2.3) +a = &aix’. 

4( a0,a) = X-&j + &. 

Z( WI+) = grad(4(,,,,)). 

ZA = LZF~ (for any vector field Z on M). 

In (2.3), {xi}: are normal coordinates based at p, and a = CL%&, but the definition 
is independent of choice of normal coordinates. 

For [A] E Mxo, the true tangent space T~AIM is naturally isomorphic to the 
harmonic space 

(2.4) HA := {v E Rl(AdP) 1 (dA)*q = O,di’q = O}. 

(Here dA is covariant exterior derivative; the subscript “minus” denotes projection 
onto anti-self-dual two-forms.) The harmonic spaces fit together to form a G- 
invariant sub-bundle H of the trivial tangent bundle TdlAAO ” Ax0 x R’(Ad P); 
vector fields on MJ,, correspond to G-invariant sections of H (restricted to the 
inverse image of MA,). 

We define the approximate harmonic space fiA by setting 

(2.5) HA := @$,,a) 1 ( a~, a) E R x T,(A)W 

These piece together to form another G-invariant sub-bundle fi of dx,, x R1 (Ad I’), 
whose restriction to the inverse image of MA,, descends to what we’ll call the 
approximate tangent bundle of MA,. The fiber at [A] E MJ,~, the approximate 
tangent space, consists of G-invariant sections of fi along the G-orbit through 
A. We will abuse terminology and refer to BA itself as the approximate tangent 
space and its elements as approximate tangent vectors. 

Heuristically, the au-part of the approximate tangent vector Z$O,,l is related 
to an infinitesimal change of scale, while the a-part is related to an infinitesimal 
translation of center point in the direction a. This was made more precise in 
[GP2], where it was shown that the CCequivariant map 

(2.6) 

1~ : R x T,(,J)M + HA 

(~0~4 * 
_rAjA 

(ao,a) ’ 
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where rA : R1(Ad P) + HA is the L2-orthogonal projection, approximates the 
differential of XII-~ as X + 0. To be more quantitative, we define the “error term” 
CA E End(R x T,(/$‘f) by 

(2.7) CA := k, OzA -Id 

and write 

(2.3) (&,$) := CA(ac, a) 

The goal of this section is to estimate I(&,, $-)I, which leads us to yet more 
notation. The objects that encode the difference between the approximate and 
true tangent spaces are 

(2.9) <,” := (7rA - Id)zA = -(d”)*G”d”gA E R’(Ad P). 

(Here GA = (d!(d!)*)-l.) For 2 = gradf, Lemma 3.lb of [GP2] gives 

(2.10) d!(gA) = H”f b FA 

where H”f is the trace-free part of the covariant Hessian off, and where b is the 
pairing defined by T h S = T,jSj& A 8’” relative to an orthonormal basis {Q’} of 
T* M. Hence if we define 

(2.11) 

then 

(2.12) 6 lQ,a) := @a,,, = -(d”)*G”q,,,+ 

Later we will make frequent use of the fact that 

(2.13) Iw(~~+)I 5 cx[o,2T,,](14~ + b~l~-~~~)lF~l~ 
where r is distance to p(A) and where x[c,zr,,] is the characteristic function of the 
disk (0 5 T < 27-c). (For the a0 term here, it is crucial that only the truce-free 
part of the Hessian enters in (2.10).) 

Finally we can state our first basic estimate on the map LA. The estimate 
below improves Proposition 5.2 of [GP2] by a full power of X in directions “tan- 
gential” to the boundary (i.e. to the {X = const} foliation), and by a small 
power of X in the “normal” direction. Our proof draws heavily on the formulas 
in 554-5 of [GP2] for differentiating the collar map, whose lengthy derivations 
we do not repeat here. A reader without a copy of [GP2] can derive the rele- 
vant formulas from the characterization of X(A) and p in terms of the function 

RA(% x) = ./- Q(z, d141FA(d2d~g(d> namely (i) X(A) = inf{s 1 RA(s,x) = 
47~~ for some x}, and (ii) dR~/dx~ = 0. 
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Proposition 2.1. There exists cx > 0 such that for all [A] E MA,,, 

(2.14) iCA(aO,a)i = I( iiO,b)I < c(lalX2 + ]ae]Xl+“). 

In particular, if ilo is small enough then IA is always an isomorphism. 

We will begin the proof of this proposition here, but will not complete it until 
the end of section 4, when we will have certain estimates in hand (in particular 
bounds on L2 inner products of the form (w, G!w’)). 

PROOF. (Begun.) Below, we write Q?* = (X,,p*) and 2 = Zc,,,,). We will omit 
many sub- and super-scripts in this proof; e.g. 2 stands for “6, aJ. 

First we consider the differential A,. From Proposition 5.1 of [GP2] (with a 
minor typographical error corrected), we have 

(2.15) 
(T.2 , Lgrady F) 

x*Tz = -4xJM(Vy, V(r2))IF12’ 

where 

y = b(r/X). 

Writing ~2 = 2 + [z, the proof of Proposition 5.2a of [GP2] 
reduces to 

shows that (2.15) 

(2.16) (tz, Lgrady F) 
-‘o = hz + ao = -4xJM(vy, v(r2))lF12 

Let wy = d!L gradyF (= Ho-y bj F by (2.10)). Integrating by parts (see (2.12)), we 
can rewrite the numerator in (2.16) as 

(2.17) (tZ7 Lgrady F) = -W’+(a,,aj tl F, G”W’y h F)) = -K%~~a,,,a&~ 

The denominator in (2.16) is bounded away from zero by some constant indepen- 
dent of A (see [GP2], equation 4.9), so we have 

(2.18) bol I ~W”qa,,ap~,)I 
We will not have the tools to estimate this inner product optimally until after 

$4, so we suspend this part of the proof and begin to bound 8. 
The steps needed to derive an explicit formula for 5 = p,7r2 + a can be found 

in the proofs of Propositions 4.5 and 5.2b in [GP2]. To write down the formula, 
let {xi} be a normal coordinate system at p, let gij = g(dxi, dxj), and set 
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(2.19) yzj = & = X-2b”(r/x)$$ +X-$+/X) (+ - $$) , 

(2.20) mi =x-l J, b”(T/X)5~]F]2, 

(2.21) & = the function {Q ti ,zl& - -??z- as-as3 1 13 

(2.22) d%j = -b’(r/S;)&j + xyd& jk - 6,k) = b’($) (-&j +:-‘(g”’ - i&j)) , 

(2.23) X2&j = J, x2^izj IF]2 + J, Xb’(r/X)&(F]? 

The functions &, $ij are discussed in greater detail in the appendix (see Definition 
2 and Lemma 8.3), where it is shown that <ij = O(r) (and hence & = b’(r/X) 
O(T)). Prom the proofs in [GP2] cited above, one finds a+h = ((J22H)-‘)tjfi&, 
where fi = mix,ng+212([ z, lvyi F) + s, x2 (2, Vyi) ]F12. After simplifying some 
expressions using the normal-coordinate identity gijxj = xi, and integrating by 
parts as in (2.17), we obtain 

(2.24) 

s= ((*2H)-‘)ii{-KmiBo+2~2(G~~~~~,.),HUy, hF)+aj/J$ij]F]2}&. 

The symmetric matrix x2H is 2 c.1 for some constant c > 0 ([GP2, Lemma 4.4]), 
and (since T and X are commensurate on supp(b’(r/X))) we have x]$‘23] 5 cX2, 
implying JX$ijlF12 5 cX2 s IFI 5 cX2. Furthermore, from [GP2, Lemma 3.51, 

(2.25) mi-+Oas X-+0. 

Hence 

(2.26) IAl I c (l&01 + (4X2 + ~21(G!b~,,,,~, ffoyi tl F)I) 

This is as far as we can go towards proving (2.14) without a sharp bound on 
the inner products appearing in (2.26) and (2.18). We interrupt the proof of 
Proposition 2.1 here (to be resumed and completed at the end of $4) so that we 
can provide the estimates we will use to bound these and other quantities. 

3. PHILOSOPHY OF THE ESTIMATES 

To establish Proposition 2.1 and several other important bounds, we need 
certain elliptic estimates whose only dependence on A is through X. To make these 
estimates seem less random, we provide here some basic principles (consequences 
of the results we will prove in $4) that should help the reader understand the 
strategy behind the estimation scheme used in this paper. These principles also 
help guide one to the sharpest estimates generally attainable. 
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In this game frequently wants to bound L2 and L4 norms of certain quantities 
by as high a power of X as possible. Usually these quantities are of the form Pw 
or PGAw, where r = rp(A) is distance to the center point of A, and where w has 
support in a small ball centered at p(A). (Powers of r arise, for example, in the 
pointwise bound (2.13) and through principle 4 below.) The general principles 
for such estimates, subject to certain limitations described below, are: 

1. A power of r generally gains you an equal power of X (i.e. Ilrnqllq N X”j1~1/~), 
but only up to a certain exponent. 

2. An L4-norm generally costs you a power of X relative to an L2-norm (11171)4 N 

x-11117112). 
3. A covariant derivative generally costs you a power of X (e.g. JJVAn))9 N 

~-1111711~)~ 
4. A Green operator G can gain you up to two powers of r (llG~(l~ N IIrrn~llq 

for some m < 2), hence (by principle 3) as many as two powers of X. The 
greater the order to which 77 vanishes at p(A), the worse the gain is. 

(In these principles, “N” means ‘<has the same order in X as X + 0” .) The 
primary limitation to principle 1 in our applications comes from the pointwise 
norm of 7. Generally, our Q’S will be proportional to F = FA or its covariant 
derivatives, and by looking at the standard instanton on R4 one sees that one 
can never expect a pointwise bound on F better than X2, even far away from the 
center point. Hence no IIrnFIJq will ever go to zero faster than X2, no matter how 
large n is. Furthermore, by comparison to the standard instanton, one sees that 
estimating llrnFllP there is a critical exponent n,(q) such that for n > n, one 
has Ilr”Fl14 N X2, while for n < n, one has IIrnFIJq N X2-(nc-n). At the critical 
exponent one always picks up logarithmic terms (essentially because Jim r-‘dr is 
logarithmically divergent): IIrncFllq N X21 log XI’/Q. (For rigorous justification of 
principle 1 see 53 of [Gl].) 

There are similar limitations to principles 2-4, but these arise partially because 
of the Sobolev inequalities. For the limitations to principle 4, see Lemma 4.3. 

As an illustration, we mention that starting from [IF112 N cons& one can ap- 
ply the principles and discussion above, finding (correctly) that ((,l?rF1(2 - A, 

llPr2Fj12 N X2110gX11/‘, (I@2+EFJ12 - ii2 for any e > 0, and Ilpr5’2VAVAFj14 5 
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cX-‘/~. The general rule for estimates involving only F and its covariant deriva- 
tives is Corollary 3.4 of (G2] (valid for A E Mxo and j 2 0): 

(3.1) 
X” if -2<n<2 

IlX[O,2T,] rn+-‘Fl12 + Ilx~o,2n,p- n+l+jVjFllq < c 

{ 
X2/ log X]l12 if n = 2 
x2 if n>2 

Here xls,s,.,l is the characteristic function of the disk (0 5 r 5 2~) (the support 
of ,B). Principle 4 is less exact than the first three; for example, if (w ( 5 cpr] FI, 
from the results of §4 one does not find ]]G!w](~ N llr3Fl14 5 ~X~]logX]~/*, but 
only IlG%~ll4 - IIP T~+~F]]~ (for CY > 0 sufficiently small) 2 cX’+~. 

Another important part of our estimation scheme deals with L2 inner products 
of the form (w,G!w’), as arose in (2.18) and (2.26). Since the eigenvalues of 
G” are uniformly bounded in Mxor we have the obvious bound ](w, G!w’)] < 
c]]w]]z]]w’]]z, but this estimate can be off from best possible by as many as two 
powers of X when w is supported close to the center point of A. Instead, we use a 
version of principle 4 established in Corollary 4.5: there exists (~0 > 0 such that 
for all w,w’ E @(AdI’), all lo] < (~0, and all [A] E MxO, 

(3.2) I(w, G”w’)( 5 cII~‘+~w(IzII~~-~w’I~~. 

Said another way, we have traded the two derivatives that the Green operator 
gains us for two powers of the distance function-but in a way that is uniform in 
the connection. 

To illustrate how best to take advantage of the CY in this estimate, consider an 
example in which ]w] - r21FI and ]w’] N rlF/. Taking (Y = 0 above we get a bound 
cX*] log X1112; taking cx > 0 we get the worse bound cX*-~; taking Q < 0 we get 
the best bound cX*. The moral is that by treating w,w’ asymmetrically in (3..2), 
we can sometimes gain an extra (small) power of X. In [G2], such inner products 
were always treated symmetrically; that is the chief reason the estimates in the 
current paper are an improvement. 

In the illustration above, had we taken both ]wJ, Jw’] - rlFI, the optimal bound 
would have occurred with cr = 0. Correspondingly, in many examples (e.g. w = 
w(~~,~),w’ = w(,+,,) in order to get the sharpest estimate one must first break 
w,w’ into pieces of different homogeneity in r, then apportion the powers of r 
differently for each corresponding term in the inner product. This trick occurs 
often; we will simply refer to it as “using Corollary 4.5”. 

Finally, we mention the source of the size restriction on Q. In many of our 
proofs, we bound some quantity by an expression of the form (Pfl, dfz), which 
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we then integrate by parts . This involves differentiating P, giving a term pro- 
portional to (Y, whose size (except for the (Y in front) is often the same as the 
object we are trying to bound. In such cases, if we simply cross out cr, we get no 
useful bound at all. But when (Y is small, we can make use of this fact to reabsorb 
the term proportional to (Y into the left-hand side of the original inequality, as for 
example in (4.8-4.10). 

4. ELLIPTIC ESTIMATES 

In this section we derive and make more precise the principles of the previous 
section. We then complete the proof of Proposition 2.1. 

Throughout this section, given p E M, the function rp denotes distance to p 
in the sense of 52 (true distance near the diagonal). Constants c appearing in 
proofs do not depend upon any data in the hypotheses, unless explicitly stated. 
All objects in hypotheses are assumed smooth. 

We begin with a very general lemma. 

Lemma 4.1. Let (M,g) be a compact Riemannian manifold of dimension m, 
and let E be a normed vector bundle over M with a metric-compatible connection 
A. Let p E M and let r = rP denote distance to p. Then there exists a constant 
c, independent of A and p, such that for any section s of E and all Q < m/2, 

(4.1) Ilr-a4l2 5 ~W"VA412 + Ilr1--asI12). 

PROOF. The proof is similar to that of [G2, Lemma 3.51, which established that 
under the same hypotheses 

(4.2) Ilr-1sl12 I 41VA412 + 11412). 

Mimicking the proof in [G2], one first shows that for f E Cr(Rm), 

lIr-asl12 I &llr1-"VAsl12 

(note that the upper bound on cx ensures that r-“f E L2). To pass from this 
inequality to (4.1), insert a cutoff p as in the proof in [G2], and use the fact that 
(1 - p)/r is bounded. 0 

The hypotheses of the next lemma are motivated by considering the operator 
de and the quantities [ of (2.9-2.12). To make best use of the Green operator 
GA, we seek certain Sobolev inequalities involving the operator d! rather than 
VA, or involving the Laplacian d!(d!)* (on @(AdP)) rather than (VA)*VA, 
but it is crucial that the constants in these inequalities be independent of A. Were 
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we to use the operators VA and (VA)*V A, Kato’s inequality would lead us to 
Sobolev inequalities with A-independent constants. What enables us to get the 
desired type of inequalities with d” is essentially the fact that the Weitzenbijck 
formula for d!(dt)* (when A . 1s self-dual) does not involve FA; the identity is of 
the form (4.4) with f - 2 and Bs proportional to the Riemann tensor of (M, 9). 
It is also important that d_(d_) A A * is uniformly bounded below, and that d! is 
related to VA by a covariantly constant operator-orthogonal projection from 
T*M 63 T*M @ Ad P to (r\” T*M) @ Ad P. Thus, what we have in mind in the 
lemmais the case E = T*M@Ad P, E’ = T*M@T*M@Ad P, B1 the projection 
just described, and LA = d”. 

Lemma 4.2. Let (M, g), E, A, and r = rp be as in Lemma 4.1, let E’ be another 
Riemannian vector bundle over M with metric-compatible connection A’, let B1 E 
J?(Hom(E@T*M), E’) b e covariantly constant, and consider the first-order linear 

differential operator 

(4.3) LA = B1 o VA : I’(E) -+ I’(E’). 

Suppose there exist a positive function f and a section Ba E I’(End(E)) (both 
independent of A) such that 

(4.4) AA := (VA)*VA = f(LA)*LA + B2, 

and that there exists cl > 0, independent of A, such that the first eigenvalue of 
(LA)*LA is 2 Cl. Then there exist constants ci, CYO > 0, independent of A and p, 
such that for all s E I’(E), 

(4.5) czIIVAsllz I IlLAs 5 C311C7ASl12, 

and if dim(M) > 2 and IQ( 5 (~0, then 

(4.6) IIraP1slIz + IIPV’sIJz + (IrQsj14 I c4(lr1+“(LA)*LAsI(2. 

PROOF. From (4.3), the second half of (4.5) is trivial. Reciprocally, we have 

IIVAsll; = (s, f (LA)*LAs + h(s)) 5 c(llLAsll; + 11~11;) 
(4.7) 5 411LA41; + C;111LAsl131 
yielding the first half of (4.5). 

Moving to (4.6), we first we use Lemma 4.1 to Iind 

(4.8) I(ra-ls(IZ L c #-“VA+ + Ilra42) 
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Here and below, all constants c are independent of a for ]cy] sufficiently small. 
Next, integrating by parts we have 

(4.9) ((r”VAs((; 5 c((r+l SIIP (Ial l17,a~ASl12 + ll~a+1~Asl12) . 

Using (4.8) and the inequality czy 5 ix2 + c’y2, we then find that, for Icy] suffi- 
ciently small, 

(4.10) 

IIraVAs]]2 < c (II P+‘AAs]]2 + ]]r”s]]z) < c (]]rU+1(LA)*LAs]]2 + ]]r”s]]z) . 

It remains to estimate the term JJPs]J2. 
Since Bi is assumed covariantly constant, there exists c independent of A, A’ for 

which the second-order operator (LA)*LA satisfies I(LA)*LA(Ps) -ra(LA)*LAsl 
5 clal(lr”-Ws) + IF-2 sl) pointwise. Using the hypothesis on the first eigen- 
value of (LA)* LA, we therefore have 

(4.11) ]]r”& < cl’ (PS, P(LA)*LAs + [(LA)*LA(Ps) - P(LA)“L-%]) 

5 C;1JJTa-1sJ12 (JJP+l (LA)*LAsJJ2 + IIr[(LA)“LA(Ps) - P(LA)*LAs]IJ2) 

5 c (6-‘lp+l (LA)*LAsll; + (S + ~a~)~~r”-‘s~~; + ICY IIPVA&) 

Now use (4.8) to bound ]]raP1 s]]z. Then, taking 6 and Icy] small enough, we obtain 

(4.12) ]]Ps]]z 2 c (s-i]]r”+i (LA)*LAsl12 + (6 + bl) ll~“VAsllz) . 

Inserting this into (4.10) and decreasing 6 and ]a] as needed, we arrive at ]]raVAs]]2 
< c]]ra+i (LA)*LAs]]z, which is one of the three bounds asserted in (4.6). Insert- 
ing this bound into (4.12), and the result into (4.8), we obtain another of the 
three asserted bounds. Finally, the Sobolev and Kato inequalities give 

llr”sll4 5 C(IJ7-aSll2 + IlvA(ql12) I C(ll+-1sl12 + l179As211), 

and applying the two established parts of (4.6) we obtain the remaining part. 0 

For the remainder of this section, we specialize to four-dimensional manifolds 
A4 as in the Introduction and to “collar connections” in MA,,. The scale Xe is 
taken small enough that the estimates of [G2] (e.g. (3.1)) apply. 

The next lemma generalizes Lemma 5.3 of [G2]. It, and the subsequent corol- 

lary, quantify “principle 4” of the previous section. The exponent QO in this 
lemma is the cr that eventually appears in Theorem 1.2. 
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Lemma 4.3. Given [A] E MA,, let r denote distance to the center point pA of A. 
There exist ao > 0, and for any n > 0 constants c(n), such that for all A E MxO, 
w E @(Ad I’), and ICY/, IQ! 5 (~0, we have 

(4.13) 

(a) ]]ra-l+nG!W]]s + IIra+nG!Wl14 + IIrafnVAG~wI12 < c(n)IJra+‘WI(2, 

(4.14) (b) ]]ra+lfnVAG!W]]q + (]raflfnVAVAG!W]]s < c(n)]]ra+lW](Z, 

and 

(c) (Ira-1+nVAGfiul/2 + Ilra+n VAG!~]]4 + ]]r a+nVAVAG~~]]2 

(4.15) I c(n) (II raWI + X-1+a’Ilr1+a-a’wI12 . 
> 

(The constants here may depend on an upper bound on ~0, but are otherwise 
independent of Q, a’.) 

Furthermore, the bounds (4.13-4.15) hold with VAG!w replaced by (d!)‘G!w. 

PROOF. Since ra+n < c(n) ra it suffices to prove the inequalities for n = 0. Below, 
we will write 71 for G!w. 

The operator (d”)* : r(/\t T*M @ Ad P) -+ I’(T*M @ Ad P) is of the form 
LA considered in Lemma 4.2, and the eigenvalue hypothesis in Lemma 4.2 is also 
satisfied. Thus from (4.6) we obtain (4.13). 

For (4.14-4.15) we start with the Sobolev and Kato inequalities, which give 

IlraVArlllt 5 c (llraVAvll~ + IlVA(r”VA77)l122) 
(4.16) 5 c(JIra--l VA7711Z + IIr”VAVA7711~) . 
Now 

Ilr”VAVArlll~ = (VAn, (VA)*(r2aVAVAn)) 

(4.17) = (VAn,r2a AA(VA~)) - (VAq, V$,,(,+‘A~). 

Because A is Yang-Mills, [G2, Lemma 3.11 applied to the bundle E = r\” T*M ~3 

Ad P, yields 

(4.18) AA(VAv) = VA(AAn) + RI(~) + R2(VAq) + 3(VAn) 

where the Ri are universal endomorphisms proportional to the Riemann tensor 
and its derivatives, and 3 is a universal endomorphism proportional to FA. NOW 

insert (4.18) into (4.17), integrate by parts the inner product involving VA(AAn), 
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and use the Weitzenbijck formula for anti-self-dual a-forms (see equation (2.13) 
of [G2]). The result is that for any o’ we find 

IIr”VAVA7711; = (r”“(A”~ + R3(rl)) - ~gra~p+‘Av, A% + R3(77)) 

+(f-2aVA% RI(V) + R2(VA77) + qvAv)) 

-(VA771 qr,,ppAo) 

5 c (11r”412(11 rQ412 + llra77112 + Ial lIra-1VAd12) 

+llraVAd12(llra7/l12 + lal Ilr”-1rll12 + Ilr”VArll12) 

+llra7711~ + I4 llr”~A~A7111211r a-1vA?7112 

+llrl-a’FAll&a+a’-l ~A~l1211ra~A~l14) . 

Take cy’ 2 0. Using (3.1) and the fact that ]FA] is uniformly small for r 2 7-0, we 
have Ilr 1-Qq4 5 CAP’, so we can massage the above inequality into the form 

llr”VAVA7711Z I c (IIrQlIE + llr”-17711~ + llraVA7711E 

+GIIIr”VAVAqll~ + S;‘la1211r “-lVATfll; 

+62~~raVA~~~~ + S;1X-2a’Ilr ~+Q’-~vA~II;) 

for any 6i,& > 0. By taking Si small enough we then obtain 

]]raVAVA1l]]~ I c (Ilr”wII~ + IJra-‘7$ + IIraVAql(~ + ~a~2~~ra-1VA~~~~ 

+6211raVA7j1/~ + cF;~X-~~‘I~~ a+a’-lVA~Il;) ) 

(4.19) 

and inserting this bound into (4.16) we obtain a bound on ]]raVAq]]i with the 
same right-hand side as (4.19) ( except for the actual value of c). Taking 62 small 
enough we then find 

IIr”VAvl14 + llraVAVArll12 5 c (lP-412 + lIra-‘412 + IlraVArll12 

+lal IlP--l VA7j]]2 + XP’]]ra+a’-l VAvl12) . 

(4.20) 

If we now take cy’ = 0 and (Y close to 1, and use (4.13), we obtain (4.14). If 
instead we take cr close to 0, we can apply (4.1) to derive that IIr”-1VA~l12 5 
c (lIr”VAVAd12 + IIraVAd12), and (4.13) to derive that ]]raP1q]]2 + IIraVAql12 5 
cIIr”wll2. By taking IQ] smaller still, if necessary, we find that (4.20) implies 

))rQm1VAr]J)2 + ))raVA7& + JJr”VAVAq))2 5 c (JJPwJJ2 + X7 JIr”+“‘-‘VAv\12) 
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If we now take a! close enough to 1, (4.13) applies and we obtain (4.15). 
The final statement of the lemma follows because, once again, (d!)* is just VA 

followed by a covariantly constant projection. 0 

One application of Lemma 4.3 is the following corollary, which extends [G2, 
Lemma 5.11 while greatly simplifying the proof of one part. 

Corollary 4.4. There exist (Y > 0 and constants c such that for A E MA, and 

E := I(a0,a) as in (Z.l.ZJ), IIP<ll2 + ](rm+lS]]4 + JlP+1VAE(12 I 

X2-lml --a<m<O 
(4.21) c IaolX + Ia\ 

( { ’ 

X2) log XJ1/2, m=O 

x2, m>O 1 

and 

(4.22) IIrm~l14 + ll~“~All12 5 c (1+1+” + la0P”) , I4 5 a. 
As in Lemma 4.3, r here denotes distance to the center point PA. 

PROOF. Since t = -(d!)*G%.q,,,,) and Iw(~~,~~I 5 cx[o,2T,]((alr+laolX1T2)l~Al, 
this follows from Lemma 4.3 and (3.1). The key to obtaining the sharpest esti- 
mates in certain cases is to take cy’ > 0 when applying (4.15). 0 

Another very important corollary of Lemma 4.3 is that when computing an 
inner product involving a Green operator, we gain two powers of the distance 
function in a very flexible way: 

Corollary 4.5. There exists CYO > 0 and a constant c such that if Icy 5 CEO and 
w, w’ E fly (Ad P) then 

(4.23) ((w,G!w’)I 5 cIIT~+~wIIzIIT~~~w’~(z 

PROOF. For JoI sufficiently small, we can use (4.13) to find 

](w,G”w’)] = ](~~+~w,r-~-~G!w’)] 5 cIIT~+~w~(~~~T~-~w’~~~. 

0 

It is not at all clear how to obtain such an estimate, uniform in A as X + 0, 
using the Green function. 

An immediate application of Corollary 4.5 is: 

Proof of Proposition 2.1, completed. Applying Corollary 4.5 to (2.18), 
we have 
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Now use the pointwise bounds (2.13) and 

(4.24) ]V3y] < CjXP 

(which implies ]wy 1 < cXp21FI), and the L2 bounds (3.1), to find 

(4.25) l&l I c(]a]X2 + ]us]X1+“). 

The L2 inner product in (2.26) is handled similarly, using the pointwise bound 
]HOy,] < cX3 in place of the bound ]H’y] 5 cXP2 used above. The result is 

(4.26) 
-2 
X I(G!qao,a), HoyE h Fjl < 44X2 + I~oIX~+“). 

Now insert this bound and (4.25) into (2.26) to complete the proof of (2.14). 0 

5. How WIGGLY IS 8~ RELATIVE TO HA? 

Let gq := (Wl)*g, extended continuously to [0, Xo] x M by setting g* Iio) XM = 

47r2(2dX2$g). Theorems 1.2-1.3 are really theorems about the metric go. To test 
whether gq is C’ (for example), one needs to show that the functions gQ(e,, e,) 
are continuously differentiable for some (local) basis of C1 sections {eP} of the 
tangent bundle of [0,X0] x M. The problem with the obvious choice eW = &, 
where {xY} are local coordinates, is that there is no obvious way to do the com- 
putation directly. This is exactly what the approximate tangent space is for: if 
we replace & by its image under the approximate identity map Q’, 01, the inner 
products become more effectively computable. But the problem now is that a 
priori there is no guarantee that the vector fields (qI, o Z)&, extended to the 
boundary by setting !P’, o Z = Id along (0) x M, are still Cl. 

In the next two sections of this paper we will show a little more: these extended 
vector fields and their inner products are actually Cl,* for small cy. Note that 
these objects are C” on the interior, so the only potential problem is at the 
boundary. 

Showing continuous differentiability of all vector fields of the form (QI* 0 2) & 
is equivalent to showing that (i) QIr, o Z extends continuously to [0, X0) x M, and 
(ii) V(Q* o 1) extends C* to [0, Xs) x M ( w h ere V is the Levi-Civita connection 
of the product metric), for this implies that the change-of-basis matrix relating 
{(qIr, o Z)&} to { &} extends to a Cl,” function on [0, Xc) x M. As statement 
(i) follows immediately from (2.14)) it remains only to establish (ii). This can be 
reduced to showing that ]]V(Q, oZ)]] 5 cX*. In view of (2.14) again, to bound 
V(Ql, o 2) pointwise it suffices to bound the pointwise norm of local vector fields 

on (0, X0) x M of the form VQ,Za(bo,b~ (@J(ao, a)), for all local vector fields a, b 

defined near p(A) with a covariantly constant at p(A), and all constants ao, bs. 
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Equivalently, it suffices to bound the norm of Vq*~~(b~,b) (c(as, a)) for all such 
(a~, a), (bo, b), which is what we will do. 

To get started, fix p E M and a normal coordinate system {xi} defined on a 
geodesic ball B centered at p. For each a := a(p) E T,M, extend a(p) to a vector 
field a(.) on B by parallel translating a(p) := a along radial geodesics from p. For 
each p’ E B, a function &+,,J(.) ( essentially linear in normal coordinates based at 
p’, not at p) is thereby determined on some neighborhood of p’, as is the gradient 
Z a(p’) of 4a(p’) 

Given a curve a(t) = (X,,pt) = V1(At) in (0, X0) x M, say with initial de- 
rivative (A,@) = @*7r2$0rb), the procedure above determines a covering section 
(Q~ g a~, at = a&)) parallel along o. From this we obtain a parametrized fam- 
ily of vector fields 2, = Z,, and a corresponding curve of approximate tangent 
vectors & = LZ~ Ft in R1(Ad P). 

We will prove the following: 

Proposition 5.1. Let u be as above and write 

((ho)‘,(S)‘) := o,,(,,(~O(t),~(t))It=O 

(where V denotes the Levi-&vita connection of the product metric on (0, As) x M). 
Then 

(5.1) ICC&O)‘, (S).)l 5 4lbl+ Ibol)W + ladled). 

Furthermore, if we set X = 7r’zc,,,,),Y = 7rgca;,a,) and vary (~,a), (ab, a’) as 
above, then at t = 0, the variation of (X, Y) satisfies 

l(X,Y)‘I 5 c lalla’l(lbl~31 logX11’2 + lhG31 log4) ( 
(54 +(l4l4, + bolla'l + I~oll4)04~ + POP”)). 

The proof of this proposition is long and technical, and we devote the next 
section to it. In the proof we estimate I(&)‘1 and I($)‘1 separately, but end up 
with precisely the same expression (5.1) for both pieces. 

It is useful to phrase (5.1) in terms of a change-of-basis matrix. Let {e,}: be 
a local basis of TM, covariantly constant along radial geodesics through p, and 
(abusing notation) extend this to a local basis {e,}: of T([O, X0) x M) by setting 
e. = a/ax. Then on the interior we have 

(5.3) e; := (9, oZ)(e,) = CLe, 
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for some matrix of functions C. Together with (2.14), the bounds above imply 
that for 0 < p 5 4 and 1 5 i < 4, 

(5.4) IC: - &o 

(5.5) IC,” - 6,i 

(5.6) IKY 

(5.7) IOC,” 

on a small enough neighborhood of (0 

5 CXl+y 
I cx2, 
< CA” 

5 CA 

?I. 
In view of the discussion above, as a corollary of Propositions 2.1 and 5.1 

we immediately have the following theorem. (Of course, the anisotropic bounds 
above are stronger than (5.8) below.) 

Theorem 5.2. For X0 suficiently small, in the collar we have the pointwise 
bounds 

(5.8) IICII 5 CX1+7 IIVCII 5 CA* 
(where CY and U are as above). Hence, given a smooth local basis vi of TM, the 
image under q* 01 of the basis { &, vi} of T((0, X0) x M) extends to a Cl.” local 
basis of T( [0, X0) x M). 

PROOF. The only assertion needing comment is the one concerning the Hijlder 
exponent. Since the first derivatives of the coefficients CF are bounded by cXa, 
clearly these derivatives are Hiilder continuous with exponent (Y at the boundary 
itself. On the interior, these derivatives are C”, so given any interior point, 
by taking a small enough neighborhood we obtain an o-Holder condition with 
arbitrarily small constant. By local compactness, we can therefore choose the 
constants to be locally uniform on [0, Xo) x M. 0 

In $7 we will use Proposition 5.1, the bounds (5.4-5.7), and the proof rather 
than the statement of Theorem 5.2, to establish Theorems 1.2-1.3. 

The proof of Proposition 5.1 involves computing the t-derivative of the vector 
field ,& E R1(Ad P), f or which we need the t-derivative of the vector field 2, E 
I’(TM). An advantage of setting up 2, as a gradient vector field, as we’ve done, 
is that to vary the vector field we need only vary the function it := grad(&), 

where 4t = &,,,+). 
Thus our proof entails varying the functions &, which in turn entails varying 

the normal coordinate system as the base point changes. Note that this requires 
us to vary the frame defining the normal coordinate system as well, and there is 
choice here. We will choose to vary the frame by parallel translating the initial 
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frame at t = 0 along radial geodesics from the initial center point. Still, the 
computation of the change in normal coordinates is a rather involved exercise 
in Riemannian geometry, which we have left to the appendix. The chief result 
is the following (see Propositions 8.6 and 8.7; varying the distance function is 
comparatively easy). Below, by “Ostrong(rn)“, we mean a function that is O(?) 
uniformly in the center point p of the normal coordinate system and whose mth 
covariant derivative, holding p fixed and varying the point q at which coordinates 
are evaluated, is O(T”-~ ) uniformly in p (see Definition 1 in §8). 

Lemma 5.3. Let {pt} b e a curve with initial point p and initial tangent vector 
w, and let q be a fixed point in a normal-coordinate neighborhood of p. lf we vary 
normal coordinates according to the prescription above, then 

(5.9) k’(q) := ix;(q) = -vi + 0,trOng(r21uI) 
t=o 

where r = dist(p, q). Furthermore 

(5.10) 

exactly (for r # 0). 

v~xi 7’=-_ 
r 

The ‘LOstrong” assertion in this lemma is important. For example, among the 
quantities we need to vary is HOxi, and we will use the fact that (H’x”)’ = H’(c?). 
Thus it is essential to have bounds on the space-derivatives of ki. 

6. THE PROOF OF PROPOSITION 5.1 

Our strategy is not elegant; we simply differentiate (2.16) and (2.24), obtain a 
lot of terms, and bound them all. However, the computation is nontrivial, relying 
in places on some subtle localization and cancellation phenomena (see Lemmas 
6.2, 6.3, and Corollary 6.4). Also we require the variation not just of normal- 
coordinate functions, but of the functions <ij, $ij of (2.21-2.22); these variations 
are bounded in the appendix. 

Below we use a dot to denote time-derivative at t = 0. Throughout this section, 
cr has the value (~0 of Lemma 4.3 and its corollaries. We note that if the initial 
tangent vector to the curve (Xt,pt) is (A,$) = @kng$‘b) = -ZA(bO, b), then by 
definition (see (2.7-2.8)) we have 

(6.1) j, = -(bo + Q, 

(6.2) ?j = -(b+ii). 
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Hence using (2.14), we have 

(6.3) 1x1 < lbol + l&l < c(lblA2 + Ibol), 

(6.4) IPI L Ibl + @I 5 c(lbl + IbolX’+“). 

6.1. Estimating [(&)‘I. 
From (2.16) and (2.17) we have 

(6.5) &o(t) = -4xt (Ho& tl %G”‘(H”yt tl Ft)) := _4x num(t) 
_I-(V-/t, W))l~t12 t denom(t) 

(where 4t = 4(ao,at) ). It will take us some time to estimate the derivatives of 
num(t) and denom(t). In the end we will find that I(num).I 5 c(lbl + Ibol)(lal + 
IuO~X-~+“) and I(d enom).I 2 c(lblX + IbolX”), which with (4.25) implies that the 
contribution to (ho)’ from differentiating the numerator swamps the contribution 
from differentiating the denominator (by more than a full power of A). 
Differentiating the numerator in (6.5). 

First, we have 

(num). = (No4 h F , G”(H’y ti F)) + (Ho4 b pi G”(H’y b F)) 

+(ff”4 h F , @(Ho? h F)) + (Ho4 h F , G!(H’y II p)) 

(64 +W”4 b F , (G-)‘P”r ti F)) 

(where we have omitted numerous sub- and super-scripts at t = 0). We will 
estimate the five inner products above using (4.23). We start with the following 
lemma concerning the time-derivatives of 4t and Ft. 

Lemma 6.1. (a) Letting bi, & denote the components of b, 6 in the base frame 

at p, we have 

(6.7) 7: = (bi + &)z’/r = Os+,rong (((b( + (bo(X1+*)). 

(b) For any n, 

(6.8) B = Ostrong ((lb1 + lbolX1+a)rn) 

(c) 

(6.9) l(H”$‘I I cX-3(lbl + Ibol) 

(d) For any n, 

(6.10) 

(4)’ = #b + 4~ + Ostrong((lbl + lbol~l+“)r”) = Ostrong((lbJ + lbolA’+“)r) 
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and 

(6.11) & = (a,b + 6) + Ostrong (lal(lbl + (bulX1+“)r2) 

Cc) 

(6.12) 

IHOMJ (a,,a,)‘I = 0 strong (lallbl + lallklA1+a + laollb(A-lr+ laollbol(Aar + Xp2r2)). 

(fl 

(6.13) IFI 5 c{ Ibl(W + lvFl) + lvtbl + I~o~A-~(IFI + TIVFI + Iv&}. 

PROOF. (a) This follows from (5.10), with w = p. 
(b) We have b = p’(r)+. Since /3’(r) = O(m) f or any n (by virtue of vanishing 

for T 5 TO), the result follows from part (a). 
(c) We have 

? = $(w~~t))~t~o = b’(r/X)rl(fX-l - d-5) 

= q-/J) . Ostrong(X-llpl + Tx-21il) 
As in (b), for any n we have Ib’(r/X)l = O,t,,,,((r/X)n), so the above implies that 

(6.14) r = Ostrong(M + lw2~-3), 

and hence I(H’y)‘l = IHo 5 c(I$ + lil)X3. The bound (6.9) now follows 
from (6.3-6.4). 

(d) Differentiating (2.2) and using (6.7) and (6.8) we have (4)’ = P(bi + &)zi + 
$/%-“. Using (6.8) we obtain (6.10). 

To derive (6.11) requires determining the variation of normal coordinate system 
as p varies. This somewhat lengthy exercise in Riemannian geometry which is 
done in the appendix, culminating in equations (8.20). As in part (a), the vector 
u of the appendix is @ = -(b + 6). Thus, using (8.20) we have 

da = jaizi + pai 
( 

(b, + 6%) + 0 strong(r2 lk)) i 

leading to (6.11). 
(e) First use part (d) to compute (~c~,,~I )’ (remembering to vary X). From 

this compute I(H’q+ (a,,a)H = IH”u4(a,,a,nl~ using (6.3) and the fact that 

(6.15) lH”$~,,,,~I = 0strong(14T + la~lX-‘r~). 
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(f) Since fi = dAq, where 17 is the initial tangent vector to the curve 9-l ( At, pt) 
in M, we have 

&’ = dAng = dAZ + dAJz, 

where 2 = -Z(bO,b) (see the first paragraph of this section). Using the pointwise 
bounds 

(6.16) I&,,,)1 5 c(lal + b~lX_~r), 
(6.17) IVz(,,,,)I < c(lalr + la~lX_~), 
the result follows. 0 

Using the lemma above, (3.1), Corollary 4.4, and the pointwise bounds (6.16- 
6.17), we can deduce the bounds summarized in Table 1. (Some entries in the table 
are for objects we will define later.) In the table and in subsequent calculations, 
we use the notation 

~(ao,a) = HO&,,,,) b F, wy = Hay b F. 

Henceforth, we will freely use the data in this table without reference, combining 
these bounds with Corollary 4.5 to estimate numerous L2 inner products. 

We can now bound the first four L2 inner products in (6.6). The result is 

(6.18) I(num).I IO + IW(l4 + 1,01X-‘+“) + kqao,a), K-)‘(w,))l, 
the leading contributions coming from line 2 of (6.6). 

It turns out that the last term in (6.18) has precisely the same bound as the 
first, but the analysis is more delicate. We start by noting that 

(G-)’ = -G” o (AAt)’ o G” 

(6.19) = -G”o(P’1o(d”)*+d!o(F’?)*)oG!, 

where q = A, and where P! : O’(Ad P) + 02 (Ad P) is defined by P’7 (.) = [v, .] _ 
Thus, if we let 

& = -(d!)*G”(w,) 

(cf. (2.12)), then from (6.19) we have 

(6.20) (w(ao,a), (G-)X+)) = (~(a,,,+ G~(LdErl-N + (wy, G”(L&,,a,l-1). 
Bounding the two terms on the right requires some lengthy analysis involving 

an “inverted Weitzenbock identity” introduced in [G2] (Lemma 6.2 below). 

Step 1: the first term in (6.20). 
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quantity 

I+6 

bound formulas used in derivation 

A=a, 6 = -a 

IaolX + la/ ;px/‘/*. 6 = 0 (2 13), (3 1) 
6=0 

(lb/ + I’d),‘-’ (6 13) 
X1-a 6 = --a 

laollbl Xl h&/2, 6=0 (6.12). (3.1) 

A, 6=a 

6 = -0 

II .1+6Ho#yao,a) h till (lbllaol + Ibollal) (6.15), (6 13). (3 1) 

+ lhllaol + lb/ lalX’+6 

r1+6v(,z 
(bo,b)%Od 

.same bound as for 11 .l+‘H”$(ao,a) tl PII (6.16-6 17), (3 1) 

IIT ‘+‘R((bo> b)> w(aO,a) III 
1 

lbollaol + Ibllal { ;,-“I ; z 0,; } (6.24), (4 13), (4 14) 

+ 
X1-n 6 = --a 

(lbollal + Ibllaol) A\ log $2, 6=0 

A, 6=CY 

rmw7 Am-2 (4.24)) (3 1) 

rmHoy b F Xm-3(lbl + Iboll (6 9). (3.1) 

rmHor h P X”-3(lbl + Ibol) (4.24), (6.13), (3.1) 

PV(LZ 
(b0.b) 9) Xm-3W + I’d) (6 16-6 17), (4 24), (3.1) 

Ilr”‘R((bo> b), -,)j/ X”-3W + IboO (6.23), (4.13), (4 14) 

TABLE 1. The L2-norm in the first column is bounded by a con- 
stant times the quantity in the second column. The third column 
lists formulas in the text used to derive the indicated bound. In 
the table m is arbitrary, IY > 0 is as in Corollary 4.5, and S can 
take the values 0, fcu. 

To further streamline the notation, we will temporarily write w, = w(~~,~), 2 = 

Z(bo,b),Z = '&,,b),& = ‘&+), and tb = t(bo,b). 

Since A = ~2 = 2 + [b, the first term in (6.20) can be expanded as 

(6.21) (~a, G”([-&<,]-)) = (w,, G”([&-)) + (w,, G”([&&-_)). 

Focusing on the first term on the right-hand side of (6.21), we expand G”([Z, <,I_) 
as a leading-order local term plus a nonlocal remainder. (If we use Corollary 4.5 
directly, we get a far worse estimate.) This expansion is given in more detail in 
[G2]; we summarize what we need of it in the following lemma. 
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Lemma 6.2. Let A E Mx,. For any vector field X on M, let X* denote the 
image of X under the metric isomorphism from TM to T* M. Then for all 
w E s2?(Ad I’), 

(6.22) a-q,,bpJ- = P-(q&b) A V*G!w) + G”(R((h, b),w)), 

where in general R(.) satisfies the pointwise bound 

IR((bo, b),w)l < c{(lbl(lV*wl + IV*G!w( + rIVAVAG!!wI) 

+ IbolX-‘(lwl + rJV*wI + rlV*G!wJ + r2]VAVAG!w])}. 

(6.23) 

In the special case w = w(~~,~), we have the sharper bound 

IWod4~(a,,a) )I I: c(lbl + IboI~-‘r)(lE(ao.a~l + rlVE(ao,a)l) 
+c(lbl + lbo(X-lr)(lal + laolXp’r)(lFl + rIV*FI). 

(6.24) 

PROOF. Parts (a) and (b) are immediate consequences of [G2, Propositions 2.1 
and 8.11; part (c) uses [G2, inequality (8.9)]. 0 

We use this lemma to estimate the first term in (6.21). First, we have 

(6.25) 

](~a, G”([%J,l-))I 5 lh 2” A (d”)*C!w,)l + I@,, C!(R((bo,b),w,)))l. 

In the first term, we have (w,, Z* A (d!)*G!w,) = (d!(Lzw,), G’lw,). Using 
Corollary 4.5, we then find 

(6.26) I+,, G!([~,1,1L))I 504 + Ibol)(lal + IaolX-l+“). 
Next we turn to the second term in (6.21). Even if we bound this non-sharply, 

by 

I(waj G~GirEyl-))I I clballz Il~~~~~~,lll, 5 cIlrwal12 k& (IrVAG!q/Iq 

(using (4.22) to bound ]]&]14, and (4.14) and Table 1 to bound IlrV*G”w,II,), we 
obtain an expression < X’right-hand side of (6.26), hence negligible. We conclude 
that 

(6.27) I(wa, G!([~,~,lL))I 5 O-4 + Ibol)(bl + laolX-‘+“). 
Step 2: The second term in (6.20). 

Since this term is formally similar to the first term in (6.20), but with the 

roles of $(ao,a) and y interchanged, we can follow the same plan of attack as we 
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did in Step 1. When we do, we obtain precisely the same bound as for the first 
term. Hence I(w,, (G_)‘(w,))( < RHS of (6.27). Inserting this into (6.18), we 
have finally established that 

(6.28) I(num)‘I < c(lbl+ Ibol)(lal + b~lX-‘+“). 
Differentiating the denominator in (6.5). 

We begin with a lemma. Notation and context are as above. 

Lemma 6.3. Let {At} b e a differentiable path of self-dual connections with A = 
K,?$~,_). For every differentiable l-parameter family of smooth functions {ft : 
M -+ R}, we have 

(6.29) {s, ItFtzj ’ = { S,[.f - ~(fo~llF12} - 2(+q#, Ez), 

where 2 = Z(bo,b) and t-Z = t(bo,b). Alternatively, integrating by parts as in 
(2.17), we can write this as 

(6.30) (s,ftlW}.= is, } [f - z(fo)]lF12 + 2(H”fo il F, @W(b&. 

PROOF. First, we have 

(6.31) (sftlFt12}‘=/ 1 flF21 + 2 fo(F,@). 

The second term can be rearranged: 

I fo(F,I+) = (foF, dArA.@ 

= ((dA)*(foF), ~~2) 

= -($W(fo) F, g+Ez) (since (dA)*F = 0) 

(6.32) I (1 @(fo)F> LZF) - (4grad(fo)F, tz). 

Since F is self-dual, 2($ad(fo) F, LZF) = (grad(fo), Z)IF12 = Z(fo)lF12 point- 
wise (see [GP2, Lemma 3.41). H ence the result follows from (6.31-6.32). 0 

Now let h : R4 + R be a smooth function supported in a disk about 0 of radius 
less than Xi1 times the injectivity radius of M. For each p’ E &,,(p), let (~2,) be a 
normal coordinate system centered at p’, varying smoothly with p’. For each p’ we 
can then define a function f,) : M + R by setting fpl(q) = h(z$(q), . . ,x$(q)). 

Similarly, we can define fPt,x(q) = h(X-‘z:,(q), . . . , X1x$,(q)). We will apply the 
lemma above to functions of this form. 
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Corollary 6.4. In Lemma 6.3, let ft = h({xt/&}), where h : R4 -+ R is as 
above and {xi} is the normal coordinate system whose variation is computed in 
Lemma 5.3. Let 5% = xk, A = X0 and let {ui};’ be standard coordinates on R4. 
Then the following are true. 

(a) 

(6.33) If - z(fo)l < c(h)(lW + IbolXa). 

(b) 

(6.34) 1 &ad(h) F, Ez)l = IW”fo h F +(bo,b))l < c(h)~2-a)Ol~ + IW” 

Cc) 

(6.35) i( s, ftlW} .i I c(h)(lW + lbolAa). 

PROOF. (a) Using (5.9) and (6.1-6.2) we have 

f = $(x/x). (2x-l - XV;\) 

= &(x/X) . ((bi + 6, + O(r21b + hl))X-’ + xiK2(bo + go)) 

On the other hand, 

Z(fo) = (b,gj’ + A-‘box”)$h(x/A) 

= $(x/X)(bjgiiX-’ + box+‘). 

Hence, using (2.14), 

(6.36) f - Z(fo) = $(x/X) X-l . (ii + x~X-~&O + O(r”(lbl + X’+“lbol)) 

Since Ix/Xl 5 const on the support of h, we can replace 0(r2) by 0(X2) in (6.36); 
similarly xix-’ is effectively O(1). The stated bound now follows from (2.14). 

(b) From Corollary 4.5 we have I(H”fe b F,G!w(~~,~))I 5 (Irl+*Hfo b FII 
Ilrl-cu W(bo,b) 11 . Note that 

Hfo = Odfo = X2 &(x,X)dxj @ dxi + X’&(x/X)Vdx’, 

implying [Hfol < c((lVVhll,XP2 + JIVhll,X-‘r). Using (3.1), we therefore have 
Ilrl+aHfe h FI( < c(l(VVhll,X-l+” + IIOhllcoX), and, using Table 1, (6.34) fol- 
lows. 

(c) Follows from (6.30) and (6.33-6.34). 0 
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We apply this corollary to the denominator in (6.5). For this application, we 
have ft = (Vyt,V(rz)) = sb’(&) (where the constant K is as in (2.1)), so 
we take h(u) = 1ulb’(lz~l/K) and conclude that 

(6.37) I(denom)‘I I c(lblX + IbolXa). 

Estimate of ((ho) ’ ( completed. 
As mentioned earlier, denom(0) is bounded away from 0. Hence, from (6.5), 

we have 

I(&)‘/ I: c{X1(nz1m)‘/ + I&(O)l(l(denom)‘I + X-‘l;\l)} 
Combining (6.3), (6.28), (6.37), and (2.14), we find that I(&)‘1 is bounded by the 
right-hand side of (5.1). 

6.2. Estimating l(S)‘\. 
Write d = fi& = fie,, where {fi} are the coefficient functions in (2.24). 

According to the prescription by which we are varying normal coordinate systems 
(see §8.3), e,” is covariantly constant at t = 0, so V,,(e)S = (fi)‘(0)ei. Thus we 
need to bound the derivatives of all the non-constant terms in f”. Since we 
have already bounded a’~, that leaves us with bounding the derivatives of (i) the 

matrix X2H; and the functions (ii) mi, (iii) 12(~(,,,,),G!(Hoy, b F)), and (iv) 

J%~ijlFl~. 
(i) Differentiating the matrix xzHt. 

At t = 0 the matrix x2H is given by (2.23). Using (2.19) we can rewrite this 
as 

where hij(u) = (b”(luj/K) + &jKlz~-~b’(lul/K) - Kl~-~b’(l~l/K)) ~~ujlul-~. 
Now replace p, zi, X by pt, xi, At, and let t vary. Applying Corollary 6.4 to the 
first integral, we obtain 

(6.39) d I {S z h,j(zt(q)lXt)IFt12(q)dvol(q) 5 c(lblA + POP”). 

For the second integral in (6.38), define 
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and consider the functions {&(fij)t}. Rather than using Lemma 6.3, we will 
directly estimate 

(6.40) d 
z IS 

Wij)tp12 
11 J = Ptu%j)t].IF12 + 2 Xfij(F, F). 

t=o J 
From Proposition 8.7 in the appendix, I(&)‘[ 5 cl@I. Also, since 1 5 r/x 5 2 
on the support of b’(r/X), powers of r are equivalent to powers of X in pointwise 
estimates involving fij. Hence, since & = O(r) (Lemma 8.3), we have IfijI 5 cX 

and I(f%j)‘l < ~(1711 +/PI). Using (6.3), (6.4), and (6.7) we then find I(Xt(fij)t)‘l < 
c(lbl + Idol); This b ounds the first integral in (6.40) since llFll2 < c. For the 

second integral in (6.40), we use Table 1 to find lJxfij(F, F)i < cX2 IIFl/2 11~~~2 5 

4bl + IbolP. C ombining the these results we obtain 

(6.41) 
d I {I z Wj)tl~t12 

II I 
I c(lbl + IbolP. 

t=o 

From (6.38), (6.39), and (6.41) we then find I(xzH&).I 2 lb/X+ IbolX”. Since x2H 

is uniformly bounded below, the same estimate holds for the inverse matrix: 

(6.42) 1 ((x&-‘) .I 5 lb/X + IbolX”. 

(ii) Differentiating rni. 
Corollary 6.4(d) applies to rni (see (2.20)), yielding 

(6.43) lniil 5 IblA + IbolX” 

(iii) Differentiating ~2(~~,o,a), G!(H”y, b F)). 

In 56.1 we differentiated nurn = (w(,,,,), G!(H”y b F)). Our work here is 

similar; we simply need to replace y in (6.6) by 7%. Since yi = b’(r/X)X 
1 
x2/r, 

(8.20) and (5.10) imply that yi = 0 stronp((lpI+l~l)r2X-4) (see the proof of Lemma 
6.1(c)). This is one power of X worse than the corresponding bound (6.14) on +. 
Apart from this attendant factor of X-l in each estimate, the argument by which 
we bounded (num)’ goes through just as before, replacing y by yi. Hence we 

find that (w(~~+), G”(H’yi Q F)) ’ b is ounded by X-l times the right-hand side of 
(6.28). Since from (4.26) we have ~(G!u(,,,,), Hoyi b F) 1 < c(lal + la~lX-l+~), 
using (6.3) we conclude that 

(6.44) I (“‘bJ(ao,a) > G!(H”y, h F))) ‘I 5 WI + IW(lal~ + 14Xa). 

(iv) Differentiating s XI/+ IFI’. 
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We can write I,& = b’(r/X)&, w h ere, by Lemma 8.3 and Proposition 8.7 of 
the appendix, I&l 5 CT and I(&)‘1 < cl@I. H ence the estimate of (sx$ijlF12) 
is identical to the one achieved in (6.41): 

(6.45) 5 c(lbl + IbolP. 

Estimate of I(5)‘I completed. 
Write the coefficient fj of & in (2.24) as 

fj = (5;2H);1(stuff). 

Then from (2.25), (2.14), (6.43-6.45), the bound on I(&)‘1 in (5.1), and the fact 
that x2H is uniformly bounded below, we have 

(6.46) I(x2H)-l ((stuff)‘)1 < 44 + Ibol)W + MX*). 

Furthermore, the proof of Proposition 2.1 shows that [stuff\ < RHS of (2.14), and 

multiplying this by the bound on 1 ((X2W) .I in (6.42), we obtain a quantity 

smaller than the one in (6.46). Thus I(fj)‘l 5 RHS of (5.1), completing the proof 
of (5.1). 

6.3. Estimating I(X,Y)‘I. 
We start by noting that 

(6.47) KY) = (~P,O,+~A~&,a/,) = @‘&,z,,, z&a’)) - (~(ao,a)r @~(,;,a+ 

We differentiated similar objects above, so our work here is simplified. It will 
turn out our estimate of the derivative of the first term in (6.47) dominates our 
estimate of the derivative of the second term, with the exception of one coefficient, 
which is logarithmically larger for the second term. 
Differentiating the first term in (6.47). 

Prom the algebra of self-dual two-forms (see [GPl, Lemma 3.4]), we can write 

Inserting the t-dependence, we therefore have to differentiate something of the 
form J ftlFt12, f or which we can use Lemma 6.3. To apply this lemma, we write 

(z(,,,,), ,Q+l)) in the form 

(.&,), Z(+Q)) = f(l) + fC2)> 
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where 

f(l) = p2 ((a, a’) + Apl(aiab + u~~~)z~ + u&J-27-2) , 

fC2) = P2wqP - hj) + p’r-1(2~(,~,a)~(ab,af) + ~T2(uo4(a~.e~) + &+a,,,,)) 

(6.48) +(p~)2(+X-‘uur2 + u&~A-1u~r2 + uy, 

We will deal first with fc2). Note that gij - 6ij = Ostrong(r2) and (gij)’ = O(r]g]) 
(see Proposition 8.7). The t-derivatives of the terms involving p’ can be calculated 
as in Lemma 6.1, but this time each differentiated term is proportional to p’ or 
0”. Calculating as in the proof of Corollary 6.4(a), we therefore find 

l(fi2’)’ - .&,,~,)(j~~))l I P. O(Mla’l) 0(r21bl + X-l+ol + 161) 

fCXa?m . (Ial + ~-llaol)(la’l + A-%bl)(lbl + X-‘lW 

(6.49) 

where xann is the characteristic function of the annulus {re 5 T < 2~). On this 
annulus we have the uniform bound IF] 5 cX2 (see [GP3, Lemma 5.21). Hence, 
using (3.1) and (2.14) we find 

(6.50) @“)- - 2 (~)(~~~))llFl~ 5 cX(Xlbl+ IboWl + Ia~Wla’l + I4 

As for the second term in (6.30), we have 

IH”(f~2’)I I c (Talla’] + xann(bl + ~-llaOl)(la’l + A-%bl)) 
Using (4.23) we therefore have ](H”f,$2) b F, G!w(,,,,~,)] 

(6.51) I NW + PoI) (~1+“141a’l + (44 + bol)(Wl + IdI)) 
Combining this with (6.50) we find 

(6.52) 

(J II’VI~) . 5 4W+ I~oI> (X1+a141a’l + (44 + I~olPla’l + 141)) . 

Now turn to fj’), which we write as ,0:fJ3) (with & = /3(rt)). As in the 

situation of Corollary 6.4, we can write fi3) = h({zi/Xt}) for a fixed function 

h : R4 + R, specifically 

h(u) = co + d$ + c2]2112, 

where ci, di are constants: 

CO = (a,a'), di = UiUb +UoU:y C2 = UoUb. 
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Certain aspects of the proof of Corollary 6.4 still go through, but the presence of 
p and especially the noncompactness of the support of h must be dealt with. 

Looking at (6.30), we see two basic terms to compute. It will turn out that 
in our eventual bound (6.57), the first term in (6.30) dominates for the part 
of the bound proportional to lalla’l, while the second dominates for the parts 
proportional to lcuo(la’l, lallabl, and lacllabl. 

To start with, we split up the first term in (6.30): 

(6.53) 

f(l) - Z@,,bj($9 = PO2 (f i3) - Z[b,;b,(fcj3’)) + 2fA3)Prl (” - Z!b,,,&W) 

From (6.36), we have 

lfi3) - -%,,dfi3))I 5 44 + lczlJ~l)X-’ ($1 + rX-lliol + O(r"(lbl + ~‘+~lb~l))) 
< cX-‘(Id1 + Ic&-~T) (lb&i" + T") t 

(using (2.14)). S’ mce this expression is a polynomial in r 
integrating against ,B21F12 replaces each power of T by an 
(3.1)). Thus 

(b”lA”(X + r,) 

of degree less than 4, 
equal power of X (see 

(6.54) 
is ( 

P,” fi3) - Z~~,;I,,(&!~‘)) lF12~ I 414 + Ical)(lW + IboPa). 

Next, arguing as in the derivation of (6.36) we find 

6 - z(b,,b)(t’O) = PA Wbl + Ibol). 

Integrating against (Fj’ (after multiplying by psfi3)), the presence of p’ once 
again effectively turns IFI into X2, and r into a constant. Hence 

(6.55) 

11 fi3’@ (j - z(b,,b)@O)) (F/‘i 5 cX4(lbl + Ibol)(lCo\ + I+-’ + 1C21x-2). 

Combining this with (6.53) and (6.54), we obtain a bound on the first term that 

(6.30) gives for f = f(l): 

(6.56) 

ID 
fil) - Z(bo,b)(fiil))) /F(‘l I c (Icol~4Wl + lbol) + WI + lczl)(lW + lboiAa)) 

Moving on to the second term in (6.30), we have IHOf$‘)l < P2(Hof,(3)l + 

cxann(lfp + Iw($3’I). S’ mce Hz” = O(T) and H”(r2) = O(r2), this leads to the 
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pointwise bound 

lH’f;‘)l I c (P2(ldlrX-’ + [Q-2X-2) + xann(lcoI + IdlX-’ + IczlX-“)) . 

Now use (4.23) to estimate the second term in (6.30) (with f = f(l)). Apportion- 
ing powers of T judiciously, the principles applied above lead to 

l(H”.f$l) b W!W(M))I < c ((IcoP + IW + lczl)(lbl~” + POP) + ldllbl X3 I WV), 
which is dominated by (6.56). Hence (6.30) gives 

(6.57) (1 f,olW) . 5 RHS of (6.56). 

Combining this with (6.52) we arrive at 

(q&)l q$,*‘) )’ < c (lalla’l(lblX3+” + lbolX2+“) 

(6.58) + Gild + b~lla’l + I~oll~blNW + PoIW. 
Differentiating the second term in (6.47). 

This term is similar to the numerator in (6.5), so the procedure for differ- 
entiating and estimating is the same here; we need only make the appropriate 
modifications, replacing y by 4(a;,a,~. Looking at (6.6), after taking into account 
the symmetry between (ao, a) and (ah, a’), there are three types of terms: one in 

which only &,+) or &b+j) g ets (time-)differentiated, one in which only F gets 
differentiat,ed, and one in which only the Green operator gets differentiated. 

To write down the bounds, let us modify the notation 1~01, IdI slightly from its 
usage above, and write 

1~01 = bla’l, Idl = Iall& + l4la’l. 
Also we temporarily abbreviate subscripts (~0, a), (ub, a’) and (bo, b) as a, a’, and 
b respectively, as in (6.20-6.28). Using Corollary 4.5, one finds 

I(W”&) b F& w)I + I(H”& lq ~,G!LQ)( + (same with (a~, a) H (ub, a’)) 

5 c()col(Jb\X3 + lboJX3\ log X11’2) + JdJ(JbJX2+” + JboJX2) log X\1’2) 

(6.59) + 14(lbl~2 + POP)). 
For the term in which the Green operator is differentiated, we have the analog 

of (6.20-6.21): 

(w,, (G-)‘(~t)) = (w,, G”([%&+)) + (w,, G”([&,Ja$)) 

(6.60) + (same with (a~, a) +) (ah, a’)) 
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To estimate the first term in (6.60), we break it up as in (6.25). This time we 
find 

I(ua, G!([ib,&t]-))( + (same with (ao,a) ++ (ab,a’)) < 

(6.61) 

c (Icol(lW31 log?2+lboI~3110g~I) + Idl(lblX2 + lbo1X2) + lczl(lblX2 + IbolX)) . 

If use Corollary 4.5 to bound the second term in (6.60) simply by 
I(% GmJ&-))l 5 IbJall2 II&II4 ll~bll~, we obtain a bound less than X times 
the right-hand side of (6.61). Hence 

(6.62) I+,, (G_)‘(w,l))( 5 RHS of (6.61). 

Adding (6.59) and (6.62), we obtain 1 (O-q,,,,), G%+g+$) .I 

(6.63) < c(lcol()bl~31 log X(1’2 + lbolX31 log Xl) 

+ 14Wl~2 + lbl~21 log Xl1’2) + Ic21((blA2 + IbolX)). 

Estimate of Z(X,Y), completed. Finally, adding (6.63) to (6.58), we obtain 
(5.2). 

7. FIRST DERIVATIVES OF THE METRIC 

To discuss continuity of the derivatives of gq = (@‘-l)*g we need to look 
at functions of the form (W-l)* ([Z]g([X], [Y])), where [Xl, [Y], [Z] are (local) 
vector fields on M. If X, Y, Z are the (equivariant) lifts of these vector fields to 
H + -Ax, (i.e. &invariant covering sections of H), then [Z](gn/t([X], [Y]))IL,l = 
Z(gA(X,Y))IA = Z(X,Y)l, . It is exactly this derivative that was computed in 
(5.2), where we took X = nZ(,,,,,, Y = 7rZcab,+,), and Z = 7r’zp0,b). However, 
(5.2) applies only at points (p, X) for which Val, = Va’l, = 0, so we cannot 
instantly deduce Theorem 1.2 from these bounds and Theorem 5.2. When we do 
the work required to extend the bounds away from p, with essentially no extra 
effort we obtain the following stronger theorem, of which Theorems 1.2-1.3 are 
corollaries. Below, Latin indices always run from 1 to 4, and Greek indices from 
0 to 4. 

Theorem 7.1. Let {xi}: b e 1 ocal coordinates on a neighborhood U c M. Extend 
these to a coordinate system {xp}: on [0,X0) x U by setting x0 = A, and write 
g,, = g&z, &)I gij = g(&, &). A ssume that the metric coeficients gij 
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and their first derivatives &gij are bounded on U. Let (Y = cyg be as in Lemma 
4.3. Then 

(7.1) l%j = 47r2gij + O(P) 

(7.2) JZOCL = 87&o, + O(Al+a) 

(7.3) 

(7.4) 

d 
dxk &i = 4T2&gij + O(X) 

d 
= O(X) 

(7.5) 
d 

dZ”gop = O(Aa) 

The constants implicit in the O(.) t erms can depend on the the upper bounds 
on g2j and &gij on U. If we start with normal coordinates on a s@ciently 
small ball, these constants are independent of the choice of the ball and the choice 
of normal coordinates. 

Remark. The bound on dgc,/dxi in (7.5) is not as strong as one could hope 
for; in the examples A4 = S4, CP2, one loses a power of X only differentiating in 
the X-direction. Thus, given (7.2), one might expect to find dgc,/dzi = O(A1-ta). 
The source of this worse-than-expected bound is (5.1), where one would expect to 
find a larger power of X for the terms proportional to (bl than for those propor- 
tional to Iho). In our proof of (5.1), what puts b and bc on an equal footing is our 
treatment of the last three terms in (6.6), each of which our estimation scheme 
bounds by the right-hand side of (6.28). Conceivably, there is some hidden can- 
cellation among these terms. 

Proof of Theorem 7.1: Fix p E U, set ei(p) = h(p), and extend {ei} to a 
neighborhood of p by parallel translation along radial geodesics through p. Define 
{e:} as in (5.3). Then (5.2) can be written as follows: 

(7.6) eb (g&Gle#p,XI = 0(X? 

(7.7) e’k (g4eble#p,XI = O(X) 

(7.8) eb (g4eL eg)) J(P,xj = 0(X3110gW 

(7.9) eL (g*(e:, e>)> ((P,xj = 0(X31 log 4”2) 

Our derivation yields these bounds only at points (p, A) for which p is the cho- 
sen point above. Below, we will always compute at such (p, A); the reader can 
check that as we do the computations, the constants involved have the uniformity 

asserted in the theorem. 
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Our strategy for deriving (7.3-7.5) will be to write the vector fields { &} in 
terms of the {el,} and then to estimate &gUp using (7.6-7.9). We will do this in 
two stages, first writing {e,} in terms of {e:}, and then writing {&} in terms 
of 1%). 

In the first stage, the relevant information on the matrix relating the bases 
{e,}, {ek} is contained in (5.4-5.7), but the undifferentiated metric coefficients 
gq(eL, e:) enter the derivative computation as well. We claim that 

(7.10) gQ(e:, ei) = 4r2g(ei, ej) + 0(X2), gs(eb,eL) = 87r2S,e + o(1). 

To establish this, we use (6.47) and the following bounds from [GP2, Proposition 
3.61: 

(7.11) I(q&+)‘q&Q) ) - 47-r2(g(a, a’) + 2~04) 

5 f4allaV2 + 4~)(lal1431 + ldla’l + I~oII~A) 

where E(X) + 0 as X + 0. Applying Corollary (4.5) to the second term in (6.47) 
gives 

(7.12) 

1 (qa,,a) > G!qa;,ay )\ I c (lal14~4110g~I + (b0lla’l + lal14J)~3 + 1~011~01~2) 

From (6.47) and (7.11-7.12) we then obtain (7.10). 
The next step is to replace the {e;} in (7.10)) by {e,}. First, from (5.3) we 

have e, = DLel,, where D = (3-l. It is easy to show that the bounds (5.4-5.7) 
imply the same bounds with C replaced by D. Combining these bounds with 
(7.10), we obtain 

(7.13) g*(e%, ej) = 4r2g( e,, ej) + 0(X2), gq(ee, ep) = 87r2b,o + o(l). 

From (7.6-7.9) we can then conclude that 

(7.14) eV (m(e0, +)) = O(Aa), e, (g*(e,,ej)) = O(X). 

Now we move onto the second stage of the substitution procedure, writing 
& = Biej (by definition &- = ec) and using (7.10) and (7.13-7.14). Note that I 
the matrix B is independent of X. Performing the substitution, we immediately 
obtain &gij = O(X) (which is (7.4)), and 

(7.15) +&go0 = 0(X?, &go,, = 0(X?> 

which is most of (7.5). To get the rest of (7.5) we have to bootstrap a little, 
because the “o(1)” term in (7.13) is not yet strong enough. First, note that 
since h(p) = ei(p), f rom (7.10) we immediately have gij = 4n2gij + 0(X2) 
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(which is (7.1)), and goP = 8x26,0 + o(1). In particular, gcP = SOP at X = 0, so 
integrating the second part of (7.15) gives (7.2), which can now be used to show 
&goj = 0(X0). Hence we arrive at (7.5). 

It remains only to derive (7.3). Since we are computing only at (p, X) and the 
covariant derivatives of the ei vanish at p, this bound follows from (7.1337.14) by 
direct substitution. 

Since the (extended) metric gq is Cl, the second fundamental form of the 
boundary is well-defined. As corollaries of Theorem 7.1, we obtain the following 
two theorems. 

Theorem 7.2. There exists CY > 0 for which the continuous extension of ge to 
[0, X0) X A4 is Cl’“. 

PROOF. Since the metric coefficients are C” on the interior, this follows from 
(7.1-7.5) by the same argument as in the proof of Theorem 5.2. 0 

Theorem 7.3. Let h denote the second fundamental form of the submanifolds 
{A = constant} (relative to the metric gq). Then 

In particular, h vanishes on the boundary {A = 0}, so the boundary is a totally 
geodesic submanifold. 

PROOF. Since the submanifolds h/r, := {X = c} have codimension 1, we can define 
the second fundamental form of h/r, up to sign as the the section of Sym2T*MC 
given by 

(7.16) h(X, Y) = gq(VxN, Y) = -ge(VxY, N), 

where N is a unit normal vector field. In terms of local coordinates (9) of 
Theorem 7.1, one has 

But if we compute in normal coordinates based at an arbitrary point p, Theorem 
7.1 gives I$ = O(Xa). 0 

Finally, we discuss some implications of Theorems 7.1-7.3 for the exponential 
map on (Mx,,g). To simplify the discussion, we first extend the metric g* to 
Mdbl := (-X0, Xo) x M (the double of MA,) by reflection across the boundary. 
Replacing the manifold-with-boundary by one without a boundary allows us to 
quote without change various theorems having open sets in their hypotheses. Note 
that curvature is defined only on the complement M’ of {A = 0) in M&l. 
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Since we don’t know that the Christoffel symbols in Theorem 7.1 are uni- 
formly Lipschitz on Mdbl we cannot appeal directly to the fundamental theorem 
of ODE’s to establish existence and uniqueness of geodesics with given initial 
conditions. However, Theorem V.8.1 of [Had] implies that (in a given coordinate 
patch) if the Christoffel symbols of a C1 metric 3 satisfy a certain “L-Lipschitz” 
condition, then existence and uniqueness do hold for solutions to the geodesic 
equation (on an open set in initial-condition space), and moreover the dependence 
on initial conditions is locally uniformly Lipschitz. Hartman’s L-Lipschitz condi- 
tion is satisfied if there exists a sequence of C1 matrix-valued l-forms {J?~,(n)dz~} 
converging uniformly to the Christoffel connection forms of j, such that the com- 
ponents of the 2-forms dI’(n) are uniformly bounded; equivalently, if the curvature 
2-forms dl?(n)+r(n) A r( ) n are uniformly bounded (see Hartman’s Exercise V.6.2 
on p. 106 and its solution on p. 563). For 3 = gq we can obtain such a sequence 
by convolving the Christoffel symbols r& of gq with a sequence of mollifiers 6, 
approaching a d-function. To see that the curvature bound is satisfied, first note 
that since the r& are continuous, and the curvature of gq is smooth and bounded 
on M&,, (Theorem l.l), the 2-form dr is smooth and bounded on M&,,, hence in- 
tegrable on Mdbl. Hence d(S, * r) = 6, * dr (where 6, * (f,dx”) := (6, * f,)dx@, 
etc.), and therefore d!?(n) is uniformly bounded. Using Theorem 7.1 to give a 
uniform bound on I’(n), we obtain the uniform curvature bound. 

Thus the exponential map on ML,, exists and is unique. Since {A = 0) 
is totally geodesic, geodesics emanating from {A = 0) with initial velocity in 
the half-space {i > 0) stay in our original un-doubled manifold MA,. Let 
T+(MxO) = TMx, U{the {A > 0) half-spaces in TMx,la~}, topologized as a 
subset of T(MxO). Then we have proven 

Theorem 7.4. The exponential map is well-defined on some relatively open neigh- 
borhood of the zero-section of T+(Mx,), and is locally uniformly Lipschitz. In 
particular the normal exponential map from the boundary is well-defined on some 
relatively open neighborhood of the zero-section and is locally uniformly Lipschitz. 

We remark that if the curvature of M x0 were known to extend continuously to 
MA,,, then Theorem V.6.1 of [Har2] would imply that the dependence of geodesics 
on initial data is Cl, and hence the normal exponential map would be a local 
diffeomorphism. Even without knowing continuity of the curvature, it may be 
possible to deduce greater regularity of the normal exponential map by other 
means-there is more geometry in our setup than was exploited in the ODE 
proof above-but we will not pursue that here. 
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8. APPENDIX: VARIATION OF HOLONOMY AND FAMILIES OF NORMAL 
COORDINATE SYSTEMS 

We begin this section with a discussion of the parameter space in which vari- 
ation of normal coordinates is best viewed. In order to perform the variation, we 
make use of a very general formula for variation of holonomy, which we provide in 
$8.2. In 58.3, we apply this to produce our desired formula for variation of coordi- 
nate functions. For the applications in 56 we need the formula to be differentiable 
and have certain bounds on its derivatives, which necessitates our providing more 
detail in $8.1 and $8.3 than would otherwise be needed-indeed, this is the hard 
part. 

8.1. The parameter space for normal coordinate systems. Let (M,g) be 
a compact Riemannian manifold of dimension m. The set of normal coordinate 
systems on M is parametrized by the orthonormal frame bundle F(M). Given a 
point p E M and a frame eP at p, asking how the normal coordinates of a fixed 
point q (near p) change as we vary p only makes sense if we prescribe a way for 
the frame eP to change with p as well. 

It’s useful, therefore, to introduce a space N which incorporates both the 
parametrizing frames eP and the points q at which the normal coordinates are 
evaluated. Let W c M x M be a closed neighborhood of the diagonal with the 
property that for all (p, q) E W, each of p, q is contained in a normal-coordinate 
neighborhood of the other. Define N to be pullback of the frame bundle F(M) 
to W by projection onto the first factor from W to M, and N* to be the portion 
of N lying above the complement of the diagonal. We use the notation (e,,q) for 
points of N, where (p, q) E W and eP is a frame at p. By a “normal neighborhood” 
of p E M we will mean an open set U containing p for which U x U c W. 

N comes equipped with a smooth map to R” sending (eP, q) to the m-tuple of 
coordinates of q in the normal coordinate system {xi,} defined by eP. We denote 
the component functions of this map by Zi : N -+ R. Thus, normal coordinates 
become global functions on N. 

Let r denote both the distance function on W and the pullback of the distance 
function to N. We are often interested in the order of vanishing of functions on N 
or N* as r -+ 0. We will always use the notation “O(P)” in a uniform sense-i.e. 
we say f : N + R is O(P) iff there is a constant c for which f(e,, q) < cr(p, q)” 
everywhere in N (or N*, if n 5 0). For some expressions involving normal 
coordinates (e.g. those arising in the expansion of the metric) we often come 
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across bounds of the form 

(8.1) 

where rP denotes distance 
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I.@,, dl I hdddnl 

to p. In such instances f is often O(P) in the sense 
above, using compactness of N and the construction of the bound (8.1). When 
this is the case we will simply assert that f is O(F) without explicit proof of 
uniformity. 

There are two types of vector fields on N that will be of concern to us. First, 
using the natural isomorphism Tc~~,~~N E Tep(F(M)) x T,M, we define smooth 
global vector fields Xi,. . . , X, on N by 

Xi(e,,q) = (0, A(q)) E T.+,(F(M)) x T&f, 

where & are the coordinate vector fields near p in the normal coordinate system 
{xi = xi,}. The {Xi} t en er when one wants to differentiate an expression in 
a temporarily fixed normal coordinate system, then examine how the answer 
depends on parameters in N. 

The second type of vector field (actually a vector field with a restricted domain) 
is the type associated with varying a normal coordinate system. Given any vector 
V E T&M, for each q there is a corresponding vector vq = (V, 0) E T&(F(M)) x 
T,M g Tc~~,~JN; thus v is a vector field along a submanifold {ep} x UP c N, 
where UP is a normal neighborhood of p. A general variation of normal coordinates 

is simply the function on UP given by q H { v(i?)/c~P,ql}~l. For the variations 

we consider, we will always take V to be the horizontal lift (with respect to the 
Levi-Civita connection) of some up E T,M. 

Definition 1. We say that f : N + R (or N* + R) is Ostrong(rn) if f is O(r”) 

and if for any multi-index (ii,. . , ik) the derivatives Xi, . .X,,f are O(rn--lc) 
(equivalently, if the lath covariant derivative of f with respect to the second vari- 
able in N is O(P-‘)). S imilarly, if f has auxiliary dependence on some parameter 
A, we say f is write Ostrong(Arn) if all m th derivatives of the above form are uni- 
formly O(Arn--m) (with constants independent of A). 

For the applications in this paper, it suffices to take m 5 2 in this definition. 

The fact that a given function on N is Ostrong(rn) does not by itself imply 
that its variation under a vector field V as above is O(lvlr”-‘) (although for the 
functions whose variations we compute this turns out to be the case); it is only 

derivatives with respect to the second variable (i.e. q in (e,,q)) that we know 
a priori to be O(rnpl). This forces us to establish separately, in 58.3, the order 
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of vanishing of the variations of functions &, &j (see Definition 2 below) known 
already to be Ostrong(r). 

In order to prove that various quantities encountered in 58.3 have the “Ostrong” 
behavior we assert, we will need the following lemma and the subsequent Corollary 
8.2. 

Lemma 8.1. Given (eP, q) E N, let e4 be the frame obtained by parallel translat- 
ing ep to q along the minimal geodesic, and let {xi}, {yi} be the normal coordinate 
systems determined by eP, e4 respectively. Then 

(8.2) ei(p) = &j + ~&kjl(p)x”(q)x’(q) + Ostrong 

where {Rikjl (P)) are the components of the Riemann tensor at p in the frame ep. 

This lemma is is more subtle than it first appears. N admits an involution r 

defined by r(epr 4) = (e,,p), w h ere e, is the radially parallel translate of ep as in 
the lemma. The fact that a function f : N + R is Ostrong(rn) does not by itself 
imply that r*f is Ostrong(rn). (See th e comment after Definition 1; the situation 
here is similar.) This observation applies to the remainder term in (8.2). Had 
we started with a frame at q rather than at p, and were regarding the bracketed 
expression in (8.2) as a function of coordinates (e,,p) on N rather than of (ep, q) 
the “Ostrong” assertion would be easier to prove. Proving (8.2) as it stands is 
more delicate because the coordinate system defining { &} itself depends on q. 

Proof of Lemma 8.1: Parametrize the minimal geodesic y from q to p pro- 
portionally to arclength, with y(O) = q, y(l) = p; in the coordinates {yi}, we 
have y(t) = ty(p). Let e(t) be the frame at y(t) obtained by parallel translating 
e4 along y, and write ei(ty) = fji(t)&; note that fji(0) = c&j. Using Vyje, = 0 
we obtain the equation 

(8.3) 

where 

f’ + Af = 0, 

(84 A(t)ij = (dyi, V ?4%)&~~) Ity(p) = Yk(P)rijk(eq; b(p)). 

Here rijk(eq; tdp)) are the Christoffel symbols with respect to the frame e,, 

evaluated at y(t). Since P’jk(e,; 0) = 0, 

A(t& = yk(p) s,’ @jk(e,; tltY(P))dh 

= tyk(p)yTp) S:(~rijk)(e,;tltY(P))dtl. 
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The last integral above is determined completely (and smoothly) by (eP, q) and 
t, so we will write it as Bklij(ep, q, t); we regard this as a matrix-valued function 
Bkl with matrix indices i,j. Since yL(p) = -x”(q), we can rewrite (8.3) as 

(8.5) f’ + ts”(q)xcl(q)Bkl(eP, q, t)f = 0. 

Because the Blcl are smooth on Nx [0, l] and z?(q)&(q) is 0strong(r2), the solution 
to the linear equation (8.3) with initial condition f (0) = I is I + 0strong(t2r2), as 
one can see, for example, by expressing the solution as a path-ordered exponential. 

We can take the preceding argument one order further, writing Bklij (eP, q, t) = 

1 

I-( 0 
($r'jk)(e,;o) +tlW ~'(~r"ji)(e~;t2~~~y(~))~~2) dtl. 

It is well-known that (dJijk)(eq; 0) = -~(Rijrcl(q)+R,rcjl(q)) (components of the 
Riemann tensor being taken relative to e4). Since z”zlR~kl = 0, we can therefore 
rewrite (8.5) in the form 

(8.6) f’ + (-itz”(q)z”(q)&.r - lc”(q)z1(q)2m(q)Bklm(ep, q, t))f = 0, 

where now Bhlrn is smooth in all parameters. From (8.6) we obtain the solution 

f (t)ij = &j + ~t2zn(q)z”(q)Rikjl(Q) + 0stmng(T3t3). 

Setting t = 1 and noting that I&l(q) = I$l(p) + Ostrong(r), (8.2) follows. 
An immediate corollary of Lemma 8.1 is the following fact concerning the 

Jacobian of a normal-coordinate change. 

Corollary 8.2. Let p, q E M with each point contained in a normal-coordinate 
neighborhood of the other. Let {ei(p)} b e an orthonormal basis of T,M and let 

{ei(q)} be th b e asis obtained by parallel translating {ei(p)} along the minimal geo- 
desic from p to q. Let {xk}, {xi} be the corresponding normal coordinate systems 
centered at p, q respectively and let r = dist(p, q). Then 

(8.7) g(p) = bij + 0strong(r2). 
P 

PROOF. Simultaneously, we have ei(p) = &(P) = ~(P)&(P) and (from (8.2)) 

f%(p) = (&j + 0shn,(r2))&(p). q  
4 

In addition to the global coordinate functions {?} on N, there are several 
other global functions on N used earlier in this paper. 
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Definition 2. (i) The m2 functions gij : N + R are defined by gij(ep, q) = 
g(dxi, dxJ)14, where {xi = xkp} are the normal coordinates near p determined by 
ep. (ii) The m2 functions & : N + R are defined by &(e,,p) = 0 and 

(8.8) &(e,,q) = d2rg _I,- &ig = &iP- (!+ - x”(q)J(q)) 

for p # q; here rq denotes distance to q. Alternatively, if we define normal 

coordinates {yi} as in Lemma 8.1, then & = az:& - a::$ ( (iii) The m2 

functions &j : N + R are defined by qij (ep,p) = : and q?&(e:, q) = -& + 
r-l(gij - f&j) for p # q. 

Lemma 8.3. The functions cij and $ij are O(r). 

PROOF. Since gij = 6ij + 0(r2), we need only show czj = O(r). This was proven 
in [GP2, Lemma 4.21 using Jacobi fields, but we give a different proof here to 
obtain an expression for <ij that allows us later to compute its variation. 

Let (e,,q) E N, let {xi} be the normal coordinates determined by ep and let 
eqr {y”} be the frame and normal coordinates defined in Lemma 8.1. When we 
are not differentiating, we will write T = rq and yi = y”(p). 

First note that 

(8.9) !&) = -qQ. 
This can be derived from the formula for first variation of arclength; see [GP2, 
Lemma 4.21. 

Next, we have 

Vdr,)* = V(r,‘yzdyi)lp = ($ - $$dyi @ dyj + r-‘yiVdyi. 

On the other hand, since Vdxij, = 0, 

d2rq dxi 8 dxj Vdr, = - 
dxidxj 

Since y”(p) = -xi(q), comparing the last two equations we find 

&(e,,q)dxi @dxjIP = ($ - x’(q)$q)) (dyi @ dyj _ dxi @ dxj) IP 

(8.10) - rP1xi(q)Vdyi IP. 

Prom Corollary 8.2, (dyi 8 dyj - dxi @ dxj)lp = 0(r2). Since Vdyi(, = O(r2) as 

well, the assertion of the lemma follows from (8.10). 0 
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note that h(s, 0) = Id for all s. The parallelism of fa along each ys implies that 
for each s, h, := h(s, .) is the fundamental solution of the equation 

(8.14) h’,(t) + A,(t)&(t) = 0, 

where A,(t) = A(s, t) is the matrix-valued function 

(8.15) A, = LaIatY*w. 

Differentiating (8.14) with respect to s at s = 0, we obtain (h)‘(t) + &(t)&(t) = 
-A(t) Note that h(0) = 0 since h,(O) E Id. Since he is the fundamental 
solution of (8.14) for s = 0, this implies that 

J 

t 
(8.16) h(t) = -hj(t) h,l(~)A(~)ho(r)d~. 

0 

We next compute A(r) to plug it into (8.16). From (8.15) we have 

A(t) = Cafas(La/atY*w) = LafatCalasY*W 

= La/at (La/a&* w + dLa/a,Y*w) 

= WV,(t),&(t)) + $b; K(t)) 

where Vs(t) = -Y*(~,~)& and X,(t) = ye(+)&. Plugging into (8.16), we obtain 

h(t) = +-J(t) {~th,l(i)d4’(~), X(T))ho(T)dT 

(8.17) + 
J 0 

t rl,‘[~(w(ro(~)),V(r))lho(~)dT}. 

In the second integral, integrate by parts, and in the boundary term use the fact 
that V(0) = 0. Using (8.14-8.15), we also have hb(~-) = -(~,X(r))ho(r) and 
d/dT(h,l(T) = &‘(T)(w,~(T)). This puts the second integral in (8.17) into the 
form 

J 

t 

4?(w4~0(~))> V(t)ho(t) + 
0 

f$(+ /\w(W, X(T))ho(T)d.T. 

Since dw + w A w is the matrix k of K in the frame {e,}, we therefore obtain 

J t a) = -Mro(t>), V(t))ho(t) - ho(t) 
^ 

@(T)K(V(T),X(+~(T)~T. 
0 

In particular this applies when t = 1. Since V(1) = 0, we have 

(8.18) J 
1 

/1(l) = -ho(l) 
^ 

@(T)K(V(T), X(T)ho(T)dr 
0 
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form the operator appearing here, consider the operator 

fl 
PC,) = -P,,(O)+ro(l) J P,&)+g(O) O K(V(T)> X(T)W. 

0 

A straightforward calculation using (8.13) and the fact that K(., .)((ea(z)) = 
e,(z)I?ll,(., .) shows that 

by (8.18). On the other hand, P,(e,(p)) = ea(p)h(s, l)O,, implying 

Jk-O(ea(p)) = q3(p)h(l)Ba = P(ea(4)). 

By linearity, we obtain (8.11). 
To remove our initial assumption that the image of yo lay in a trivializing 

neighborhood for E, simply use the variation y to pull back E and V to the 
rectangle [0, E) x [0, l]. The pulled-back bundle is trivial, so the previous argument 
applies. Unwinding the pullbacks in the resulting formula, we again arrive at 

(8.11). 0 

One class of variations will be of particular concern to us. 
a smooth variation of a curve QO from q to p, with o,(O) E q 

Suppose s * cr, is 
but ~~(1) variable. 

Suppose further that s H ps is a smooth variation of the constant curve ,Llo E p, 
such that for all s we have ps(0) = p, ps( 1) = CY,( 1) (see Figure 1). For each s we 
define the curve ys by traveling along (~0 from q to p, then from p to o,(l) along 
ps, then from ~~(1) back to q along the inverse of (Y,. (Note that 70 is simply cr 
followed by (Y-’ from q to p and back again.) 
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Figure 1 
In this situation we have the following. 

Corollary 8.5. Let the variations cx,/?,y be as just described. Let Y(t) = c&(t) 
be the tangent vector field along (~0, and let W(t) = (Y(t)(,=O be the variation 
vector field of CY along CYO. Let P, E End(E,) be the holonomy around the loop 
yS. Then 

(8.19) s 1 

m) = PC+)+, 0 K(Y(7), W(T)) 0 Pq+a(&, 
0 

where the parallel translations are taken along a. 

PROOF. We can parametrize the variation yS by 

-/s(t) = 
{ 

ff’(t), o<t<1, 
A(t - I), 1 < t < 2, 
c&(3 -t), 2 5 t 5 3. 

Let X(t),V(t) b e as in Proposition 8.4, 0 5 t 5 3. Note that V(t) -_ 0 for 
0 < t < 1 and that, since /?c is a constant curve, X(t) E 0 for 1 5 t < 2. For 
2 5 t 5 3 we have X(t) = -Y(3 - t) and V(t) = W(3 - t), so the result follows 
from (8.12). 0 

Remark. In particular, this corollary applies to both of the following situa- 
tions. (a) If p(s) = a,(l) and ,Lls(t) = p(st), so that the images of the OS are 
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progressively larger portions of the curve PI. (b) If A4 is Riemannian, (Y,~( 1) lies 
in a normal neighborhood of p, and /3s is the unique minimal geodesic from p to 

o,(l). 

8.3. Application: variation of normal coordinate systems. We x-e now 
ready to derive our basic variation formula. Again s will denote the variation 
parameter throughout this section. 

Let p E M, let U be a normal neighborhood of p, and let e” = (e:(p), . , e:(p)) 
be an orthonormal basis of T,M. Let u E T,M, and let p : [0, E] + U be a curve 
with p(O) = p and p’(0) = w. There are two obvious ways to extend e to the 
curve p, defining e,“@(s)) E Tp(,jM to be the parallel translate of e:(p) from p 
to ,0(s) along either ,0 or the unique minimal geodesic from p to p(s). 

Below, we will write p, = p(s) and will always take {ef(p,)} to be defined 
as in one of these two ways. It is irrelevant which way is used since, in either 
case, the tangent vector at s = 0 to the curve s ti es in F(M) is the Levi- 
Civita horizontal lift V of U, so that the vectors V, = (i3,O) E Tc,~,,~N} form 

a variation vector field v as discussed just before Definition 1. Therefore if we 
let {z:} denote the normal coordinate system centered at p, determined by the 
frame es = (es(p,), . , ei(p,)), then 

c?(q) := $r$_(q) 
s=o 

We will prove the following: 

Proposition 8.6. In the situation above, with q fixed and with the coordinate 
center-point p varying along a curve with initial tangent vector v, we have 

(8.20) ki(q) = -vi - 2_ 3xbx1vjRikjl(p) + &ong(r31vI) 

where {QL(P)), {vi) are the components of the Riemann tensor and v in the 

frame {e!(p)). 

PROOF. First note that ~6 = zi, and that for all s E [0, E], q E U, 

q = exp,(xi(q)ei) = expp(,)(25ef) = exppa (Xiei). 

Since any choice of p with b(O) = v will produce the same variation vector field, 
we are free to choose ,0 conveniently. It simplifies matters if we choose 

0(s) = exp,(w0 + ~~11, 

where wo = -xi(q)ep(q) and w 1 = (exp,, ]w,)-‘(w). Let (Y, be the minimal 
geodesic from q = as(O) to pS = as(l), and define et(cu8(t)) E T,S(,jM to be the 
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parallel translate of ez(ps) along QI, -l. In particular this gives us a l-parameter 
family of frames {e,“(q)} at q, and 

exp,(-25(+$(q)) = P(s) = P, vs. 

Differentiating at s = 0, we obtain 

expq* IwO (-ki(q)eP(q) - zi(q)(ei(q))‘) = 7~. 

Thus 

(8.21) iz(q)e8(q) = -z’(q)(ea(q))’ - ~1. 

We will use (8.21) to compute z?(q). First we compute the term (ei(q))' in (8.21) 
using the fact that e:(q) can be obtained by parallel translating e:(q) around the 
following loop: 

(i) Go from q to p (in time 1) along the minimal geodesic eye. 
(ii) Then go from p to p, = p(s) (in time 1) along either p or the 

unique minimal geodesic, depending on which way has been chosen to define e,“. 
(iii) Then go from p(s) back to q (in time 1) along the geodesic a;l. 

The composite curve gives us a variation of the type described in either part 
(a) or (b) of the remark following Corollary 8.5, depending on which way eq has 
been defined. Hence the corollary applies, and the variation in holonomy around 
the initial loop is given by 

s 

1 

m) = %(t)+q 
0 

O w4#), $(t)l.=o) O P,+,,(t)& 

where R is the Riemannian curvature 2-form and the parallel translations are 
taken along eye. By our choice of p, we have o,(t) = exp,(t(wc + swi)), and 
hence 

(8.22) $Ct)l 
s=o 

= $ exp, (t(w0 + SW)) 
s=o 

is precisely the Jacobi field J(t) 1 g a on ae with J(0) = 0, J(1) = w. Thus 

(8.23) 

(ei(q))’ = p(O) (e:(q)) = 1’ p,,(t)+4 0 R(ob(t), J(t)) 0 <+,,(q(eF(q))dt. 
0 

Since the frame {ep} is parallel along (~0, (8.23) simplifies to 

(8.24) (ei(q))’ = [I’ fiji(ob(t), J(t))dt] e:(q) 

where &ji is the matrix of R in the frame {ef(ao(t))}. 
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We want to determine the leading-order behavior of this integral and estimate 
the remainder. Since QO is a radial geodesic from q to p, we have 

(8.25) ah(t) = -2(q) & = -2(q)ep(cxo(t)). 
so(t) 

Also, from (8.22), using (8.2) twice we find 

(8.26) 

J(t) = t. exPq* Itwo 0 (exp,, lwo)-‘(~> = t (J&a0(t>> + Ostrong((l - Q214)) 

Inserting (8.25-8.26) into (8.24), and using the fact that l?,(eE(cxo(t)), ee(ao(t))) = 

Rjm(p) + Ostrong((l - t)r), we find 

s 

1 

(8.27) 
0 

&(&l(t), J(t))dt = -+%l)RjidP)ll~ + atrong(~21~I). 

Hence 

(8.28) xci(4.)(ei(q))’ = [~s’(n)rl(d~~~~~(P)~’ + 0.tr,,,(r31ul)] 4(q). 

This gives us the first term on the right-hand side of (8.21). To handle the 
second term, namely 

w1 = (exp,, lWo)-l(~) := de:(q), 

we use Lemma 8.1. Let {yi} be the normal coordinates based at q determined by 
the frame {e!(q)}. Then 

21= viei = expq* IWo(de~(q)) = d$ . 

P 

By Lemma 8.1, we therefore have uj = [Sij + iRikjl(p)ykyl + 0strong(r3)] vi. But 
y” = -x’(q), yielding 

(8.29) 
1 

W = &j + -&jl(P) 6 
xkxl + 0 de?(q). 

Combining (8.21), (8.28), and (8.29), we obtain (8.20). 

Next we consider the variations of several other functions on N. 

0 

Proposition 8,7. In the setting of Proposition 8.6 we have the following. 
(a) i = -+ (for r # 0). 

(b) (gij)’ = O(T+~). 
(C) iij and (4ij)’ are O(lVl). 
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PROOF. Notation will be as in the proof of Lemma 8.3 and Proposition 8.6. 
Remember that the point q is fixed throughout all variations; it is only p and ep 
that change. 

(a) Since r = rq depends only on p, not on ep, we have + = v2 $$. Now use 
(8.9). 

(b) By definition, gij(ep,,q) = g(dx:,dxi)14; hence (gij)’ = g(&,dzj) + 

g(dzi, dkj). But from Proposition 8.6, dii = O(rIwl). 

(c) In (8.10), replace p by p,, {xi} by {xi}, and {yi} by {ye} (the normal 
coordinate system determined by the frame e:(q) constructed in the proof of 
Proposition 8.6). We then have an equation between tensor fields along the curve 
p, which we will covariantly differentiate at p. Below, when we write dxi, dyi, 
and Vdyg, we mean the fields along p whose value at s is dxi(P(s)), dy:(P(s)), 
and (Vdyi)(P(s)) respectively. 

Note that {dx”,} is the coframe dual to e;(pS), which by construction is covari- 
antly constant along p at p. Hence V,(dzi @ dxj,) = 0, so, writing y’ = yb, 

(8.30) - (+xl,(q))‘Vdyilp - r-‘xi(q) V,(Vdy:)iP. 

From part (a) and (8.20) we compute (&j/r, - x$(q)x$(q)/r:)’ = 0(lvlrP2) and 
(r,‘x;(q))’ = O(lvlr-‘). T o compute the covariant derivative of the tensor fields 
involving dyt, first note that as s varies, e:(q) changes by a holonomy matrix h(s) 
as discussed earlier. For all u near p and q, we have yi(zl)ef (q) = constant, and 
hence y:(u) = Cij(s)yh(u) where C = h-l. Thus dyilp(s) = Cij(s)dy$o(,) and 
Vdy$ = Cij(s)Vdya)o(s), implying 

V,(dy;) = &dy;(p) + V,dy; 

and 

V,((Vdyf)l& = &(V,dy;)(p) + VJ’dy6. 

From (8.24) and (8.27), h = O(lvlr), and hence 6 = O(lwlr), so the preceding 

implies V,(dy$ 8 dyj - dx”, 8 dxj,) = O(lvlr) and Vv((Vdyi)la(S)) = O(lul). 
Combining all of the bounds above with those used in Lemma 8.3, and inserting 

the result into (8.30), we find &j = O(l~l). 
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Finally, we have (q&j)’ = -& + (r-‘)‘(giJ - Sij) + rel(gij)‘. from parts (a) 
and (b) above, the last two terms are O(lul), so (&,). = O(lul) as well. 0 
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