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ON A THEOREM BY LIONS AND PEETRE ABOUT 
INTERPOLATION BETWEEN A BANACH SPACE AND ITS 

DUAL 
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COMMUNICATED BY HAiM BREZIS 

ABSTRACT. We show that if the duality between a Banach space A and 
its anti-dual A* is given by the inner product of a Hilbert space H, then 

(A, A*)1/2,2 = H = (A,A*)[l,2~, provided A satisfies certain mild condi- 
tions. We do not assume A is reflexive. Applications are given to normed 
ideals of operators. 

1. INTRODUCTION 

Let A be a Banach space continuously and densely embedded in a Hilbert 
space H. We can then consider H as continuously embedded in the anti-dual A* 
of A so that, in particular, the couple (A, A*) is compatible. A classical result of 
Interpolation Theory states, in case A is reflexive, that 

(1) (A,A*)i/z,s = H with equivalence of norms, 

(2) (A,A*)[i/sl = H with equality of norms. 

Here (., .)o,~ denotes the real interpolation functor of order 8 E (0, l), q E [l, co], 
and (., .)lel denotes the complex interpolation functor of order 0 E (0,l). Formula 
(1) was established by J.L. Lions and J. Peetre in their famous article on the real 
interpolation method [13], where it appears as Theorem 3.4.1. For (2), see the 
paper by Peetre [17], page 175. Reflexivity is essential for the arguments in both 
[13] and [17]. Without this assumption their methods only give 

(A, A*)1/2,2 q H and (A, A*)p/21 9 H. 

1991 Mathematics Subject Classification. 46B70, 46M35. 
First author was partially supported by DGICYT (PB94-0252). 
Written while the second author was visiting UCM supported by DGICYT (SAB95-0419). 

325 



326 COBOS AND SCHONBEK 

However, in many situations of interest, the space A fails to be reflexive (see, 
for example, [17], p. 175 or [6], p. 134), or there are no inclusion relationships 
between the spaces A, A* and H. It is then important to investigate the validity 
of the formulae under weaker assumptions. This problem was first considered by 
Miyazaki [15] in 1968, who gave a somewhat lengthy proof of (1) without assuming 
reflexivity. No other progress seems to have been made on this matter for several 
decades. However, during the last few years several papers have appeared dealing 
with it. 

For the complex case, Haagerup and Pisier [lo], $3, proved that (2) holds if 
we are in the situation A* v H v A with dense injections and A** has the 
analytic Radon-Nikodym property. Later on, Pisier in [18], dealing with operator 
spaces, gives an argument which shows that (2) holds if A* v H + A with 
dense injections without need of any further assumptions on A. More recently 
Watbled [20] showed that (2) is valid assuming only A v H or H v A with 
dense inclusion. She also established some results for the case in which A, A* 
and H are not related by inclusions (see [21]). In particular, (2) holds in this 
more general setting if A is reflexive. Concerning the real case, two short proofs 
of (1) appeared recently: The techniques used by Xu in [22], working again in 
the context of operator spaces, yield that (1) remains valid if A v H with 
dense injection, while Amrein, Boutet de Monvel and Georgescu use Gagliardo 
completions to prove this result in [l]. 

In this paper we address the case in which there is no embedding relationship 
between the spaces A, A* and H. We consider the formulae in the more general 
context of dual pairs, and give mild conditions under which they are valid. We 
show that these conditions always hold in the cases considered by all the authors 
mentioned above. 

The organization of the paper is as follows. In the next section (Section 1) 
we develop the notation, define what we understand by a dual pair and verify 
some generalities. Section 2 deals with the real interpolation case, formula (1). 
The complex case is studied in Section 3, where we also describe relationships be- 
tween the real and complex interpolation spaces generated by the couple (A, A*). 
Finally, in Section 4 we give some applications. 

2. DUAL PAIRS 

All Banach spaces appearing in this paper are over the field of complex num- 

bers. If X is a Banach space, X* denotes its anti-dual, that is, X’ is the space of 
all bounded conjugate linear functionals of X. By a dual pair we shall understand 
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a pair D = (DO, 01) of complex vector spaces such that Do is a linear subspace 
of D1 and there exists a sesquilinear map 

(a, b) c) (a, b)~ : Do x DI -+ @ 

such that 
(i): The restriction of (., .)D to Do x Do is an inner product for Do; i.e., (a, b)~ = 

(b, a)~ for all a, b E Do and (a, a)~ > 0 if a E Do, a # 0. 
(ii): If b E D1 and (u,b)~ = 0 for all a E Do, then b = 0. 

It follows that (DO, (., .)D) is a pre-Hilbert space with the norm ljul\~ = (u,u)g2 
if a E Do. We shall always assume that our dual pairs D = (DO, 01) are complete, 
meaning that whenever {zcn} is a Cauchy sequence in the pre-Hilbert space Do, 
there exists a (necessarily unique) element b E D1 such that lim,,,(a,z,)o = 
(a, b)~ for all a E Do. The set H of all such b’s, normed by 

l\bll~ = sup{\(%b)Dl : a E Do, llallD 2 I}, 

can be identified with the Hilbert space completion of DO. We call H the Hilbert 
space associated with the pair D. In the sequel, given a complete dual pair 
D = (DO, Dl), we shall drop the subscript D from the notation for the sesquilinear 
form, so that (a, b) denotes (a, b)D if a E D 0, b E D1 or the inner product of a, b 
if a, b E H. Note that our concept of a dual pair may be considered as a special 
case of a more general notion extensively studied in Functional Analysis. 

A Banach space A is said to belong to the (complete) dual pair D = (DO, 01) 
if 

(iii): A is a linear subspace of D1, and Do is a dense subspace of A. 
(iv): The anti-dual A* of A is included in D1 in the sense that 1c, E A* if and 

only if there exists b+ E D1 such that 

G(o) = (a,bQ) 

for all a E DO. 
(v): Do c A n A* c H c A + A* and DO is dense in An A* in the topology of 

A* (as well as that of A). 
Because DO is dense in A, the restriction of an element G E A* to Do determines 
Q uniquely; the corresponding element b+ is necessarily unique. We thus have 

A* = {b E DI : 3cb 2 0, I(u, b)l 5 cbI\u(lAvu E Do}. 

Example 2.1. Let A be a Banach space densely and continuously embedded in 
a Hilbert space H. We can then identify each element h E H with a unique 
element of A* defining h(u) = (h, u) = (a, h) for a E A. In this way H becomes 



328 COBOS AND SCHONBEK 

continuously included in A* and we shall set (a, b) = b(a) if a E A, b E A*, 
noticing that this definition is consistent with the original meaning of (a, b) as the 
inner product of a, b if a, b E H. It is then clear that (A, A*) is a dual pair, with 
associated Hilbert space H, to which A belongs. 

Note that if, as usual, we consider the inclusion A + A** given by the injection 
a ~j J, where J,(b) = b(a) f or a E A and b E A*, we see that the action of a E A 
on A* is the conjugate linear map b e (a, b). 

Example 2.2. Assume similarly that H is a Hilbert space which is continuously 
and densely embedded in a Banach space A. We then consider A* v H by 
identifying 1c, E A* with the unique b+ E H such that $(a) = (a, b+) for all 
a E H. It turns out that A* is dense in H so that (A*,A) is a dual pair, with 
associated Hilbert space H, to which A belongs. 

Example 2.3. In the previous examples A, A* and H are comparable by inclu- 
sions. A typical example of a dual pair in which such comparisons do not necessar- 
ily hold is given by Do = L’@)nLO”(p), D1 = L1(p)+Lm(p), where (fl,M,p) 
is a measure space. Defining 

(.f,g) = s, fg+ 
if f E DO, g E D1, (DO, 01) becomes a dual pair with associated Hilbert space 
L2(p); P’(p) belongs to this pair for 1 5 p < co. 

Other examples of dual pairs where A, A* are not comparable by inclusion will 
be given in Section 4. 

In the sequel, we shall always assume that we are given a dual pair with 
associated Hilbert space H and A shall always denote a Banach space belonging 
to this pair. By A1 we shall always understand the closure of A n A* in the 
topology of A* so that Al is a Banach space with the norm of A*. Let V denote 
the algebraic anti-dual of DO, where (DO, 01) is the basic dual pair. Then D1 is 
a subspace of 2) (identifying b E D1 with the functional a * (a, b) of DO), and 
so are A, A*, Al and H. Because DO is dense in Al (by condition (v) of the 
definition of dual pair), we can identify the anti-dual A; of Al with a subspace 
of V in a natural way, namely by 

A; = {+ E D : 3C > Osuch that \$~(a)/ < Cllall~* for all a E DO}. 

It now makes sense to consider the algebraic sum A; + A*. This space becomes 
a Banach space when normed in the usual way; that is, by 

Il+;+A* = inf{llUOllA; + [lUllI~* : Uo E A;,al E A*,a = ao + UI}. 
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Indeed, we need to verify that Ilall,q+~* = 0 implies a = 0, since we do not know 
yet that there is a Hausdorff topological vector space continuously containing both 
A; and A*. If ]]a]l,~;+~. = 0, then there exist sequences {a,~,}, {al,} converging 
to zero in A;, A*, respectively, such that a = aon + al, for all n. Let c E De. 
Then c E A n A* c Al and 

I(c,a)l = I(aon,c) + (c,aln)l < Ila~,ll~; IIcIIA* + IIcIIA~~~I~~IA~ + 0 
as n + co. Thus (~,a) = 0 for all c E De, hence a = 0. The remaining 
properties of a norm and completeness of A; +A* under this norm are immediate. 
The Banach space A; + A* contains the spaces A, Al, A*, H and A; as linear 
subspaces; let us see that each one of them is also continuously embedded in 
A; + A*. To begin with, it is clear that A, A;, A and A; are continuously 
included in AT + A*, all with norm 2 1. To see that H is also included with 
inclusion of norm < 1, let a E A n A*. Then 

(3) llall”H = (%a) 5 IlallAllallA* 
so that A n A* 9 H with norm 5 1 (we endow A n A’ with its natural norm 

given by IIUIIA~A* = maX{llUllA,IlUllA*}). Ifc E D,,, h E H, using (3), 

ICC, h)l 5 ll4l~ll~ll~ 5 II~IA~A~~~~~H 
hence the norm of h as an element of the dual of A n A* is bounded by llhl\H. 
However, A n A* = A n Al and A n Al is dense in both A and Al so that we 
can use the classical duality relationships between sums and intersections (see [4]) 
and get 

(An A*)* = (An Al)* = A; + A*. 

In other words, [lhllA;+A* 5 IlhJI H, as desired. A consequence of these continuous 
embeddings is that any pair formed by taking any two of A, Al, A*, H or A; is 
a compatible pair. 

All this can be considerably simplified in the case A LS H densely; i.e., Example 
2.1. In this situation it is clear that H is densely and continuously included in 
Al, hence every element of A; is uniquely determined by its restriction to H and 
this restriction is a bounded anti-linear functional on H. Since H = H*, we see 
that A; is continuously embedded in H. Moreover, since A is dense in Al, an 
element h E H is in A; if and only if 

]]h]]/t; = sup{](h,a)] : a E A, (lUl(A* 5 1) < 00; 
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the action of h on Al is the unique continuous extension to Al of the map a ti 
(h,a) from A to c.. 

3. THE REAL CASE 

We begin recalling that given a compatible couple B = (Bo, Bi) of Banach 
spaces, Peetre’s K-functional is defined by 

K(t,a) = K(t,a; Bo, &) = inf{((aO([BO + tllalllBl : a = ao + ai,ae E Bo,al E BI} 

if a E Bo + B1 and t > 0. If 0 < 0 < 1 and 1 5 q 5 co, the real interpolation 
space &,q = (Be, &)e,, consists of all a E Bo + B1 for which the norm 

Il4le,q = (C,“=_, (2--BmK(2m,a))q)1’q if 1 < q < m, 

sup,ez {2-emK(2m, a)} if 4 = @o, 

is finite. 
As is known, if 1 < q < co, 0 < 8 < 1, then Be n I31 is dense in (Bc, Bi)o,, and 

if Bt denotes the closure in B, of Bo n B1, then 

(4) (BoJdo,, = (47, Bl)s,q = (Bo, Bl”)e,q = (47, B,“)e,q. 

In the case of a space A belonging to a complete dual pair, property (4) implies 
(A, A*)e,, = (A, Al)e,,. We refer to [2], [4], [13] and [19] for further details on this 
construction. Because A n Al = An A* is dense in A and in Al, and because the 
arguments used in [4, Theorem 3.7.11 to describe the duals of the spaces obtained 
by the real interpolation method work as well for the anti-duals, we get that 

(5) @,A*);,, = (A*,A;)s,q~i with equivalence of norms 

for 0 < 6 < 1, 1 5 q < co and A+ + = 1. 

Let E, F be Banach spaces &th’E v F. The Gagliardo completion of E with 
respect to F is defined as the collection EF of all those a E F for which there is a 
sequence {a,} bounded in E and converging to a in F. The norm of EF is given 

by 

]I+; = inf {sUP{]lan]]E)) 

If (Bu, B1) is a compatible couple of Banach spaces, we write B,“, B,” for the 
Gagliardo completions of B 0, B1, respectively, with respect to Bo + B1. It is then 

easy to show that for every a E Bo + B1 = B,” + B,“, t > 0, we have 

K&a; Bo, BI) = K(t,a; B,“, BI) = K(t,a; Bo, B,“) = K(t,a; B,“, B,“), 
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hence also 

(6) (Bo, &)s,q = (47, we,, = (Bo, q%,q = (B,“, me,, 

for all 8 E (0, l), q E [l, co] (see, for example [7]). 
We can now state and prove our theorem for the real case. The criterion may 

seem a bit involved but, as we shall see, it is quite easy to verify in concrete cases. 

Theorem 3.1. Assume A belongs to a dual pair, let H be the associated Hilbert 
space and assume the following condition holds: For every a E AT n A* and for 
every E > 0 there exist x E A, y E A* such that 11xj1~ 1. IlallA;, Ilyll~* < E and 
a = x + y. Then 

(A, A*)I/zJ = H (equivalence of norms). 

PROOF. Let E denote the closure of A; n A* in A; (so E is a closed subspace of 
A;) and let A” be the Gagliardo completion of A (with respect to A+ A*). Then 

(7) E+A”-_,A; 

each inclusion being of norm < 1. Indeed, if a E A; n A*, then our assump- 
tion provides us with sequences {xCn} in A, {y,} in A* such that a = x, + ynr 

supn. IIx~IIA 2 IlallA; and limn+w IlynllA* = 0. It follows that a E A”, IlallA-- 5 
(lal(A;. By the definition of E, we proved E + A” with norm < 1. Now let 
a E A” and let E > 0. There is a sequence {a,} in A converging to a in A + A* 
and such that 

sup IkhzllA 5 Ilal\A- + 6. 
n 

Passing to a subsequence, we may assume {a,} converges to an element cy E A** 
in the w*-topology of A**, where 

IIdA** 5 SUP k-&llA 5 IbilA- + 6. 
n 

It follows that a E A;, 

IbllA; 5 IIdA** 5 IbiiA- -k % 

proving the second inclusion in (7) since E > 0 is arbitrary. 
Set B = (A, A*) 1,2,2 = (A, Al)l,2,2. According to (5) the anti-dual space of B 

is given by 

B* = (A*, A&/2,2 = (A;, A*h/2,2. 
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Notice that A 3 A;, so 

B = (A, A*)1/2,2 - (A;, A*)1/2,2 = B*. 

Conversely, by (4) ( since E is the closure of A; n A* in A;) and by (7), 

B* = (A;, A*)i/s,, = (E, A*)1/2,2 + (A”, A*)1/2,2 = (A, -4*)1/2,2 

the last equality being due to (6). We proved B = B*, with equivalence of norms. 
The duality between B and B* is given by the inner product of H, so that 

llcll”H = (c,c) I II+llCIIB* I ~llcll;; 

holds for all c E A fl A* q H n B and for some constant M > 0. Since An A* is 
dense in B this proves B v H. Thus H v B*, hence B = H = B”. 0 

An important case in which the criterion of the theorem is satisfied is the case 
in which A is densely and continuously embedded in the Hilbert space H, so that 
we have the scheme A - H LS A* and Ai is the closure of A in A*. As remarked 
before, AT is then continuously embedded in H. We have 

Lemma 3.2. Assume A is densely and continuously embedded in H. Then the 
criterion of Theorem 3.1 holds; that is, if h E A;, then for every c > 0, there is 
y E A, z E A* such that llyll~ < llhll,~;, llzll~* < E and h = y + z. 

PROOF. Since h, as an element of A;, is an A*-continuous map on the subspace 
A of A*, by the Hahn-Banach theorem we can extend it to an element 1c, E A’* 
of the same norm; that is, 

$(a) = (h,a) for all a E A 

and II+IIA** = llh/lA;. Recalling that the unit ball of A is weak* dense in the unit 
ball of A**, there exists a net {ax}xEA of elements of A such that 

(8) llaxllA 5 II+I/A** = II%; 

for all X E A, converging to 1c, in the weak* topology of A**. But the inclusion of 
A in H is continuous, so (8) implies the net {a~}~e~ is bounded in H. It follows 
that {aA)AEA has a subnet {a,(,)}pEM which converges weakly in H. Here M is 
a directed set and r : M + A is a mapping such that for every X E A there exists 
p E M with the property that T(V) 2 X for all v 2 p. The weak limit of this 
subnet must be h. In fact, since (ax,a) is the effect of the element a E A C A* 
on the element aA E A and r+!~ coincides with (h, .) on A, we have for a E A, 
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Since A is dense in H, we established that h is the weak limit of the subnet in 
H. NOW let S be the set of all finite convex combinations of the elements a,(,) 
with p E M; i.e., a E S if and only if there exists a finite subset {pi,. . . , p,k} of 
M, real numbers cl, . . . , ck E [O, oo) such that cS=r cj = 1 such that 

a= 2 c3a+j)’ 
j=l 

Then S c A and, in fact, ]]a]]A 5 IlhllA; for all a E S. Let SH be the closure 
of S in the strong topology of El. Then SH is a strongly closed convex subset of 
H, as such, it is also weakly closed, in particular h, which is in the weak closure 
of S, is in SH. Since H is continuously embedded in A*, h is also in the strong 
closure of S in A*. It follows that for every e > 0 we can find y E S such that 

Ilh - YIIA* < 6. Then IIYIIA 5 IlhllA; b ecause y E S and therefore the elements y 
and z = h - y have all the desired properties. 0 

As an immediate corollary we get (1) without the reflexivity assumption (see 
also [15, Theorem 111, [22, Theorem 4.2 and Remark], [l, Theorem 2.8.51). 

Corollary 3.3. Let A be a Banach space, H a Hilbert space, such that A is 
continuously and densely embedded in H. We have, with equivalence of norms, 

(A, A*)~/z,z = H. 

Remark. Assume A is densely and continuously embedded in H. Then A; v 
H v A* and AT coincides with the Gagliardo completion of A with respect to 
A*, in view of (7). Another proof of the equality A; = A” can be found in [l]. 

As a corollary of the last result, we get a somewhat different criterion for the 
validity of (1) in the general case. 

Corollary 3.4. Let A be a Banach space belonging to some complete dual pair 
and let H be the associated Hilbert space. Assume the space A + A* is a closed 
subspace of A; + A*. Then 

(A, A*)I/zJ = H (equivalence of norms). 

PROOF. We have the scheme 

AnA*=AnA,vHvA+A*vA;+A* 
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We get 

H = (A n A’, A* + A&2,2 = (A n A*, A + A*)I/z,z, 

the first equality being due to Corollary 3.3, because A* + AT is the anti-dual of 
An A* = A II AI and An A* is a dense subspace of H; the second equality follows 
from the assumption that A + A* is a closed subspace of A; + A*. Next, using 
Corollary 1 of [14], with 0 = l/2, we conclude that 

(A n A*, A + A*)1/2,2 = (A, A*)1/2,2 

and the result follows. 0 

Observe that if A L) H with dense range, then the assumption of the last 
corollary is satisfied, namely: A + A* = A* = A; + A*. But verifying that A + A* 
is closed in A; +A* can be quite difficult in more complex situations. The criterion 
of Theorem 3.1, while less elegant, is usually easier to verify. 

4. THE COMPLEX CASE 

We begin recalling the definition of the complex interpolation spaces (Bo, Br)[o] 
and (Bo, ~r)[‘l where 0 E (0,l) and B = (Be, Br ) is once again a compatible 
couple of Banach spaces. Let S be the strip in the complex plane consisting 
of all complex numbers z such that 0 5 %.z 5 1 and denote by So its interior 
0 < Xz < 1. We say that a function f : S + Bo + B1 is in the Calderon space 
F(B) if f : 5’ + Bo + B1 is continuous and bounded, the restriction of f to So is 
a Bo + Br-valued analytic function, f (it) E Bo, f (1 + it) E B1 for all t E IR and 
the maps 

t ++ f (it) : IR + Bo, t e f (1 + it) : IR + B1, 

are continuous and bounded in the topologies of Bo and of B1, respectively. A 
norm is defined on F(B) by 

Ilf IIF = max Bo+~[ Ilf(l + %} 

with respect to which F(B) b ecomes a Banach space. The interpolation space 

B[e] = (Bo, Bl)p] is defined for 0 < 19 5 1 by 
_ 

+I = {f (4 : f E F’(B)) 
and made into a Banach space defining the norm of a E Bio] by 

IMPI = II~IB~~~ = inf{llfllF(B) : f E W%fP) = 4 
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We shall also need the space Fe(B) = &,(I&,, Br). We shall say that a function 
f : S -+ Bo + I?1 is in &(B) if it can be expressed as a finite sum 

where 6 > 0, XI, E R, ak E Be n Br for k = 1, . , n. It is an important result 
of the theory that _?‘o(B) 1s a dense subspace of the Banach space F(B). One 
consequence of this density is that Be fl Br is dense in B,e) for all 8 E (0,l) and 
that we have the following analogue of (4) 

(9) (BOJQ9] = (B,“, &)[8] = (Bo, W[f?] = (B,“, q/y; 

in particular (A, A*) ~01 = (A, A~)[BI in case A belongs to a complete dual pair. 
The space G(B) consists of all continuous functions f : 5’ + Bo + B1 whose 

restriction to the interior So of the strip is a Bs+Br-valued analytic function, such 
that 1 f (z)I < clzlfd for all z E S, some c, d > 0 and such that f (itI)- f (itz) E Bo, 
f(l+itl)- f(l+itT)E& foralltr,tsElRand 

With ]I f llG(B, as defined, Q(B), reduced modulo constant functions, becomes a 
Banach space. For 0 < 6’ < 1, the interpolation space B[‘l is given by 

B’e’ = (f’(0) : f E G(B)} 

and made into a Banach space defining the norm of a E g[‘l by 

l141[e1 = Il4w = Wlf IIB : f E G(B), f’(Q) = a}. 

We refer to [4], [5], and [19] for further details on the complex interpolation 
method. We shall need the following duality result, which is a direct consequence 
of the results proved in [5]. 

Lemma 4.1. Let 0 < 9 < 1. Let A belong to a complete dual pair (DO, 01) with 
associated Hilbert space H. The anti-dual of (A, A*)[01 is given by (A*, A;)ieI, 

the duality being defined as follows: Let a E (A, A*)[@], b E (A*, A;)[‘]. Let 

f E .F(A,A*), g E G(A*,A;) b e such that f (0) = a, g’(0) = b. Then b(u) = (a, b) 
where 

(a,b) = 21” k49, t)(f (.i + it), dg(j - it)), 
j=o --w 
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where ~0, ~1 denote the Poisson kernels for the strip S. This “‘new” value of (a, b) 
coincides with the “old” value wherever the old value is defined; i.e., it coincides 
with the inner product of H if a, b E H and with b(a) if a E A, b E A’ 

PROOF. For the purpose of this proof, we write X’ to denote the regular (linear) 
dual of a Banach space X. The map J : A* + A’, defined by (Jb)(a) = b(a) = 
(a, b) is an anti-linear isometric isomorphism of A* onto A’ and allows us to 
identify A* and A’. If g E G(A*, AT), we define jg : 5’ + A’ by jg(z) = J(g(Z)). 
We see that J is an antilinear, isometric map of G(A*, A;) onto G(A’, A:) such 
that (Jg)‘(z) = J(g’(z)), in particular (jg)‘(g) = J(g’(0)) and we see that the 
map J is also an isometric isomorphism from (A*, A;)[‘] onto (A’, A/,)(‘\. The 
lemma is now an immediate consequence of the duality results stated and proved 
in [5, Sections 12.1, 32.11. 0 

We are ready for the complex interpolation result. 

Theorem 4.2. Let A be a Banach space belonging to some complete dual pair 
and let H be the associated Hilbert space. Assume either that A1 = A* or that 

A;nA* =AnA* 

and 

(10) l/aljA = sup{lb(a)l : b E Al, I/b/IA* 5 1) 

holds for all a E A. Then 

(A,A*)[1,2~ = H with equality of norms 

Remark. Condition (10) is equivalent to saying that the norms of A and of AT 
coincide on A n A*. If we have Al = A* so that A; = A**, then (10) holds 
automatically for all a E A. 

PROOF. Set B = (A,A*)[1,21. First of all we observe that the bilinear interpola- 

tion theorem yields that B LS H with 

for all a E B. Since An A* is dense in B and in H, in order to establish the result 
it suffices to show that 

(11) IlaliB 5 llaliH 



ON A THEOREM BY LIONS AND PEETRE 337 

for every a E A n A*. Assume first AT n A* = A n A* and (10) hold. Then 
&(A, A*) = &(A;, A*). Due to (10) ( see also the remark preceding this proof), 
the restriction of the norm of F(A, A*) to its dense subspace &(A, A*) coincides 
with the restriction of the norm of F(A;, A*) to its dense subspace &(A;, A*); 
it follows that F(A,A*) = F(A*,, A*), with equal norms, implying that every 
complex interpolate of the pair (A, A*) coincides (with equal norms) with the 
corresponding interpolate of (A;, A*). Thus B = (AT,A*)[1,2~ and since, by 
Lemma 4.1, B* = (A;,A*)[l/‘], we get that B is a closed subspace of B*, with 
the same norm as a consequence of Bergh’s theorem (see [3]). Given a E A n A* 
we then have 

]la]]B = Ikdl~* = su~{l(c,a)l : c 6 B, II+ 5 1) 
< sup{(c, c)i’2(a, a)i’2 : c E B, llcl\B 5 1) 5 llall~ 

(since ](c(]~ 5 ~~c~~B). This establishes (11). 
Assume now Al = A*, so A; = A**. Then AnA* is not only dense in A but also 

in A*; (A*,A**) is a compatible couple and B* = (A*, A**)[1/21 = (A**, A*)[l121. 
Moreover A* n A** L) H. In fact, by the definition of belonging to a dual pair, 
AnA* c H c A+A*, since AnA* is dense in A, A*, hence also in A+A*, 
we see that H is dense in A + A* so that taking duals in H C A + A* we get 
H = H” > (A + A*)* = A* n A**. Because of this, the mapping 

(u, b. + bl) H u@,) + bl(a) : (A** n A*) x (A* + A**) + @ 

is a well defined mapping of norm < 1. By the bilinear interpolation theorem of 
[5, Sections 11.21 or [4, Theorem 4.4.21 it has a unique extension to a sesquilinear 
mapping 

L : (A**,A*)i1,21 x (A*,A**)[1’2] = (A**,A*)~l,21 x B* + C 

of norm 2 1. Because A q A ** is of norm 1, we see that B = (A,A*)p,2~ + 
(A**,A*)pp] is of norm 5 1 and L extends the duality B x B* + @; that is, 
b(u) = L(u,b) for a E B, b E B’. Now let a E B. There is f E B* such that 
Ilfll~* = 1 and f(u) = J(ul(~. Thus, 

Ibll~ 5 If(u)I = Ma, f)l I II~I(A-,A*)~~,~~ Ilfll(~*,~-p121 = II~I(A-,A*)~~,~~~ 

Applying again Bergh’s theorem, we proved I(u(lB 5 Ilull~~ and B is once more a 
closed subspace of B*, with the same norm. We now proceed as in the previous 
case to obtain (11) and complete the proof of the theorem. 0 

Other sufficient conditions for the validity of (2) can be be found in [21]. 
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The proof of the preceding theorem is, in essence, not too different from the 
proof given by Pisier of the same result assuming that the Hilbert space H is 
densely and continuously embedded in A (cf. [18] and also [20]). We can recover 
it as a direct consequence of Theorem 4.2. 

Corollary 4.3. Assume the Hilbert space H is densely and continuously embed- 
ded in the Banach space A. Then (A, A*)[1,2~ = H. 

As Watbled [20] has shown, one can use the result of the corollary to settle the 
case in which A L+ H. Her proof is based on the equality of the upper and lower 
complex interpolation methods when applied to a dual couple (B,“, BT) such that 
(B,‘, B;)[o] is reflexive (see [20, Lemme 11). It is also possible to base the proof 
on the following result (of independent interest). 

Lemma 4.4. Let B = (&,Bl) b e a compatible pair of Banach spaces such that 
Bo L+ B1 (continuous inclusion). Assume that for some 0 E (0,l) the space Blol 
is reflexive. Then @l = Bllll for all n E (0,l). 

PROOF. It suffices to prove B 1’1 = Blol since reflexivity of Bl~l and reiteration 
imply (via Calderdn’s theorem on reflexivity of the spaces obtained by the complex 
method, cf. [5, 12.21) the reflexivity of Bl,l for all n E (0,l). Let a E B[‘l; there 
exists g E G(B) such that g’(e) = a. By substracting a constant element in B1, we 
may assume g(it) E Bo for all t E IR, then t ti g(j + it) are continuous (Lipschitz) 
maps from lR to Bj, j = 0,l. For E > 0 set 

for z = s + it E S, where qE(r) = c-‘G(f) and $ is a C”, non-negative function 

on R, supported by the interval [-1, l] and such that 

SW --03 ti(7)d7 = l. 

Then gc : S -+ B1 is continuous, with analytic restriction to So. Moreover, the 
restriction of gE to ilR (respectively, 1 + ilR) is an infinitely differentiable map with 
values in Bo (respectively, Bl). Moreover, we have for z = s + it E So, 

I O” d& O” 9x4 = _-oo x(T)g(z - ir) dT = 
s 

Gc(T)g’(z - iT) dT. 
--oo 

The first equality above can be used to extend g: to the boundary of the strip 5’. 

It is then easy to see that g: E 3(B) and 

ll~:ll~(B, i II~JL~ll~lIG(B) = l1~llG(B, 
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for all E > 0. It follows that 

and 

for all E > 0 and the family {a,},>~ is bounded in i?le]. Since Big] is reflexive 
there is a sequence {en} converging to 0 such that {a,,,} converges weakly to 
some & E Blej as n -+ co. On the other hand, because t + gi(6’ + it) : R -+ B1 is 
continuous, we see that 

lim a, = J$e 
s 

Dc) 
C+O 

$,(T)g’(e - iT) d7 = g’(e) = a 
-cc 

in Bi. By compatibility we must have a = 6, proving that a E Bls]. 0 

Remark. Other sufficient conditions for the equality BIB] = Ble] to hold can be 
found in the paper by Haagerup and Pisier [lo]. We remark, however, that the 
spirit of these results is quite different. 

For the sake of completeness, we now state Watbled’s result. 

Corollary 4.5. Let A be continuously and densely embedded in the Hilbert space 
H. Then 

with equal norms. 

(A, A*)[I/zI = H 

Concerning this last result, let us point out that it can also be proved following 
the lines of Corollary 3.3 (the corresponding real case), using Lemma 3.2 which 
(as mentioned above) has as a consequence that AT is the Gagliardo completion 
A” of A when A is densely and continuously embedded in H. In fact, by the result 
of Cwikel and Sharif [8] on complex interpolation between Gagliardo completions, 
we obtain 

B* = (A;,A*)lr/s] = (A”,A*)p/21 = (A,A*)p/2] = B, 

which implies B = H with equality of norms. 

Example 4.6. The simplest illustration of these theorems is provided by the scheme 

l1 v l2 Lt 1”. 
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Writing down Corollary 3.3 and Corollary 4.5 for this example, we recover the 
well known formulae 

(Z’, Z”)1,2,2 = Z2 (equivalence of norms) 

W”O)[1,2] = l2 (equality of norms). 

In this example we have for 0 E (0,l) and 1 = 1 - 0 
P 

(II, zw)s# = zp = (Zl, Z”)[@]. 

It is natural to wonder whether in our abstract setting there is still any relationship 
between (A, A*)B,~ and (A, A*)[@] besides the well known one 

(tt) (A, A*)e,l c-+ (A, A*)[81 + (A, A*)B,~. 

In fact, the theorems of Section 2 and those of this section allow us to improve the 
relationship (It). A ssume A v H densely. According to the reiteration theorem 

and Corollary 3.3, we get for 1 < p < 2 and 1 = 1 - 0 
P 

(A, A*)e,p = (A, (A, A*)1/2,2)~s,~ = (A, H)ze,p 

and similar formulae hold for the complex method. Since the Hilbert space H 
has Fourier type 2 (see [16] for details on this notion), we can use the argument 
given in [6, Theorem 4.11, where it is applied to spaces of multilinear forms, and 
derive 

Corollary 4.7. Let A be continuously and densely embedded in the Hilbert space 

H, let 0 < 6 < 1, i = 1 - 0 and L+ ‘1 = 1. Then 
P P’ 

(A, A* )e,, - (A, A*)[s] L+ (A, A*)w ifl<p<2, 

(A, A*)~,pl v (A, A*)lel v (A, A*)e,p $2<p<oo. 

Remark. In the proof indicated above no information is required about A except 
that it has the trivial Fourier type 1. This is just the case of the space A in 
Example 4.6: Z1 has Fourier type 1 and it is not of Fourier type q for any q > 1. 
If the space A has a non-trivial Fourier type, say q where 1 < q 5 2 and if A is 
not a closed subspace of A’ (otherwise all interpolation spaces coincide with A), 
then all inclusions in Corollary 4.7 are strict. 
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l-77 Indeed, let 1 < p < 2, i = 1 - 8; put q = 213 and define r by i = - + 2. 

Then 1 < p < r I 2 I r’ < p’ < co, so that (A,A*)e+, L+ (A,A*)i,T whi?e 

(A, A* )e,+ y (A, A*)w , and these inclusions are strict by [ll, Theorem 3.11. 
Using now the reiteration theorem and Peetre’s theorem [16, Theorem 3.11 on the 
relationship between real and complex interpolation spaces generated by a couple 
of spaces with a certain Fourier type, we conclude 

(A, A*)e,p y (A, A*)e,r q (A, A*)lel c+ (A, A*)w ++ (A, A*)e,p’. 

In the argument above, the case 2 < p < 03 can be treated similarly recalling 
that if A has Fourier type q then so does A* (see [16, Theorem 2.21 for a proof in 
the case when A is reflexive, [12, p.2221 for the general case). 

We close this section with another property of the interpolates (A,A*)B,~, 

(A,A*)[e] which g 
1 1 

is enerally valid, not only when 0 = 5 = -. 
P 

Corollary 4.8. Let A be continuously and densely included in the Hilbert space 
H. The spaces (A, A*)o,~ and (A, A*)[01 are reflexive for all values of 0 E (0, l), 

P E (km). 

PROOF. The inclusion A = A f’ A* cs A + A* = A* factors through the Hilbert 
space H, thus is weakly compact. Reflexivity of (A, A*)o,~ follows now from [2, 
Proposition 2.2.31. 

In the complex case, if 0 < 0 < l/2, combining the reiteration theorem and 
Corollary 4.5, we obtain 

(A, A*)pl = (4 (4 A*)p/q) L2el = (4 H)pel 
therefore the reflexivity of H implies, via [5, 12.21, the reflexivity of (A, A*)[o]. A 
similar argument works for l/2 < 8 < 1. 0 

5. APPLICATIONS 

Let K be a Hilbert space and let C be the collection of all bounded linear 
operators of K. For 1 5 p 5 00 let S, be the family of all compact operators T 
of K such that 

IlP 

< 00, 

where 

sn(T) = inf{]]T - R,]] : R, E fZwith rank R, < n}. 
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The space S, is called the Schatten-von Neumann p-class and is an important 
example of a symmetrically normed ideal (see [9]). As is well known, the spaces 
4, S2 and S, coincide with the spaces of nuclear, Hilbert-Schmidt and compact 
operators, respectively. In particular, S2 is a Hilbert space and 5’1 is densely 
embedded in Sz. For an operator T E S 1, one defines the spectral trace of T 

by sp(T) = C~=~(T&,&)K, where (&)Zr is a complete orthonormal system 
in K. The inner product of Ss is then given by (Tl,T2) = sp(T,“Tl) and, with 
respect to this inner product, S; = C. Writing down Corollary 3.3 and Corollary 
4.5 for the case A = SI and H = S2, we get the classical formulae 

(Sl, Q/2,2 = s2 = (Sl> Jq[1/2]. 

The results of Sections 2 and 3 can also be used to analyze other families 
of symmetrically-normed ideals and to derive new information on them. Let 
rr = {7r,},M=, be an arbitrary non-increasing sequence of positive numbers such 
that rrr = 1, 

g*,=oc and dilrr,=O. 
n=l 

Consider the operator spaces defined by 

s, = T E S, : \\T\\,, = -&s,(T) < cm 
n=l 

It can be checked that SE is the closure in Sn of the space of finite rank operators. 
Moreover, if T E Sn, R E S,, then RT, TR E S1 and it makes sense to define 

(R,T) = (T, R) = sp(T*R), 

putting Sn and S, into duality with respect to which (Si) * = S,, Sz = Sn 
(cf. [9, Theorem 3.15.21). Note that S,, ’ S2 and S, are not necessarily related by 

inclusions. However, our previous results apply to the effect that 

(12) ($I, &h/2,2 = s2 = cs;, %)[1/2] 

In fact, we are taking here A = S,, o hence A* = S, and (because finite rank 

operators are dense in S, and contained in Sg) Al = S, = A*. The complex 
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interpolation follows from Theorem 4.2. For the real interpolation formula we 
verify that the conditions of Theorem 3.1 hold. Let T E A; II A* = Sn n ST and 
let E > 0. From \ITlln = CF!‘=, n,s,(T) < 00, there exists N such that 

Co 

c rnsiv+n(T) < 6. 
n=l 

Let T = c,“=, sn(T)(., &)K~!J~ be the Schmidt series of T, then setting Tl = 

C,“=, sn(T)(., &)K&, TZ = Cz’=,+, sn(T)(., #J~)K&, we see that T = TI +T2, 
Tl E Sk, IlT~lln 5 IITlln and llT2L = Cz”=, QSN+~(T) < 6. 

Combining (7) and (12) it is not hard to derive now that we also have 

(Sn, 5&2,2 = s2 = (%I, 53[1/2]. 

In the special case K, = & the resulting spaces play an important role for 

treating certain problems of perturbation theory and of invariant subspaces (see 
[9] for precise references). 
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