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EXISTENCE AND NON EXISTENCE OF SOLUTIONS TO A 
VARIATIONAL PROBLEM ON A SQUARE 

P. CELADA AND A. CELLINA 
COMMUNICATED BY HAiM BREZIS 

ABSTRACT. A non convex minimum problem on a square arising in shape 
optimization is studied. Conditions are discussed for the existence or the 
non existence of solutions. 

1. INTRODUCTION 

We consider the problem of minimizing the functional 

where the extended valued function h: [0 , cm) + [0 , m] takes finite values only 
at t = 1 and t = 2, namely h(1) = 0 and h(2) = 1. In the case where R is 
a disk in R2, this problem admits a solution, no matter what the radius R of 
fl might be (see [3]). In fact, in this case, a direct computation shows that a 
radial solution u, exists having gradient Vu, of norm one on a disk, concentric 
with R, of radius min (1, R} and, when R > 1, having gradient of norm 2 on the 
remaining annulus. Here, we consider the very same problem when 0 is a square 
in the plane. 

Minimum problems of this kind have a long history, having been considered in 
[71, [41, [61, [II, and [51 w i e investigating problems from optimal design. In these h 1 
previous papers, the function h (the minimum between two parabolas having the 
same vertical axis or between one such parabola and a vertical half line) is not 
extended valued but is still not convex: numerical results in [5] concerning the 
convexified problem show that solutions to the original non convex problem do not 
exist. The function h considered here has been chosen in an attempt to simplify 
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the functions appearing in the quoted papers while retaining their essential feature 
of lacking convexity. For this function h, the construction provided in [2] applied 
to the case of a square shows that a solution exists whenever the length of the 
sides of the square does not exceed 2. The purpose of the present paper is to 
show that this existence result is sharp: a positive E exists such that the given 
problem has no solutions whenever the length of the sides of the square is strictly 
between 2 and 2 + E. This is achieved by building a solution to the corresponding 
convexified problem, i.e. the minimum problem for the convex integral 

I [h**(llV4x)ll) + 4x)1 dx, 2, E w,lqfq, 
n 

and showing that, due to its properties, it cannot be a solution to the original 
problem and, moreover, that any other possible solution to the convexified prob- 
lem would share the same properties. 

A first result on non existence of solutions for problems similar to those con- 
sidered here was obtained in [7], although in a rather different spirit: in the non 
existence result presented here, there is no a priori assumption on the properties 
of a possible solution. 

Finally, we mention also that for problems of the kind here considered but 
with h(t) = P, p > 1, results in [8] imply that the sublevel sets of a solution 
are convex. Although the problem obtained from convexifying our functional has 
features similar to the problems considered in [8], the solution we build to the 
convexified problem is such that its sublevel sets are not convex, thus showing 
that this property is not to be expected to hold in general. 

Finally, we wish to remark that the original problems of [7], [4] and [5] are 
more complex than the simplified one we consider and, so far, for them no precise 
conclusions concerning the existence versus the non existence of solutions exists. 

2. NOTATIONS AND PRELIMINARY RESULTS 

Throughout this paper, we consider the non convex minimum problem 

min { / ]h(]]V+)]]) + u(x)] dx: 21 E W,+‘(Qr)} 
&r 
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where QT is the open square in lR2 defined by QT = (-r , r) x (0,Zr) with r > 1 
and h: [0 , co) + [0 , cm] is the extended valued, non convex function defined by 

1 

0 ift= 1, 

h(t) = 1 ift=2, 

00 elsewhere. 

As it was previously mentioned in the introduction, we wish to prove that problem 
(P) fails to have solutions whenever r > 1 is sufficiently close to 1. 

To this purpose, it is convenient to consider also the convexified minimum 
problem associated with (P), i.e. the minimum problem 

(?**I min {s, P [h**(IIVv(z)l/) + u(x)] c&r: 2, E @'(QT)} 

where the function h** : [0 , co) + [0 , co] is given by 

h**(t) = 
max{O,t - 1) ifO<t<2, 

co ift>2. 

The function h** defined above, in spite of the notation used, is not the convex 
envelope of h but it is such that the function [ E lR2 -+ h**(ll[ll) is the convex 
envelope of the function 6 E lR’ -+ h(ll<ll). 

Now, we introduce some notations that will be useful in the sequel. For r > 1, 
T,. is the open triangle in R2 whose vertices are (0 ,O), (r ,O) and (0, r). For 
0 < a < r, the open trapezoid whose vertices are (0 ,O), (a, 0), (u ,r - a) and 
(0 ,r) is denoted by Qz,, and the segment {(Ji, [z): [r = a, 0 5 (2 < r - CL} is 
denoted by J,,,. Then, let La: IRxRx (-1 ,l) + R, i = 0,l be the smooth 
functions defined by 

i 

L”(2,y,z)=c(r-2.-y) 

Ll(z,y,z) =2 
dF7 

2-JW ( l-&-y > 

for every (X , y , 2) E IR x IR x (-1,l). The meaning of the function Lo can be 
easily explained. Indeed, consider the line {(t , r - t): t E IR}, i.e. the line which 
contains the hypotenuse of T,. In the sequel, we shall briefly refer to such line as 
the diagonal. Then, the value of Lo computed at any point (X , y ,z) such that 
y < r - z and z < 1 gives the distance in the plane of the point (X , y) from the 
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( 2 + yz - 7-2 rx - yz 
1-Z ’ l-z ) 

which lies on the intersection of the diagonal with the line through the point (x , y) 
orthogonal to the line {(x + t , y + zt): t E IF!}. The meaning of the function L’ 
will be clarified in the sequel. 

For cp E C’([O,al), we denote the curve in the plane whose support is the graph 
IV of ‘p by a(x) = (x,(P(x)), 0 5 x < a and we let 

44 = (J -cp’(x> 1 

1 + (p’(x)>2 ’ J/1 + ((p’(x))2 ) ’ 
O<x<a, 

be a unit normal to rV. Whenever ‘p E C’([O , a]) satisfies l@(x)1 < 1 for all 
0 < x < a, we set 

$?(x) = Li(a: 7 dxc) 7 cp’W> 0 5 x 5 a, i = 0,l 

and we set also 7% : [0 , CL] --+ lR2, i = 0 , 1,2 to be the curves defined by 

{ 

$54 = Q(x) + @+$9(x) 

Y;(x) = @(x) + l;(+&) O<x<a 

y;(x) = Q(x) + [lb(x) + 11 +(x) - e2 

where {ei , e2) is the standard basis of R2. Their supports will be denoted by 
I’;. By the definition of Lo, it is clear that, whenever cp satisfies v(x) < r - x 
and I#(x)l < 1 for all 0 5 x < a, then the support I’: of 7: is contained in the 
diagonal. 

In the following, we shall consider a map ‘p E C3([0, a]) with the following 
properties: 

WI 

W) 

P3) 

P4 

p(a) = 0, the derivative of ‘p satisfies 0 < p’(x) < 1 for all 0 < x < 1, 
vanishes for x = 0 and x = a and the second derivative p” is strictly 
decreasing on the interval [0 , a]; 

the projection of minimal distance from the closure of Qz,, onto IV is single 
valued; 

for i = 0, 1,2, the first component of $, i.e. ($)I, is an increasing diffeo- 

morphism of the interval [0 , a] onto itself; 

for i = 1,2, the second component of $,, i.e. (y%)s, is decreasing on the 
interval [0 , a]. 
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Let us point out some consequences of the previous assumptions. First, notice 
that, for such (p, we have y:(O) = y;(O) and $,(a) = $(a), i.e. the two curves I’; 
and I’; have the same initial and final points. On account of (PI), let 0 < x9 < a 
be the unique point such that #‘(x9) = 0 and set I1 = [0 , ~0) and I2 = (20, a] so 
that the second derivative of ‘p is positive on the interval 11. By (P2), the radius 
of curvature 

Rq(x) = [1+ w(4)213’2 ) 
cp”(Xc) 

x E II u I2, 

of P’p at the point a(x) satisfies 1,$(x) < Rip(x) for all x E 11. As &p(x) -+ co 
when x + x9 from the left whereas 1: remains bounded on the interval II, we 
conclude that the function 1 - 1:/R, is uniformly bounded away from zero on 
the interval 11. Then, consider the bounded sets 

A, = {(x,1): 0 < x < a, 0 < 1 < Z;(x)}, 

B, = {(<1,52): 0 < 61 < a, cp(E1) 5 <2 5 r - 61)) 

and let 9, be the function defined by 

*+Jx 71) = Q(x) + b&), (x,1) E [O,a]xR. 

Relying on (Pl) again, it is easy to check that @q is twice continuously differen- 
tiable on [0 , a] x IR and that 

detV@l,(x,Z) = dm 

for every (x ,Z) E [0 , o] x Iw. In particular, det Vk, remains uniformly bounded 
away from zero on the closure of an open set A$ c (0, a) x W which contains A,. 
Moreover, by (P2) again, it is clear that the open set A$ can be chosen in such 
a way that *q is a homeomorphism of the closure of A$ onto the closure of an 
open set BI, c (0, u) x R which contains B,. Thus, Q,+, is a twice continuously 
differentiable diffeomorphism of A$ onto B$ and the inverse function of qp has 
bounded second derivatives on B6. 

3. MAIN RESULT 

The non existence of solutions to the minimum problem (P) whenever the 
length 2r > 2 of the sides of Q,. is sufficiently close to 2 follows immediately from 
the following two theorems. 
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Theorem 3.1. Let r > 1 and 0 < a < r be such that r -a < 1. Assume that the 
digerential equation 

admits a solution cp E C3([0, a]) with the properties (Pl), . ,(P4). Then, problem 
(P) admits no solution in W,“‘(Qr). 

Theorem 3.2. There exists rg > 1 with the property that, for all 1 < r 5 ro, 
there exists 0 < a(r) < r with r - a(r) 5 1 such that the diflerential equation 

2 [l + ((P’(x))2]3’2 [LO@ 7 dxc) 7 cp’(x)) - -wx 7 4x:> > d(x)) - 11 
cp”(x) = [LO(x ) (p(x) ) (p’(x))]2 - [L’(a: I P(X), (PYx:))12 - 2L1(x 7 P(X) > cp’(x)) 

admits a solution ‘p E C3([0 ,a(r)]) with the properties (Pl), . . . ,(P4). 

The remaining part of this section is devoted to the proof of Theorem 3.1, our 
main result, while the proof of Theorem 3.2, a result of rather technical nature, 
is postponed to the subsequent Section 4. 

PROOF OF THEOREM 3.1. The proof consists of the following steps. In (a), we 
investigate the geometric properties of the curves I’; and I’s associated to cp and 
in the following step (b) we use these properties to define a continuous function 
u on the closure of T,, a candidate to being the restriction to T, of a solution 
to the convexified problem (P**). In (c), we show that such function u is twice 
continuously differentiable off the curves I’;, I’s and the segment J,,, while in 
the following step (d) we investigate the properties of the vector field & and, 
as a consequence, we obtain that u is actually continuously differentiable on the 
whole open set T,. In (e), we prove that the norm of the gradient of u lies strictly 
between 1 and 2 in the open region bounded by the curves I’; and I’; and in (f) 
we compute the divergence of the vector field &. In (g), we investigate the 
properties of the solutions to the differential equation 

Vu(y(t)) 
y’(t) = IlVu(Y(t))ll 

and in (h) we show that u is the restriction to T, of a solution to problem (P**) 
by integrating along the trajectories of the differential equation considered in the 
previous step. In particular, such function u is not the restriction to T, of a 
solution to the original problem (P) as ]]Vu]] 1 ies strictly between 1 and 2 on a 
set of positive measure. Finally, in (i) we conclude the proof of the theorem by 
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showing that the properties of the gradient of u imply that problem (P) has no 
solution. 

In order not to overburden the notation, as the numbers a, r and the function 
cp are kept fixed throughout the proof of the theorem, we drop the indexes a, T 
and cp from now on. 

(a) In order to define the function ‘1~ on Q*, we investigate the properties of 
the two curves I” and P2. We begin by considering the unique point 0 < xo < a 
where #‘(x0) = 0 and the two intervals 11 = [0 ,x0) and 12 = (x0 , a]. Since cp is a 
solution to the differential equation, we have Z’(xo) = Z’(za) + 1 and the following 
identity 

1 
R(x) = 2 

10(x) - 11(x) - 1 

[10(x)]” - [zi(x)]2 - 21’(X) ’ 
2 E II u 12, 

which yields 

2[R(x) - Z’(z)] + [R(z) - ZO(x)]2 - [R(x) - Z’(x)]” = 0, 2 E 11 u 12. 

As previously noticed, for all 2 in the interval Ii, we have R(x) > Z’(x) > 0 and 
hence R(s) # Z’(x). Since R(0) - Z1(0) > 0, we conclude that R(x) > Z1(r) for 
all x E II. Now, fix x E II and consider the map 

(j(Z) = _; [R(x) - Z0(412 
2 R(x) - 1 + ;iR(x) - II, Z# R(x). 

The map 0 satisfies e(Z’(x)) = 1, 6(Z”(x)) = 0 and its derivative is negative. 
Hence, Z’(x) > Z1(x) f or all x E Ii. For z E 12, R(x) is negative whereas Z’(x) and 
Z1(x) are both positive. Again, the derivative of 0 shows that Z’(x) > Z’(x). We 
claim that this implies that the curve I” lies below the diagonal. Such property 
is obvious for the initial and final points of I”. Therefore, let 0 < x < a be fixed 
and set <i = (r’)i(x). We have to prove that (r1)2(z) < r - [i. If it were not so, 
the line {9(x, I): 1 E W} would intersect the diagonal into two distinct points, 
i.e. it would coincide with the diagonal. This cannot be, as the slope of the line 
{q(x) I): 1 E R} is -l/$(z) < -1. This proves the claim. Moreover, by (Pl), 
we have for all 0 5 x < a 

Z1 (x) 2 

J-=2-J- ( l- &&p - dx) 2 ) 
2 

‘2-J_ 
(-4x)) > -4x) 
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so that the second component of y1 is positive on the interval [0 , u). As the first 
component of y1 (x) belongs to (0, a) for 0 < z < a, we see that all points of I”, 
but the endpoints, are in Q*. 
As far as the curve P2 is concerned, we notice that 

(3.1) r2(x) = Y’(Z) + 4~) - e2, OL:x<a, 

so that, by (Pl) and (P3), we have (r2)2(x) L (r’)z(x) and 0 5 (r2)i(x) 5 
(r’)i(x) for all 0 < z < a. Since r’(z) E Q” for all 0 < z < a, the point r’(z) 
lies below the diagonal for the same values of x. Moreover, 

P(x) + 1 
p(x) + Jl + ((p’(x))2 

-l= 

( 2 

= 2 - J/1 + ((p’(z))2 - l )K 

1 

l- Jl$ ((p’(X))2 ) 1 -cp(~) > 0 
for 0 < z < a so that the second component of r2(x) is positive for these values 
of 2. By (P3), the first component is in (0, u) for 0 < x < a and hence all points 
of 12, but the endpoints, are in Q* as well. 

Now, we claim that the curves I” and I2 never touch in Q* and that I2 lies 
below I”. Indeed, assume by contradiction that x’ and x” are two points in the 
interval (0,a) such that (r’)r(x’) = (r2)r(x”). Since (r”)i(x) < (y’)i(x) for 
every 0 < x < a, it would follow that x’ < x” and hence, by (P3) and (3.1), that 

(r2)2bq < h2)2(x’) = h’)2(5’) + 

(J 

1 

1 + ((P’(x’))2 
- 1 < (Y’)z(X’), 

) 

i.e. a contradiction. This proves the claim. Therefore, the open set Q” is divided 
by the curves I?’ and I2 into three non empty, open regions c?i, CY2 and 03. 
The closure of c?i is bounded above by the part of the boundary of Q’ which is 
contained in the hypotenuse of T and below by the curve I’l. It consists of the 
points *1(x, 1) where 0 < x 5 a and Z1(x) < 1 < Z”(x). The closure of 0s consists 
of the points between I2 and the x axis, i.e. the points 

{([I,&): 61 = (r2)i(x) and 0 I Es 5 (r2)2(x) for 0 5 x 5 a}. 

The region 02 is the complement in Q* of the union of the closures of 01 and 
0s. Finally, we let (34 be the open region defined as the complement in T of the 
closure of Q*. 
It is clear that 02 U ??3 is given by the set 

(3.2) {(<1,&r): (2 >_ 0 and (&,<2) = @(x, 1) with 0 < x 5 a, 0 < 1 5 Z1(x)} 
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Moreover, by (P3), each of the curves I” and IT2 has the property that no two 
distinct points on it have the same abscissa and hence, as P2 lies above I”, the 
intersections of the sets Or, 02 and 03 with every vertical line are open intervals. 

(b) On the closure of each region Oi, we define a continuous function ui in 
such a way that the definitions agree on the curves I’l, P2 and on the segment J. 
We call u the continuous function defined on the closure of T whose restriction 
to the closure of Oi is IL’. 

On the closure of (31, we set u1 = - (Q-1)2 so that, for a point (<I, (2) in the 
closure of 01, we have ~‘(<r, 52) = -I where (z , 1) is the unique pair such that 

(<1,52) = *(x,l). H ence, by this definition, the function -ul on 01 is the distance 
from P and, in particular, ur(r’(z)) = -Z’(z) for all 0 5 2 < a. For a point 
(<I,&) in the closure of 03, set u3([r,&) = -2&. Hence, the function -u3/2 is 
the distance from the base of T and, in particular, u3(r2(z)) = -2(-y2)2(5) for all 
0 5 x 5 a. An easy computation shows that 

?2($(z)) = -11(x) = -2(+)2(x) = u3(y2(2)), O<x<a. 

For a point (El, b) in the closure of 04, set u4(<r, &) = 42 and notice that, as 
Q reduces to the identity map on the segment J, the functions u1 and u4 agree 
on it. Finally, we are left to define u2 on the closure of 02 in a consistent way 
with the previous definitions. To this purpose, let P(X) be the point defined by 

P(x) = r2(x) + e2 = rl(x) + n(x), O<x<a, 

and notice that //P(z) -r’(z))) = //P(z) -r2(z))) = 1 for all 0 5 z _< a. Now, 
we claim that, for every < = (rr , &) in the closure of (32, there exists a unique x 
in the interval [0 , a] such that 

1 

llP(x) - Eli = 1, 

(3.3) (a(x) L <l, 

(P)z(x) 2 52. 

These conditions mean that the point c lies on the south-east arc of the circle 
of radius one centered at P(z). Once this has been proved, we set ~~(0 = 

~W(4) = u3(r2(x)) f or such x so that the arc of the circle of radius one 
connecting yl(x) and r2(x) on which [ lies, turns out to be a level curve of u. 

To prove the above mentioned claim, first notice that for a point 5 lying either 
on I’l or on P2, it is enough to choose such x E [0 , a] that E = y1 (x) or E = r2(x) 

respectively. Then, let [ = (Jr,&) b e a point in 02 and, by (P2), let (x’,Z’) 
be the unique pair such that < = *(x/,1’). As < does not belong to the closure 
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of 01, it follows that 1’ < Z’(x’). Then, by (P3), there exists a unique point 
x” E (0,a) such that [1 = (r2)1(x”). By (Pl) and 1’ < Z’(x’), we see that 
WMX’) < (r2W’) = c 1 and, as previously noticed, this implies that x’ < x”. 
Moreover, since (P)l(x”) = (y2)1(x”) and (r2)1(x’) < (rl)l(x’), we see also 
that both points x’ and x” satisfy the second condition of (3.3). Now, consider 
the points y2(x”), P(x”) and 5 w h ose first components are all equal to <I. The 
first of them belongs to the closure of 03 and, as < is not in the closure of 
03, it follows that (r2)2(x”) < J2. The second point is neither in the closure 
of 02 nor in the closure of 03 by (3.2) and it has positive second component. 
As the set {<: ([I, C) E 02) is an open interval in (0, co), we conclude that 
(r2)2(x”) < <2 < (P)z(z”). Since x’ < x”, we also have (P)~(x”) < (P)~(x’) by 
(P4). We have thus proved that there exist 0 < x’ < x” < a such that 

{ 
(P)l(,‘) < (P)&“) = c.1, 

(P)2(5’) > (P)z(x”) > c2, 

and it is now easy to check that, letting the function d be defined by d(x) = 

IlJTx) -41 for 0 I x < a, we have d(x’) > 1 and d(x”) < 1. Therefore, there _ 
exists at least one point x E (x’, x”) such that (3.3) holds. 

We have thus proved that, for every point .$ = ([I, &) in the closure of 02, 
there exists at least one point x E [0 , u] such that (3.3) holds and we are left to 
prove the uniqueness of such x. To this purpose, let x1 < x2 be two points in the 
interval [O, a] such that 

1 
(W(G) < 6 

(P)z(Xi) > t2 
i = 1,2. 

By (P3), (P4) and the definition of P, we obtain that (P)l(xl) < (P)l(xz) and 
(P)z(xl) > (P)~(xz) so that d(xl) > d(x2). This shows that (3.3) can hold true 
for at most one point. Thus, the function u2 is well defined. 

As far as the continuity of u2 is concerned, we notice that, by elementary 
geometrical arguments, the function which maps a point t from the closure of 02 
onto the unique x E [0 , u] for which (3.3) holds, is continuous. Hence, by (P3) 
and (P4), u2 is continuous as well. 

(c) In this step, we show that each function ui is twice continuously differen- 
tiable on the open set c?i. 

Indeed, the functions u3 and u4 are linear and the function u1 agrees with 
- (Q-1)2 so that it is in C2(01). Moreover, as it was noticed at the end of the 
previous Section 2, the inverse function of 9 is twice continuously differentiable 
on the open set B’ c (0, u)xR and its second derivatives are bounded on such set. 
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Therefore, u1 has a natural extension as a function in C’(B’) with bounded second 
derivatives. We still denote such extension by the same symbol and, for future 
purposes, we set 02’ = B’. Now, we claim that the same regularity property 
is shared by u2 as well. To see this, we show that the function u2 is implicitly 
defined by an equation. To this purpose, recall that, by (P4), the map (r2)2 is 
a homeomorphism of the interval [0 , u] onto a compact interval I of II8 and its 
inverse function is twice continuously differentiable on the interior of I. Set 11, to 
be 

1CI(E2) = (r2>1 O (Y2)2%2)> t2 E I 

so that <r = +(&) f or all (51, <2) E r2 and notice also that 1c, is decreasing by (P3) 
and (P4). Then, let < = ((1, &) b e a p oin in ??2 \ E where E is the set consisting t 
of the initial and final points of the two curves P1 and P2 and let x be the unique 
point in the interval (0, u) associated with < by (3.3). By the definition of u2, we 
have (r2)2(x) = -(1/2)u2(<) so that the components of P(x) can be written as 
functions of the value of u2 at the point < in the following way 

(3.4) 

i 

(e(x) = 11, ((r2)2(4) = 1c, (-;u2co) i 

(P)2(2) = (r2)2(4 + I= -+J2(<) + 1. 

way P(x) and E = (<I,&) are related by (3.3), we obtain the Hence, recalling the 
following identity 

(3.5) [h - 1cI (-+2crd29]’ + [Ez - (-$2(~1,~2) + 1)12 = 1 

for all points [ E 82 \ E so that, letting 

JY<1><2,C) = [El - 1c1(-;1>1’+ [t2 - (++ 1)12 

for every (c , C) E lR2 x int I, E = (&, [2), we see that the function u2 verifies 

F(&, E2, u2(h, E2)) = 1 for all points (<I, E2) in ??s \ E. We notice also that F is 

twice continuously differentiable on IR2 xint I and, computing the derivative of F 
with respect to < at the point ([r,&, ~~(<r,&)), we obtain 

F&I, E2, ~~(61, E2)) = 

= [<I - + (-$(~17C2))] 1c1’ (-;u2W2)) + [t2 - (-+,<.) + I)] . 
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Now, recall that, due to (3.4) and (3.3), we have (P)i(z) = $(-u2(<)/2) and 
51 - (P)i(z) 2 0. As $ is d ecreasing, the first term in Fc(<i, &, u2([1, (2)) is 
at most zero. Then, since (P)z(z) = -u2(<)/2 + 1 and Es I (rl)z(r) by the 
geometric properties of the level curves of u2, we have 

+2(&,<2) + 1 
> 1 - E2 = (P)z(x) - 62 L (P)2(2) - (r1)2(4 = 

(3.6) 
= (n)2(x) > - 

h 

by WI. Thus, Fc(t17J2, 7~~(tl,E2)) L -l/a for all E = (E1,E2) in 02 \ E 

and, as F is twice continuously differentiable on its domain of definition and 
u2 is continuous, the implicit function theorem ensures that the equation (3.5) 
defines, on an open set 02’ c (0, u) x E% containing ??z \ E, a twice continuously 
differentiable function that agrees with u2 on ??z \ E. Again, we denote such 
extension by u2. In particular, the same theorem and the properties of 7c, ensure 
also that the second derivatives of u2 are bounded on every subset of 02 having 
positive distance from the set E. 

(d) In the previous steps, we have defined a continuous function u on the 
closure of T whose restriction to each of the open sets 0, is twice continuously 
differentiable. In this step, we investigate the properties of the vector field & 
and we show that it admits a unique continuous extension to the closure of T which 
turns out to be locally Lipschitz continuous on T in the sense that every point 
in T has a neighbourhood where the Lipschitz condition is satisfied, a property 
that will be useful in the following step (g). Moreover, as a consequence of the 
above mentioned properties of the vector field & , we shall prove that ‘u. actually 
belongs to Cl(T). 

We begin by computing the explicit expression of the vector field & in each 
of the open regions Oi. 

Recalling the definition of u in the region 01, we have 

Vu(J) 
llv45)II 

= vu(t) = -n(z), t E 01 

where z = (QE-‘)I(<). In the region 02, the function ‘1~ is implicitly defined by 
the equation (3.5). Hence, applying the implicit function theorem and recalling 

that J’c(Jl,Jz,u(tl,t2)) < 0 for all (&,<2) E 02, we obtain 

V4J1,<2) b%IE2? U(Sl, E2)) 

11V4<1,t2)Il = IlV~F(El,~2,u(~l,Ez))ll’ 
(El, (2) E 02 
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where VtF = (Fcl, Fc,). Computing the partial derivatives of F 
& and Es, we obtain 

357 

with respect to 

(3.7) 1 Ft,(c57E2,C) = 2 [Cl -$J (-3)] 
F&b,C)=2[b- (-$+1)] 

for every ([ , <) E lR2 x int I, [ = (&, c2), so that the following equation holds 

[FE1(J1,E2,~(E1,52))12 + [F~~(11,~2,2~(51,52))1~ = 4F(&,ti,~(E1,62)) = 4 

for all points (El, &) in 02. Therefore, we have 

v4tl,t2) 

IlV4El,E2)II 
= (Cl - 1c, (;4Ax2),C2 - (-;u(&;b) + 1)) 

for every (<i,&) E 02. Since the vector field & is constantly equal to (0, -1) 
in the regions 03 and 04, we conclude that 

b -1) JE03UO4 

where, as usual, 5 = ([i,&). Recalling the properties of cp, $J and 9, it is clear 
that the vector field ,,z$ - has a unique continuous extension to the closure of T. 
We denote such extension by G. Then, recall that, as shown in the previous step 
(c), all second derivatives of u are bounded on the open sets 01, 03, 04 and also 
on each subset of 02 having positive distance from the exceptional set E, the set 
of the initial and final points of the curves I” and r2. Hence, the vector field 
J&- has to be Lipschitz continuous on each of the sets 01, 03, 04 and also on /IV4 
each subset of 02 having positive distance from the set E. Since G is continuous 
on T and coincides with & on a dense subset of T, it follows that it is actually 
locally Lipschitz continuous on T itself. 

Finally, we are left to prove that u is actually continuously differentiable on 
T. We are going to prove this by showing that Vu remains continuous on the 
curves I’l, I2 and on the segment J. Indeed, let l? be one such curve, fix a point 
< +! E on it and let T(<) be the tangent vector to ri at <. Set (Vu)*(E) and 
IlVull*(<) to be the limits at < from the regions above and below Ii of Vu and 
~~Vu(~ respectively. Such limits do exist due to the boundedness properties of the 
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second derivatives of u in the regions 01, 02, 0s and 04. From the continuity of 
u on Ii, we obtain 

((Vu)+(J) - (Vu)-(E)>r(E)) = (IlV~ll+(E) - IlVull-(6)) (G(G,r(J)) = 0. 

From the explicit expression of & computed above and from the properties of 

the curves I” and 12, we see that the scalar product appearing at the right hand 
side of the previous equality never vanishes. Hence, it follows that IlVull+(<) = 
\\VU\~-([) on l? and this implies that Vu is continuous at <. At last, it is clear 
that the limits of Vu from the regions 01 and 04 at each point of the segment J 
exist and are equal. Therefore, u is continuously differentiable on T. 

(e) In this step, we prove that the norm of the gradient of u lies strictly 
between 1 and 2 on the open set 02. This property shows that u cannot be the 
restriction to T of a solution to the original problem (P). 

To prove this, we begin by noticing that (3.5), (3.7) and the explicit expression 
of Fc computed in (c) yield that 

4 
11~4~)112 = 1 + /qE) 7 5 E 22 \ E, E = (b,&)r 

where we have set 

P(t) = 2 [FI - ‘Ic, (-;w29] [t2 - (+w + l)] $1 (-$,,,) + 

+ { [wt (-;~(<l,~2))]2 - 1) [Cl -II, (-;U(&,h))] , 
for all such c. We have to prove that p remains strictly between 0 and 3 on the 
open set (32. To prove this, fix c E u(c3 2 ) and consider the level set {U = c> C-I??,. 
Since the restriction of u to the curve l? is easily seen to be injective, from the 
definition of u2 described in (b) we obtain that such level set is an arc of a circle of 
radius one centered at P(z) for a unique point 2 E (0, u). Moreover, its endpoints 
are the points rl(lc) and -y2(z) which lie on the curves I” and r2 respectively. 
Since J1V2L(y1(2))II = 1 and IlVu(r2(z))II = 2, it follows that /?(r’(z)) = 3 and 

P(r2(x)) = 0. 
We claim that p(t) increases from 0 to 3 as the point < runs from r2(z) to 

yi (x) along the level curve {U = c} n as. 
In order to prove the claim, we notice that the value of $‘(-u(J)/2) remains 

constant along such level curve. Therefore, for the sake of brevity, we set X = 
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$J’(--u(J)/2) for all [ E {U = c} f7 n2. The value of X can be easily computed. 
Indeed, by (3.4) and the definition of P given in (b), we have 

i 

(r1M4 - 1c1(-$4)) = WM4 - (P)l(X,) = 1 f(!;)(x))2> 
V)2(4 - (+a) + 1) = W)2(4 - (Q(x) = - 1 t’;;!(x))2. 

Hence, as P(~‘(cc)) = 3, we obtain the following equation for X 

9’(x) &J’(x) 
Jl + ((P’(xc))2 (A” - 1) - 1+ ((p’(x))2 x = 3 

which yields 

A= 
1 

/ 

1 

Jl + ((p’(x))2 - I + ((P’(x))2 
+ 3 JI + ((P’(x))2 + I 

V’(X) 

as X has to be negative. Then, notice that the level curve {u = c} n nz can be 
parametrized as 6(t) = ((P)l(x) +sint,(P)z(x) -cost), 0 < t < to, where te = 
arctan (v’(x)). In particular, 6(O) = r2(x) and 6(te) = r’(x) so that (p o S)(O) = 0 
and (p o d)(t,) = 3. Moreover, by (Pl), we have 0 < to < r/4. 
Now, consider the function (p o 6)(t) = (X2 - 1) sin t - 2X sin t cos t for 0 5 t < to. 
In order to prove the claim, it is enough to show that the derivative of /I o 6 
is positive on the interval [O, to]. To prove this, consider the second derivative 
of /3 0 6, i.e. (p o h)“(t) = sin t [8X cos t - (X2 - I)], for 0 < t 5 to. As X is 
negative and X2 - 1 is easily seen to be positive, p o S is concave on the interval 
[0, to]. Hence, we are left to prove that (0 o d)‘(to) > 0. To this purpose, a 
direct computation yields (p o @‘(to) = -4Xcos2 to + (X2 - 1) cos to + 2X. Now, 
(cos to, sin to) is the unit tangent vector to the graph I of cp at the point x. 
Therefore, we have cos to = [l + ((P’(x))~] -1’2 and this yields 

(P O Wo) = & - ly$g)2 J l 
1+ (cp’(x:))” 

+ 3 J1+ ((P’(x:))2 
cp’(x) 

+1+ 

2ww2 
+ [1+ ((p’(x))2]3’2 

where 0 < p’(x) < 1 by (Pl). For 0 < z I 1, we have 
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and the function appearing at the right hand side of the above inequality is 
decreasing on the interval (0, l] and is positive for .z = 1. Thus, (/LJ o @‘(to) > 0 
and this prove the claim. 

(f) In this step, we wish to compute the divergence of the vector field & 
in each of the open regions Oi. 

As pointed out in the previous step (d), in the region 01 we have 

V’IL(E) 
IIV’IL(S)II 

= Vu(,o = -n(x), [EOl, 

where zr = (Q’-‘)I([). T o compute the divergence of -n o ((*I-‘)I) at a point E E 
01, we notice that, by the local inversion theorem, it depends only on the distance 
between the points < and a(x) and on the values of the first and second derivatives 
of cp computed at x = (Xl’-‘)I([). H ence, it coincides with the divergence of the 
normal to the graph of a function having the same value and the same first 
and second derivatives at x. By computing the divergence of the normal to the 
osculating circle, one obtains 

1 

(3.8) R(x) - c 
if ~~“(22) # 0 

0 if v”(z) = 0 

where < = @(a:, I). 
As shown in (d), in the region 02, the function u is implicitly defined by the 

equation (3.5) so that we have 

V4<1,<2) 
= 1 (FE1(E1,52,U(J1,E2)),FEZ(El,J2,2L(Jl,~2))) 

IP4E1,~2)Il 2 

for every (Ii,&) E c?z where the partial derivatives of F with respect to [i and 
(2 are given by (3.7). Now, a direct computation yields 
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for every (<1,<2) E 02 so that, recalling the way 
to the partial derivatives of F, we obtain 
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the derivatives of u are related 

=2+ Fc,(h>e2,u(Jl,J2)) 1 F~z(J1,[2,~(&,<2)) 
- - 

e(E1,<2>4E1>E2)) 2 Fc(h,E2,4El,E2)) = 

= 2 _ [El - + (-Mm] 1cI’ (-Mk2)) + [E2 - (-;U(&,J2) + l)] = , 

[El - 1c1 (-+(El>E2))] V (-$45,E2)) + [‘$2 - (-$4&,<2) + l)] 

for all (E1,62) E 02. 

Finally, in the open regions 03 and 04, the vector field & is obviously 
divergence free. 

(g) In this step, we consider the Cauchy problem 

1 

y’(t) = G(Y(~)) 
Y(0) = (x,0) 

for 0 < x < r where G is the unique continuous extension of the vector field & 

introduced in the previous step (d). By the properties of the vector field G, a 
unique local solution to this problem exists for t 5 0 for every 0 < x < r and it 
can be extended to a left maximal interval of existence (tie(z), O]. For 0 < x < T 
and tie(x) < t 5 0, set Y(x, t) to be this unique solution. 

We aim at describing the geometrical behaviour of the integral lines Y(x) t) 
as t ranges through the interval (6e(x),O] for all 0 < x < T. From now on, for 
reasons that will be apparent later, we set 63(x) = 0 for all x. 

First, consider 0 < x < a. By integrating backwards in time, the solution 
Y(x) t), as t decreases, rises vertically until it reaches the curve I” at t = 292(z). 
On the curve 12, the vector field G is vertical and I2 has no vertical tangents. 
Hence, the solution cannot touch I2 at two different times. Moreover, as shown 
by (3.6), the second component of the vector field G satisfies 

for all (<I, (2) E a2 \ E. This bound implies that, at a time t = 191(x), the solution 
Y reaches the curve I1 at a point y’(x’) for some x’ E (0,a). For t 5 291(x), 
the solution Y remains on the line described by Q(x’,Z) for Z1(x’) 5 1 5 Z’(x’) 
and this line meets the curve I’O, the part of the boundary of Q’ contained in 
the hypotenuse of T, at the point yO(x’), the limit of the solution Y(x, t) as 
t + 190(x) from the right. Set Y(z) 190(x)) to be such limit. Then, consider 
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a 5 x < r. In this case, the solution Y remains in the region where the vector 
field G is constantly equal to (0, -1) so that, integrating backwards, the solution 
rises vertically with constant speed -1 until it reaches the hypotenuse of T at 
time &I(Z) = -(r - x). Again, set Y(z) 190(x)) to be the point (x, --290(x)). 

We have thus defined a continuous function Y on the set C defined by C = 
{(x, t): 0 < x < r, do(x) < t 5 0). It is easy to check that it is injective and 
an argument similar to the previous one shows that it is also surjective onto the 

set {(&,E2): 0 < I1 < r, 0 5 &J 5 r - [I}. Moreover, the uniqueness of solutions 
together with the fact that the vector field G is never tangent to any curve I” for 
i = 0, 1,2 implies that all functions 8i are continuous on the interval (0, a). 

Now, we claim that Y is continuously differentiable on the set of all points 
(a:,t)~Cwithz#a. 

To this purpose, as pointed out in (c), we recall that we have u1 E C2(0i) 
and u2 E C2(0L) where the open sets 01’ and 0; are contained in (0, a) x IR 
and in turn contain the closures (with respect to the strip (0, a) x R) of 01 and 
02 respectively. Similarly, the functions u3 and u4 are linear and hence they 
can actually be regarded as twice continuously differentiable functions defined on 
open sets 0; and Ol, containing the closures of 03 and 04 respectively. Therefore, 
each function ui defines a continuously differentiable vector field G” on the open 
set 0: which agrees with G on the intersection of 0: with the closure of 0,. Let 
g:(t), [ E (3: be the flows generated by the vector fields Gi and set 

i 

Y3(x It) = .93x 7 0) (x,tt) E h 
(3.9) Y2(x )  t) = g;-92(“) (Y3(x )62(X)) (x It) E v, 

Yl(x )  t) = gy-) (Y2(x )291(X))) (x , t) E v, 

where Vi = {(x’, t’): 0 < 2’ < a, t’ E Vi(x’)} and each set Ui(x’) is a suitable 

open neighbourhood of the interval [r9i(x’), Si-1(x’)]. It is clear that Y(x) t) = 
Yi(x, t) for tii_r(x) 5 t 5 29i(x) and 0 < II: < a. 

As a first step, we begin to prove that all functions tii are continuously differ- 
entiable on the interval (0, a). To this purpose, assume for a while that we know 
that Y is continuously differentiable on an open set containing the graph of a 
continuously differentiable curve described as Es = g(Ji), 0 < 51 < a and assume 
that the tangent to the curve and the vector field are never collinear. Then, if a 
continuous function 0 satisfies 
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one can verify, by the implicit function theorem, that 6 is continuously differen- 
tiable. Therefore, let 6s = a2(<i), 0 5 [r < a be a continuously differentiable 
representation of the curve 12. Since the map Y3 is continuously differentiable 
on the open set Vs, from the identity 

(Y3>2 (x 7 292(x)) = a2 ((y”), (x > 292(d)) 9 O<x<a, 

we infer that 8s is continuously differentiable on (0, a). In turn, this implies 
that Y2, as defined by (3.9), is continuously differentiable on the open set V2 as 
well. The same argument applied to a continuously differentiable representation 

E2=a1(E1),0<5 < 1 _ a of the curve I” yields that 191 is continuously differentiable 
on (0 ,a) and hence the same is true for Y1 on VI. It is left to show that the 
map Y is also continuously differentiable at those points which are mapped by Y 
itself into the curves I1 and r2. It is certainly continuously differentiable with 
respect to t since its derivative is the continuous vector field G. Let us show that 
the derivative with respect to x exists also at those points which are mapped by 
Y into rl. 

In order to simplify the notations, set 

0 <x < a, i = 1,2,3, 

and let one such x be fixed. For t E Ul (xc), we have 

g(x 7 t) = -$(x)G1 (Y’(x) t)) + v&81(z) (Y_"(X)) (~2)' (x) 

and in particular, for t = 61 (x), we obtain 

(3.10) $x ,291(x)) = -t9/1(x)G1 (Y;(x)) + (I’_“)’ (x) 

since VtgF(<) is the 2x2 identity matrix for all E E 0:. Analogously, for t E Us, 
we have 

t&?x, t) = -6;(x)G2 (Y2(x, t)) + VEg;-Bz(z) (Y:(x)) + (Y!)’ (x) 

and in particular, for t = 291(x), we obtain 

(3.11) g(x) S,(x)) = -r9;(x)G2 (Y_“(x)) + VSg;l(Z)-Oz(r) (Y_“(x)) (Y:)’ (x). 

Now, the same kind of computation yields 

(Y:) (x) = (19;(x) - 29’,(x))G2 (Y_“(x)) + VCg;l(m)-Ba(z) (Y_“(x)) (Y?) (x) 
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and hence, as G1 (Y:(X)) = G2 (Y_“(z)), we conclude that (3.10) and (3.11) are 
equal, i.e. the two derivatives coincide on the counterimage of I” with respect to 
Y. In a simpler way, the same argument shows that Y is differentiable on the 
counterimage of I2 with respect to Y. Finally, it is obvious that Y is continuously 
differentiable at every point (X , t) E C with a < z < r. Thus, the claim is proved. 

In particular, these results imply det VY exists and is continuous on the set of 
all points (X , t) E C with z # a. By Liouville theorem, it is given by 

{S 
t 

det VY(X, t) = det VY(s, 0) exp tr (VcG(Y(a:, s))) ds = 

(3.12) 0 I 
t 

= det VY(z, 0) exp 
{S ( 

div Vu(Y(r > s)) 

0 IIV’IL(Y(z 7 s))ll > > ds 

for 0 < z < T, 2 # a and 00(x) < t < 0 where tr (A) denotes the trace of a square 
matrix A. As det VY(r ,O) = -1 for 0 < x < r with x # a, we conclude that 
the gradient matrix of Y has negative determinant for all values of 0 < x < r, 
x # a and 290(x) 5 t < 0. Therefore, the inverse mapping of Y is continuously 
differentiable on the open set T outside the segment J. 

(h) In this step, we let u be the Lipschitz continuous function defined on the 
closure of the square Q which is symmetric with respect to the axes of symmetry 
of Q and whose restriction to the closure of T has been described in (b). In 
particular, u vanishes on the boundary of Q. We wish to show that u is a solution 
to the convexified problem (P**). To this purpose, we prove the existence of a 
measurable function cy with the properties that CY(<) E ah** (]]VU([)]]) for almost 
every < E Q and 

vu(‘) 4E)( IlV4E)II ’ Vv(E)) + v(E) 4 = 0 1 
for every 17 E D(Q). As shown in [2], this implies 
convexified problem (P”). 

Letting Ti be the eight open triangles in which 
symmetry, we have 

that u is a solution to the 

Q is divided by its axes of 



EXISTENCE AND NON EXISTENCE OF SOLUTIONS 365 

and we claim that each of the eight terms above is null for every n E D(Q). 
Of course, it is enough to prove the claim for the triangle T considered at the 
beginning of this section, the argument for all other triangles being similar up to 
translations and rotations. To see this, we consider the function Y defined in the 
previous step (g). As it was previously noticed, it is a diffeomorphism of the open 
set of all points (x , t) E C with x # a onto the open set T \ J. Therefore, set 

%(G = $ou(E),, ) vu(E) Vrl(E)) 1 t E T, 

to simplify the notations and apply the change of variable formula and Fubini’s 
theorem to find 

/ 
MEP:,(E) + v(E)1 dE = 

T 
T SC/ 0 

=- [a(Y(~,t))E~(Y(x,t)) +n(Y(x,t))][detVY(x, t)]dt dx. 
0 h(s) 

Then, let 0 < x < r be fixed and consider the second summand of the inner 
integral appearing at the right hand side of the equality above. Integrating by 
parts and noticing that n(Y(x ,O)) = 0 as Y(x) 0) = (x , 0) belongs to one of the 
sides of Q for all 0 < x 5 r, we obtain 

s 0 

q(Y(x, t)) det VY(x, t) dt = 
flo(z) 

=-s 0 

Z7(Y(x,t)) 
h(z) 

lIizidetVY(x,s)ds) dt. 

Thus, setting 

(3.13) qx,t) = o(Y(x,t))detVY(x,t) -~~CzjdetVY(x7s)ds 

for every tie(x) 5 t 5 0 and 0 < x < r, we have 

s, [a(@:,(~) + q(J)] dt = - I’ (i;,,, A(x 7 9% (Y(x 7 t)) dt) dx. 

It is our purpose to show that it is possible to find CY with the properties listed at 

the beginning of this step and such that A(x) t) defined by (3.13) is identically 
zero for every 190 (x) 5 t 5 0 and 0 < x < r. 
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We are going to define CY on each integral curve S, = {Y (X , t) : 290 (X) 5 t 5 0)) 
0 < x < r. First, let a 5 x < r be fixed and notice that, by (3.12), det VY is 
constantly equal to -1 along the curve S, so that it is enough to set 

Q(Y(X 1 t)) = t - &l(x), fb(x) I t 5 0, 

in order to have A(x) t) = 0 for the same values of t. Moreover, since r - a < 1 
by assumption, we have 0 5 o.(Y(x , t)) 5 r - a 5 1 along the curve S,. As 
]]Vu(Y(x, t))]] = 1 for tie(x) < t < 0 and a 5 x < r, we obtain that cy(Y(X, t)) E 
dh** (]]VU(Y(X, t))ll) for the same values of t and x. 

Then, let 0 < x < a be fixed and consider 290(x) 5 t 5 191 (x). For such x and 
t, the function Y is given by 

Y(X I@ = Y(,, 80(x)) - (t - flo(x)b(x’) 

where x’ E (0, u) is the unique point such that r”(x’) = Y(x, do(x)). Relying on 
(3.12) with zero replaced by 190(x) and on (3.8), we obtain that 

det VY(x, t) = det VY(x 7 flo(x)) exp ll,., R(xt) _ p0(~'1) _ s + ~o(x)~ “} = 
= det VY(x, Go(x)) 

R(x’) - [P(d) - t + flo(x)l 
R(x’) - 10(x’) 

if ‘p”(x’) # 0 while det VY(x , t) remains constantly equal to det VY(x ,290(x)) 
for all 80(x) 2 t 5 91(x) if ‘p”(x’) = 0. Hence, set 

[R(x’) - P(x’)]” 
4Y(x 7 4) = -; R(x,) _ pyx,) _ t + fjo(x)] + ; VW) - [ZO(x’) - t + Sol> 

for every tie(x) 5 t <_ 191(x) if ‘~“(2’) # 0 and cr(Y(x, t)) = t-&(x) for the same 
values oft if (p”(x’) = 0. In the former case, we have 

(i) a(Y(x , do(x))) = 0; 
[R(x’) - ZO(x’)]” 

(4 g [W(X) t))l = f (fqx!) _ [lo(x’) _ t + 290(x)]}2 + ; > O; 

(iii) a(Y(x,&(X))) = -f ‘“d;:!,_z;i(z!,‘” + ;[R(x’) - Z’(x’)] = 1. 

In particular, this last equality follows by noticing that 91(x) = 19e(x)+[Z”(x’)- 
Z’(x’)] and recalling that ‘p is a solution to the differential equation. Since we have 
]]VU(Y(X, t))]] = 1 for &J(X) < t 5 61(x), the properties (i), (ii) and (iii) imply 
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that cx(Y(z,,)) E dh” (IlVu(Y(x:,t))ll) for 90(x) < t < 191(z) and 0 < z < a. 
Moreover, this choice of (Y shows that A(z , t) is given by 

det VY(x, S,(x)) 
1 {R(z’) - [P(LT’) - t + &J(x)]}2 

-i[R(z’) - Z’(d)] + 5 
R(z’) - 10(x’) 

+ 

1 
-R(z’) - 10(x’) 2 

[ i{R(z/) - [10(x’) - t + ?90(x)]}2 - $R(x~, - 10(x’)] s] } = 0 

for all do(x) < t 5 Si(x). In particular, (iii) and the equality A(x ,291(x)) = 0 
yield 

(3.14) detVY(z,&(z)) = /@~~~‘detVY(r,s)ds. 

Next, consider those t in the interval (29i(x),&(z)). For such t, the point Y(x) t) 
is in 02, the region where the divergence of the vector field & is constantly 

equal to 1 as proved in (f). Therefore, taking the derivative with respect to t of 
both sides of (3.12), we see that det VY satisfies the differential equation 

adztvy (x, t) = det VY(s , t), f&(x) I t I fl2(5). 

Hence, on account of (3.14), we see that A(z) t) vanishes for all 291(x) I t 5 192(x) 
provided we set o(Y(x , t)) = 1 for the same values of t. In particular, we have 

detVY(a:,&(r)) = /@~~~)detVY(~,s)ds. 

Moreover, by (e), the norm of the gradient of u lies strictly between 1 and 2 on 
02. Hence, we have o(Y(x, t)) E dh** (]]Vu(Y(z, t))jl) for all 191(x) < t < So 
and 0 < x < a. 

Finally, consider those t in the interval (62(x), 0). The point Y(x) t) is in 0s 
where the vector field is constant so that det VY(x , t) remains constantly equal 
to det VY(x, 192(x)). Setting a(Y(x, t)) = t - 62(x) + 1 for all 192(x) 5 t 5 0, 
it is easy to check that A(x) t) vanishes for the same values of t. Moreover, it is 
clear that (Y > 1 for 292(x) < t 5 0 and, as the norm of the gradient of u remains 
constantly equal to 2 on 03, we obtain that c~(Y(x, t)) E ah** (IlVu(Y(x,t))ll) 
for all 92(x) 5 t < 0. 

We have thus proved that u is a solution to the convexified problem (P**). 
Moreover, as the open set 02 has positive measure and the norm of the gradient 
of u lies strictly between 1 and 2 on 02, we see that u cannot be a solution to the 

original problem (P). 
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(i) In this step, we prove that the original problem (P) has no solution. 
Assume that a solution v exists, a Lipschitz continuous function whose gradient 
has norm either 1 or 2 almost everywhere on Q. As v is also a solution to the 
problem (P**), we will reach a contradiction by showing that the norm of the 
gradient of the restriction of v to T has to lie strictly between 1 and 2 almost 
everywhere on the open set 02. 
By the convexity of the functional minimized in (P”), the function w = f(~ + v) 
is a solution to (P**) as well. Therefore, we have 

= L / b** w4r)ll) + 401 4 + ; .I’ b** (IP4E)II) + 401 4 2 Q Q 

and hence, 

s (II h ** 
Q 

;WO + +‘v,,,il) 4 = 

1 
= z $h** (IlV4E)II) 4 + ; 

s s 
Q h** W4t)ll) 4. 

Since we have 

h ** (II ;‘W) + ;W ) L ;h** W4tN) + +** (IlV4Gll) II 
for a.e. < E Q by the convexity of h**, we actually must have equality, i.e 

h ** (II +(I) + ;W) ) = ;h** W4OII) + ;h*’ (IlV4GIl) II 
for a.e. [ E Q. Now, consider the restrictions of u, v and w to the triangle T. 
We claim that, on the set where IlVull > 1, in particular on the regions 02 and 
03, the vectors Vu and Vv must be almost everywhere collinear. In fact, among 
those points such that the above equation holds, consider those < E T such that 

IlV4Oll > 1 d an u is differentiable at < with IlV~(<)ll equal to either 1 or 2. For 
such [, we must have from the equation above 1) ~VU(() + $Vw(<)\\ > 1. If Vu(E) 
and Vv([) were not collinear, we would have 

1 < ;vu(t) + $w < f IlV4E)II + f IlV4Oll 52 I/ /I 
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Therefore, the same kind of computation yields 

= w ( vu(rO) Eo + t llvu(p)ll > 
= 4c0) + t pJ(EO>JJ + t&3(t) 

where, again, both functions ~2 and ~3 approach zero as their arguments go to 
zero. Therefore, we see that the equation Xr](t)+n(t)~z(n(t)) = t (lVv(<‘)ll+t~s(t) 
holds and hence, by (3.15), we obtain 

-; IlVu(rO)ll - ;&I(t) + rl(t)s2(7l(t)) = t /Vu(EO)II + t&,(t). 

Finally, dividing by t # 0 and letting t + 0, we obtain 

-; ((Vu(<O)(( = I(VrGO)(( 

Since 1 < [Ivu([~)~( < 2 and 1x1 . IS either 1 or 2, we see that IlVu([“)II is neither 
1 nor 2. 

This completes the proof of the theorem. 0 

4. THE DIFFERENTIAL EQUATION 

In this final section, we give the proof of Theorem 3.2, thus showing that all 
the hypotheses of Theorem 3.1 are fulfilled provided r is larger than 1 and is 
sufficiently close to 1. 

Let us begin with some remarks. For T > 1, let D: IRxRx(-1,l) + R be the 
smooth function defined by 

0(X, Y ,z) = [LO(a: 9 Y , z)]” - [Wr I Y , z)]” - 2Wr, Y 22) 

for every (X , y , z) E lR x R x (-1,l) and let U be the open subset where D is 
positive. Both D and U depend on r by the function Lo defined at the beginning 
of the previous Section 2. The function 

F(X,Y ,t) = ;E) [LO(~,y,z)-L1(~,Y,z)--], (~,Y,Z)EU, 

is the right hand side of the differential equation appearing in the statements of 
Theorems 3.1 and 3.2. We wish to estimate F and its first and second derivatives 
as functions of r. We have 

D(z,O,O) = (r-z)” 2 a, 
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and, by computing the derivatives of D, we obtain that 

(4.1) IIVD(a: > Y ,z)ll 5 C(r), 0 5 2 5 l/2, 0 2 IYI , IZI L l/2, 

where C(r) > 1 is a non decreasing function of r. Hence, the values of D are at 
least l/8 on the compact subset K, = [O, l/2] x [--be(r), ho(r)] x [-do(r), ho(r)] 
where we have set 

Then, it is easy to check that there exists a non decreasing function M(r) > 1 
such that 

{ 

IF(a: > Y > z)I 5 M(r) 

(4.2) IIVJYz > Y > ~111 F M(r) (x I Y 1 z) E K-2 

lIHF(~, Y 1 z)II I M(r) 

where ]JHF]] denotes the euclidean norm of the 3x3 Hessian matrix of F. 

PROOF OF THEOREM 3.2. For T > 1, set 

where M(T) is the constant appearing in (4.2). Set also a = a(A , r) = X(T - 1) for 
0 < X < X0(r) and notice that, by the choice of As(r), we have 0 < a(A, r) < l/2 
for all 0 < X < As(r). F or all such A, the Cauchy problem 

( 

P”(Z) = F(r ) P(X) ) v’(z)) 0 5 5 5 a(X,r) 

(4.3) cp(o(X 1 r)) = 0, 

P’MX > r)) = 0 

admits a unique solution defined on the whole interval [0 , a(A) T)]. Let p E 

C”(P i 4~,~)1) b e such solution and notice that it satisfies 

lIP%c 5 &M(r)X2-“(r - 1)2-“, Ic = 0, 1,2. 

These bounds can be improved. Indeed, by the definition of Lo and L’, one easily 
obtains that 

(4.4) 
~~“~~,Y,~~-~(<~~~~-~~+l~l+IYl+l~ll 

jW%Y>Z)\ 5 CM + I41 
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whenever (X , y ,z) E K, for some positive C and hence 

IF(z > Y > z)I F 16~’ [(r - I) + 1x1+ IYI + 1.41, (x:,Y ,z) E K,. 

Therefore, along the solution ‘p, we have 

sup {IF(a: > cp(z) 7 d(z))1 : 0 i z I X(r - 1)) i Mo(X 1 r)(r - 1) 

where Mc(X , r) > 1 is a non decreasing function of its arguments. Thus, we also 
have 

(4.5) lld”Vw I &Mo(X I G-‘“(r - 113-“, lc = 0, 1,2. 

We are left to prove that, for all sufficiently small r - 1 > 0, we can choose 
0 < X 5 Xc(r) in such a way that the corresponding solution ‘p satisfies (Pl), 
. . . ,(P4). We split the remaining part of the proof into three steps. 

Claim 1. For r - 1 > 0 small enough, there exists 0 < X < Xc(r) such that 
the corresponding solution cp of (4.3) satisfies ~(0) < 0 and ~‘(0) = 0. 

To prove this, we consider the asymptotic equation of p”(x) = F(X) p(x), p’(z)) 
as T + l+. Indeed, on account of (4.5), the Taylor’s polynomial of F centered 
at (O,O, 0) and arrested at those terms which, computed along the solution cp of 
(4.3), approach zero not faster than (r - 1) as T + l+, is given by 

By (4.2), the associated remainder R = F - F satisfies 

(4.6) IR(z > Y > z)I 5 M(r) ( Id2 + IYI + IH) > (~,Y,z) E Kr. 

Now, for r > 1 and 0 < X 5 Ao(T), consider the asymptotic Cauchy problem 

F”(X) = F(r, F(x) > @‘(4) 0 < z 5 a(X,?-) 

@(4X 7 r)) = 0, 
@‘(a(X ) 7-)) = 0 

whose unique solution is 

where a = a(A) T-). It satisfies 

(4.7) 1 G(O) = - ““‘1; o3 [2X(2 - r) - 3r] ) 

F’(O) = +; I12 [X(2 - r) - 24 ) 
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and, for 1 < r < 2, the expressions appearing at the right hand side of the above 
equalities change sign at the values 3r[2(2 - r)]-’ and 2r(2 - r)-l respectively. 
Moreover, we have 3~[2(2--~)]-l < 2r(2-r)-l for 1 < r < 2 and 3r[2(2-r)]-i -+ 
3/2 and 2r(2 - T)-’ -+ 2 as r -+ 1,. Therefore, noticing that 

60(r) -+oc 
r-l 

as T -+ 1, and recalling the definition of As(r), we see that 0 < 3r[2(2 - r)]-’ < 
2r(2 - $1 < Xc(T) f or all 1 < r < 2 sufficiently close to 1. For such r, we have 

(4.8) 

3r 
2(2 -$) < x < 

2r 
2-r 

2_r < x < X0(T) 

* F(O) < 0, F’(O) < 0; 

==+ cp(0) < 0, G’(O) > 0. 

Then, recalling (4.6), we obtain 

IV”(%) - @“(x)1 I M(r) (1~1~ + Ill + l~‘(z)I) , O<x_<a, 

and hence, taking into account also (4.5), we conclude that 

II@) - ~(“)llca 5 &M’(X, r)(r - 114-“, k = 0,l. 

where Ml(X ,r) 2 1 is, as usual, a non decreasing function of X and r. By 
comparing (4.7) and (4.8) with the previous estimate, we see that, for all 1 < r < 2 
sufficiently close to 1, there are values of /\ in the interval (0, X0(r)] such that the 
true solution cp and its derivative ‘p’ computed at x = 0 have the same sign as 
the asymptotic solution p(O) and its derivative G’(O) respectively. As the values 
~(0) and p’(O) depend continuously on X, the conclusion follows. 

From now on, for all 1 < r < 2 sufficiently close to 1, let X = X(r) be the 
value whose existence was established in Claim 1 and let ‘p be the corresponding 
solution of (4.3). For such r, set also a = a(r) = X(r)(r - 1) and notice that 
0 < r - a(r) < 1, since X(r) > 3r[2(2 - r)]-’ > 1, and that X(r) -+ 2 as r --t l+. 

Claim 2. For r - 1 > 0 small enough, the solution cp of (4.3) satisfies (Pl). 

We prove this by showing that the third derivative of ‘p is negative on the 

interval [0 , a(r)] f or all 1 < r < 2 sufficiently close to 1. Indeed, the third 

derivative cp c3) of ‘p is given by 

WmmF lB-vmF F(x 3 (P(x) 1 cp’(x)) 
- [i - V’(X)1 0(x, V(X), V’(X)) + 2 - d_ 0(x 7 cp(~) 7 P’(X)) + 
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for all 0 < 2 < u(r) and hence, taking into account (4.2), (4.4) and (4.5), we see 
that ~(~1 converges to -2 uniformly on the interval [0 , u(r)] as T 3 l+. Therefore, 
the second derivative of ‘p is decreasing on the whole interval [O, u(r)] provided 
1 < T < 2 is sufficiently close to 1 and 

cp”(4r)) = - [T _ u(r)12 2(’ - I) (A - 1) < 0 

since X = X(T) > 3r[2(2 - r)]-’ > 1 for the same values of T. By Claim 1, it 
follows that ‘p’ is positive on the open interval (0, a) and, by (4.5), its maximum 
value is less than 1 provided 1 < T < 2 is sufficiently close to 1. Thus, all the 
properties of (Pl) are satisfied by cp. 

Claim 3. For T - 1 > 0 small enough, the solution cp of (4.3) satisfies (P2), 
(P3) and (P4). 

Consider the interval of those x where the radius of curvature 

Rdx) = [l + w(4)213’2 
CP’TXC) ’ v”(X) > 0, 

of lYV at Q(x) is positive. By (4.5), for all such x, we have Rp(x) > Z:(x) provided 
T - 1 > 0 is small enough. Thus, (P2) holds true for all such T. 

Then, consider (P4). For i = 1,2, the derivatives (7;); of the second compo- 
nents of the functions $, are given by 

VW (r 1 - 
2 1 P”(X) 2 - dl + (cp’(xc))” - [I + (p’(x))2]3’2 (2 - Jl + (p!(x),l)” 

. [2 + (2 - Jl + (lp’(x))qZ [Z:,(x) + (i - I)] - 4~i-qzjjq - PWI] 
1 

for 0 5 x < u(r) and i = 1,2. Relying on (4.4) and (4.5) again, it is easy 
to check that the two terms appearing between curly brackets in the expression 
above converge uniformly on the interval [0 , u(r)] to -1 and 0 respectively when 
T -+ 1,. Hence, their sum is negative on [O, u(r)] for r - 1 > 0 small enough 
whereas cp’ is positive on (0, u(r)) by Claim 2. Thus, (P4) holds true provided 
T - 1 > 0 is small enough. 

Finally, a completely analogous and even simpler argument shows that (P3) 
holds true as well for sufficiently small T - 1 > 0. This concludes the proof. 0 
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