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ABSTRACT. The basic problem in this paper is that of determining some ge- 

ometrical properties of a general bounded domain in two or three dimensions 

with a smooth boundary where smooth functions are entering the boundary 

conditions which are not strictly positive, from complete knowledge of the 

eigenvalues for the negative Laplacian, using the asymptotic expansions of 

the trace of the heat kernel for short-time t. Further results are obtained. 

1. INTRODUCTION 

The underlying inverse problems are to deduce the precise shape of membranes 
from complete knowledge of the eigenvalues 

(1.1) 0 < X1 5 X2 < X3 5 . . . . < Xj 6 ,... + co as j -+ co, 

for the negative Laplacian -A, = - Ct,,(&)’ in R” , n=2 or n=3 
Let R be a given arbitrary simply connected bounded domain in R”, (n = 2 or 

3) with a smooth boundary 80. Suppose that the eigenvalues (1.1) are given for 
the Helmholtz equation ( A, + X ) u = 0 in R together with the following Robin 
boundary condition: 

(Bl): (& +y)~ = 0 on dR, where & denotes differentiation along the inward 
pointing normal to dR and the impedance y is assumed to be a smooth function 
which is not strictly positive. The object of this paper is to determine some 
geometrical quantities of the domain R, where the boundary condition (Bl) is 
considered, from the asymptotic expansion of the trace of the heat kernel 

(1.2) 19(t) = Cezp(-tXj) as t -+ 0 
j=I 
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Note that the boundary condition (Bl) has been investigated by Sleeman and 
Zayed [7] when Q C R2 and by Zayed [9] w h en R c R3 , in the case y is a positive 
constant. Let us now mention some previously known results. If R & R2, then 
the Neumann problem (i.e.,? = 0) has been investigated by many authors (see, 
Gottlieb [l], Pleijel [5], Hsu [2], McKean and Singer [4] and Zayed [ll]) and have 
shown that 

(1.3) e,(t) = $ + 8;~~iJi2 + a, + &($1/2 1 R2(z)dz + 0(t) 
a0 

as t + 0. where 1 R 1 is the area of fl , 1 dR 1 is the total length of the boundary dfl 
and K(z) is the curvature Xl at the point z. The constant term a, has geometric 
significance, e.g., if the region R is smooth and convex, then a, = l/6 and if Q is 
permitted to have a finite number “h” of smooth convex holesthen a, = (1- h)/6. 

Furthermore, if fi c R3 , then the Neumann problem has been discussed by 
many authors (see, Gottlieb [l], Pleijel[G], Hsu [2], McKean and Singer [4] and 
Zayed [13]) and have shown that 

ISI 1 e,(t) = ~ - 
(4x$2 + 167rt + .I 127Wt1/2 80 

(1.4) +O(t1/2) as t + 0 

where V is the volume of R,I S 1 is the surface area of the boundary dR, while 

1 1 
H(z) = +R&) + 

and 
1 

N(z) = Rl(z)R2(z) 
are respectively the mean curvature and the Gaussian curvature of the boundary 
surface dfi at the point z, in which RI and R2 are the principal radii of curvature. 

2. STATEMENT OF RESULTS 

Theorem 2.1. Suppose that the boundary Xl of the region R C R2 is given lo- 
cally by the equations xn = y”(z) (n = 1,2) an which z is the arc length of the 
counterclockwise-oriented boundary Xl and y”(z) E Cm(Xl). Then the asymp- 
totic expansion of e(t) with the Robin boundary condition (Bl) has the form 

qq = -___ 1 1 + 1 1 f2 df2 
4rt 8(.rrt)lj2 

+ 1p - 3 
6 
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(2.1) 
as t -+ 0. 

32 
y (7ww - 2r2(4>ldz + o(t) 

Theorem 2.2. Suppose that the boundary XI of the region R & R3 is given 
locally by infinitely differentiable functions 

xn = y”(z) ,(n = 1,2,3) 

of the parameters zl, z2. If these pa rameters are chosen so that zi = constant , i 
= 1, 2 are lines of curvature, the first and second fundamental forms of Xl can 
be written in the form 

IIl(Z, AZ) = -pgi(z)(nz”)2, 
i=l 

and 
2 

II~(z, AZ) = C dii(z)(Azi)2 
2=1 

In terms of the coeficients gii, dii(i = 1,2) the principal radii of curvature are 

RI(Z) = gll(z)/dll(Z), Rz(z) = gz(z)/daa(z) 

Then the asymptotic expansion of 6(t) with the Robin boundary condition (Bl) 
has the form 

ISI 1 e(t) = ~ ~ 
&2 + 16& + 12+42tV2 s 

[H(z) - 3?(z)& 
an 

(2.2) 
7 

+- 128~ s,, ([H(Z) - 3y(z)]2 - [N(Z) - ;+)I+) + ~~‘(41) dz + W1’2) 

as t -i 0. 

3. CONSTRUCTION OF RESULTS 

Following the method of Kac [3] and Hsu [2], it is easily seen that O(t) is given 

by the formula 

(3.1) e(t) = 
s 

G(t, x, x)dx 
n 
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where the heat kernel G(t,x,y) is defined on(0, oo)XnXa which satisfies the 
following: For fixed z E D,it satisfies the heat equation in t, y 

(3.2) gG(t, 2, Y) = &G(t, 5,~)~ (n=2 or 3) 

and the Robin boundary condition 

(3.3) 

and the initial condition 

(34 ,li; G(t, 2, Y) = 6(x - Y), 

where 6(z - y) is the Dirac delta function located at the source point x = y. Note 
that in (3.2) - (3.3) the subscript “y” means that the derivatives are taken in 
y-variables. Thus by the superposition principle of the heat equation, we write 

(3.5) G(t, 2, Y) = GN(~, 5, Y) + x(4 5, Y), 

where GN(~, x, Y) is the Neumann heat kernel on R which satisfies the heat equa- 
tion 

(3.6) $Gi~(t, 2, Y) = &G&t, x,Y), (n = 2 or 3) 

and the Neumann boundary condition 

(3.7) &GN(t, x, y) = 0 on LKI 
Y 

and the initial condition 

(3.8) lim GN(t, x, y) = 6(x - y), 
t+o 

while x(t, 5, y) satisfies the heat equation 

(3.9) &(t, x, Y) = a,,x(t, x, Y), (n = 20~3)~ 

and the boundary condition 

(3.10) T&X(& 2, Y) = --Y(Y)W, x, Y) 
I/ 

and the initial condition 

(3.11) p+i X(6 2, Y) = 0 
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Now, the solution of the problem (3.9)-(3.11) has the form t 
(3.12) x(t,x,y) = - JJ ds GN(~ - s, x, z)y(z)G(s, z, z/W 

0 an 

From (3.5) and (3.12) we have the following integral equation. 
t 

(3.13) G(t,x,y) = G~(t,x, Y) - 
s s 

ds GN(~ - s, x, z)$z)G(s, z, y)dz 
0 m 

On applying the iteration method (see [lo-121) to the integral equation (3.13) we 
obtain the series 

(3.14) 

where 

G(t, x, Y> = 2 (-l)mFnx(t, 2, y) 
m=O 

(3.15) 

and 

F,(t, x, Y) = GN(~, x> Y), 

(3.16) t Fm(t,z, Y) = JJ ds GN(~ - s,x,z)y(z)F,_~(s, z, y)dz , m = 1,2, 
0 xl 

Consequently, we can get : 

(3.17) 

e(t) = 
e,(t) - s, Fl(t> x, x)dx-t& F2(t,qz)dz+O(t), if QCR’, 

e,(t) - J, Fl(t, z, x)dx + J, &(t, x, x)dx + 0(t1’2)~ if 0GRR3, 

where 8,(t) = s,G~(t, x, x)dx, which has the same asymptotic expansions 
(1.3) if R C R2 and (1.4) if R C R3 

The problem now is to study the integrals of F,(t,x,x)(i = 1,2) over the 
region R c Rn(n = 2or3). 

Lemma 3.1. If R C R2, then in the case (Bl) we deduce as t t 0 that 

(3.18) J n Fl(t, z, x)dx = & J anr(z)dz + ;($1/2 s -dz)K(z)dz+O(t) ml 
Further, if R 2 R3, then in the case (Bl) we deduce as t -+ 0 that 

(3.19) b Fl(t, x, x)dx = 4n3,;tl,2 /-,, $z)dz + & s,,, ,Y(z)~(z)~~ + o(t1’2) 
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PROOF. The definition of Fr (t, Z, X) and the Chapman-Kolmogorov equation of 
the heat kernel imply that 

(3.20) 
s 

Fr(t, 2, z)da: = t 
J 

G~(ttz,z)y(z)dz. 
n an 

Let us now introduce the following well known estimates (see [2]) of the Neumann 
heat kernel: 

(3.21) 

where 

(3.22) 

GN(~, z, z) = + cI(z)t1/2] + 0(t1-n/2) as t -+ 0, 

Q(Z) = 
$r1/2K(Z), if RgR2, 
+rWI(z), if R C R3 

On inserting (3.21) and (3.22) into (3.20), we arrive at the proof of lemma 
3.1 0 

Lemma 3.2. If R C R2, then in the case (Bl) we deduce as t -+ 0 that 

(3.23) J Iqt, 2, x)dx = ;(p2 
J 

y2(z)dz + 0(t) 
cl a0 

Further, if R C R3 , then in the case (Bl) we deduce as t + 0 that 

(3.24) J R 
F2(t, x, x)dx = -& J y2(z)dz + 0(t1’2) 

a0 

PROOF. Prom the definition of Fz(t, 2, x) and with the help of the expression of 
Fl(t, x,x), we deduce that 

(3.25) 

we replace y(y) in (3.25) as follows 

Y(Y) = 7(z) + O(l Y - z I) 

With the help of the following estimate for the Neumann heat kernel: There exist 
positive constants t,, cl such that for all t < t,, (x, y) E aXa, 

(3.26) GN(t, x, y) 5 clt-n’2exp(- (I x - Y I)” 
clt ), (n = 20r3), 

we deduce that 
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(3.27) 
Jan I z - Y I Gdt - ~>YJ)GN(u,z,Y)~Y < 

cl[u(t - u)]-“I” &n-l I Y leq (- $$) dy. 

Since the integral in the right-hand side of (3.27) is bounded by c3tenj2 , where 
cs and cs are positive constants, we deduce as t -+ 0 that 

(3.28) J Fz(t, IC, z)dz = 

n J y2(z)g(t, z)dz + 0(t(4-“)‘2), 
a0 

where 

(3.29) dt>z) = j)- u)du~- Giv(t - u, Y, z)Giv(u, z, yM/. 

The right-hand side of (3.29) can be computed by taking the first term in the 
series expansion of the Neumann heat kernels GN(t - u, y, z) = 2q(t - u, y, z) and 
GN(~, z, Y) = 2q(u, z, Y) where 

(3.30) Q(CY,Z) = ~ (4ii:)n/2ex~ - ( (I Y - z I)” 
4t 

> 
. 

The explicit computation can be carried out with the help of a suitably chosen 
local coordinate system and the localization principle (see (21). We leave the 
details of this computation to the interested reader and we content ourselves with 
the statement that the leading term of g(t,z) is equal to the same integral in the 
Euclidean space. Thus, we deduce that 

FYI2 Iz-Y12 
Sx__F+4(t-u) - 4U 

(3.31) +0(#-“I/2) 

After some reduction , we obtain 

)li2du + 0(+“)/2) 

(3.32) = 2-+-n)/zt(s-G + 0(&4-n)/2) 

Consequently we write 

(3.33) dt,z) = 
(a)($)‘/” + O(t), if fl C R2, 

& + O(N2), if s2 s R3 
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from complete knowledge of its eigenvalues, while the case n > 3 is more difficult 
and has been discussed in a little bite by few authors. Thus, the case n > 3 is 
still an open problem for the interested readers which can be discussed in a future 
work. 
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