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are satisfied for any vector fields X and Y on 1M. Such a metric g is called a 
contact metric. 

On a compact (2n + 1)-dimensional contact metric manifold (M, g, (Y), n > 1, 
the contact metric g cannot be flat. In dimension 3 however, flat contact metrics 
do exist, as the following example shows (111): 

In local coordinates ~1, x2, x3, the standard contact form cr on T3 is given by 

cr = ~(COS x3dxl + sin 2ad22). 

Its characteristic vector field is < = 2(cos x3& + sinza&) and its flat contact 

metric is gij = a6i.j. 
The contact form Q is invariant under all translations with vector of the type 

(a, b, k27r). This form cr is also invariant under any screw motion (Ro, tp) where 
Re is a rotation of angle 0 in the (zi, x2) plane and t, is a translation of vector 
p = (0,0,2n-8). IfR 0 is a rotation which preserves a lattice containing (a, b, 27r), 
then cr induces a contact form on the quotient T3/ < Re, t, >, where < Rs, t, > 
is the cyclic group generated by (Re, t@). 

Letting X = sin x3& - cos 23 & and Y = &, one can check that X is the 
characteristic vector field of another contact form on T3 and [X] @ [<] is a totally 
geodesic foliation which is preserved by the Killing vector field Y. We will show 
that this situation is characteristic to most, but not all closed, 3-dimensional, flat 
contact manifolds. 

It is shown in [4] that there are six affine diffeomorphism classes of closed flat 
3-manifolds. In this note, we prove that one of the six classes cannot admit a flat 
contact metric structure. 
Theorem A. If M is a closed flat contact manifold, then M carries a nontrivial 
parallel vector field. Furthermore, A4 is isometric to the quotient of a flat S-torus 
by a finite cyclic group of isometrics of order m = 1,2,3,4 or 6. 

2. FLAT ~-DIMENSIONAL CONTACT GEOMETRY 

On a contact metric manifold (M, cr, 5, g, J), one has the following identities 
involving the symmetric tensor field h = iL( J, the covariant derivative operator 
V and the curvature tensor R. 

(1) VxJ = -JX- JhX 

(2) ;(R(E,X)E - JR(5, JX)<) = h2X + J2X 
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If the curvature tensor is identically zero, then identity (2) with X a unit 
tangent vector leads to: 

0 = g(hX, hX) - g(X, X) = g(hX, hX) - 1 

Therefore, the eigenvalues of h are *l and the contact distribution D decomposes 
into the positive and negative eigenbundles as D = [+l] @ [-11. 

From now on, (Y, g, J, and [ will denote structure tensors of a flat contact 
metric 3-manifold M. Let {X, JX, I} b e a local orthonormal basis of eigenvector 
fields for h, where hX = -X and hJX = JX. 

Lemma 2.1. The distribution [-l] $ [[I = [X] $ [E] is a totally geodesic Rie- 
mannian foliation, and [JX] is parallel. 

PROOF. From identity (l), one has: 

(3) Vx(=-JX+JX=O. 

Also 

(4) 0 = S(R(E, X)<, X) = -S(V<VxC - VxVrE - V[X,& X) 

(5) = 2g([X, El, JW 

So, since d[X, [I, E) = 0, one has [X, E] E [-11, which means that the distri- 
bution [-l] @ [[I is integrable. But then, using the fact that X is a unit vector 
field, 

g([E, X], X) = g(V$ - 0x6, X) = -g(Vx[, X) = g(JX + JhX, X) = 0 

so that [<,X1 = 0. Thus obtaining the identity: 

(6) vex = vxc = 0. 

To proceed with the proof of our lemma, we need to prove that VxX belongs 
to [-l] @ [[I. Actually we will prove the identity VxX = 0. 

Since [-l] $ [E] = [X] @ [[I is integrable and [X, [] = 0, we can choose local 
coordinates x, t, y such that X = & [ = 6, and we define a local vector field 
Y = & + a& + b& = & + aX + bJ, where a.and b are functions chosen so that 
Y E [+l] = [JX], that is, Y = fJX for some function f. 

Clearly, [X, Y] and [I, Y] are in [X] $ [El, and hence due to the identities (3) 
and Ott = 0, < is parallel along [X,Y] and along [<,Y]. We will need just the 
identity Vlx,Yl< = 0 in our proof. 
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Using the identities (l), (3) and R(X,Y)[ = 0, we obtain: 

(7) 0 = V[X,Y]( = VXVYE - VyVx< = -2VxfX = -2(fVxX + @(X)X). 

Inner product (7) with JX leads to g(VxX, JX) = 0. Since g(VxX, <) = 0 
and g(VxX,X) = 0, we deduce that VxX = 0. To continue with the proof of 
the proposition, we are going to prove that VJX JX = 0, then JX will define a 
Riemannian geodesic, hence Killing flow. 

Inner product of (7) with X leads to df(X) = 0 and 

(8) VJyJY = fdf(X)X + f2VxX = 0. 

Using identities (l), (6), Y = fJX, (8) and th e vanishing of the curvature tensor, 
one has 

(9) 0 = R(Y, JY)< = -V [YJYIE = J[Y, JYI + JW, JYI. 
Inner product of (9) with JY leads to g([Y, JY], Y) = 0 and therefore: 

0 = g(-f3[JX,X] - f2df(JX)X + f2df(X)JX, JX) = -f3g([JX,X], JX). 

Hence g( [JX, X], JX) = 0 and 

-g(X, V_rx JX) = g(VJxX, JX) = g([JX, X], JX) = 0. 

Since g(VJx JX, [) = 0 = g(VJx JX, JX), we deduce that V,,X JX = 0. In ad- 
dition to that, V, JX = (Vc J)X + JVtX = 0 and direct computations show that 
g(Vx JX, JX) = 0, g(Vx JX,<) = 0, g(Vx JX, X) = 0. All of these identities 
show that JX is parallel. 0 

Remark 1. A simple calculation shows that the identity [E, JX] = -2X is valid. 
This implies that, locally, X is the characteristic vector field of another contact 
form, the metric dual l-form of X, with flat contact metric g. 

Also, another simple calculation shows that [X, JX] = 2<. This combined with 
the previous identity means that JX is a local foliate vector field for the geodesic 
foliation defined by < and X. This fact could also have been deduced from the 
earlier identities [X,Y] E [X] CB [<I and [e,Y] E [X] $ [<I. 

The classification of flat 3-manifolds ([4]) leads to the the following globaliza- 
tion of Lemma 1: 

Proposition 2.2. Let (M, cr, g, J, <) b e a closed flat contact metric manafold. 
Then M carries a parallel vector field preserving an orthogonal, totally geodesic, 
parallelizable, Z-dimensional foliation. 
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PROOF. We need to prove that the vector field JX, and hence X = -J(JX), is 
indeed global. To that end, observe that JX is well defined up to sign. 

Recall from [4] that M = R3/r = T3/Q w h ere I is a uniform subgroup of the 
group E(3) of Euclidean motions and the linear holonomy group k of M consists 
of all A, where y = (Ay,ta7) E I?. Now, JX lifts to R3 into a parallel vector 
field, hence JX is holonomy invariant. This implies that JX is a global vector 
field on M. 0 

3. PROOF OF THEOREM A AND REMARKS ABOUT OTHER GEOMETRIES 

By Proposition 1, the vector field JX is parallel. This establishes the first 
statement of Theorem A. If $ = (A, ta) is an element of I where A E SO(3) and 
t, is a translation along the axis of symmetry of A, then A is a rotation of angle 
0, zt3, &$, f% or f7r. These correspond to the first five affine diffeomorphism 
classes of flat compact 3-manifolds in [4]. The sixth class containing flat manifolds 
with holonomy Zz x Zz doesn’t occur here, since its members have trivial first 
De Rham cohomology ([4], page 122). 

Remark 2. The geodesic fields <, X and JX lift into 3 oriented orthogonal 
geodesic fields (i.e. straight lines) in R 3. Since < is not parallel, it has integral lines 
of both rational and irrational slopes. One deduces that any closed, flat contact 
metric manifold admits infinitely many closed and nonclosed characteristics. 

It is known that there is no closed hyperbolic contact geometry. Indeed, it 
is proven in [5] that no geodesic plane field can exist on a Riemannian manifold 
with negative curvature. 

A closed contact metric manifold with constant curvature 1 is K-contact, hence 
Sasakian in dimension 3. Any such manifold is finitely covered by the sphere. 
However, we don’t know of any contact metric manifold with constant positive 
curvature E < 1. We don’t even know if such a manifold would necessarily admit 
a contact metric with constant curvature 1. 

Theorem B. Let (M, g, CY) be a contact metric structure with constant positive 
vertical sectional curvature E < 1. Then M admits a contact metric structure with 

-1+X6 constant vertical sectional curvature 1 + 5. In particular, if 0 < e < 2 > 
then M admits a contact metric structure with constant negative vertical sectional 
curvature. 

PROOF. Let {&,<} b e an orthonormal basis of eigenvectors for the tensor field 
h = i LE J. Let V, denote the vertical sectional curvature of the contact metric 
structure whose tensors are ge = cg + (6’ - E)CY @ cy, cy, = EQ, Et = f< and J, = J. 
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Notice that h, = $h. Let fX be the eigenvalues of h. The inner product of 
identity (2) with Ei leads to: 

(IO) -_E = x2 - I 

Similarly, 

(11) -V, = g,(h,($E,), h&E,)) - 1 = $g(h(E,):h(Et)) - 1 = $A2 - 1. 

Hence, combining identities (10) and (ll), one obtains V, = 1 + 9. It is clear 
that if 0 < E < y, then V, < 0. 0 

4. CONTACT METRIC MANIFOLDS WITH QJ = JQ 

Proposition 1 leads to an improvement of the classification theorem for closed 
contact S-manifolds whose Ricci tensor Q commutes with the tensor J ([2]). 

Taking into account our Theorem A, we may state a version of the main the- 
orem in [2] for closed manifolds. 

Theorem C. Let M be a closed contact metric S-dimensional manifold on which 
QJ = JQ. Then M is either Sasakian, the quotient of a flat torus by a cyclic 
group of isometries of order m = 1, 2, 3, 4 or 6, or locally isometric to a left 
invariant metric on the Lie group SU(2). In the latter case, M has constant 
vertical sectional curvature k < 1 and constant J-sectional curvature -k, k > 0. 
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