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ON WEIGHTED GENERALIZED LOGARITHMIC MEANS

C. E. M. PEARCE, J. PECARIC AND V. SIMIC

Communicated by Bernhard H. Neumann

ABSTRACT. An integral representation of Neuman is extended and used to
suggest a multidimensional weighted generalized logarithmic mean. Some
inequalities are established for such means. A number of known results
appear as special cases.

1. INTRODUCTION

The logarithmic mean L(z,y) of a pair of positive numbers z and y, defined
by

has proved a seminal concept (see, for example, Bullen, Mitrinovi¢ and Vasi¢ (3],
Carlson [5]). It has been given the integral representation
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(Carlson [4]). Neuman (3] found a further representation
1
(1.2) L(z,y) = /0 oty tdt

and made extensive use of it to develop a variety of extensions of known results.
These include a weighted logarithmic mean of several numbers.
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Alzer [1, 2] has considered an interesting form of generalized logarithmic mean
that is a special case of the Stolarsky mean. Define
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so that L(z,y) = Fo(z,y).

In this article we present an integral representation for Alzer’s generalized log-
arithmic mean that includes (1.3) in the case »r = 0. This is used to develop
a multidimensional weighted generalized logarithmic mean that subsumes Neu-
man’s multidimensional weighted logarithmic mean as the case r = 0. This turns

out to be a unifying concept from which a number of known results fall out as
special cases.

Our starting point is as follows. The argument of the integral in (1.3) is a
classical weighted geometric mean. Now the power mean of order r and weights
t and 1 — ¢ (for t € [0, 1]) of positive numbers z, y is defined generally by

(ta" + (1 =y #0
Mr(x,y;t)={ b1t

Ty ,r=0.
Set M.(t) := M,(z,y;t). Then one cen verify readily that

(1.3) Fo(z,y) = /0 M, (t)dt

We proceed from this convenient integral representation.

2. MULTIDIMENSIONAL WEIGHTED GENERALIZED LOGARITHMIC MEANS

Define

3
|
—

En—1: (Ul,---,Un—l):UiZO(ISifn—l)y ujgl
1

i

J
and put v, =1 —u; —... —u,_1. Let u be a probability measure on E,,_;. We
write = to represent an n-tuple (z1,... ,,) of positive real numbers.
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The power mean of order r of positive numbers z1, . .. , z, with weights uy, ... ,u,

is defined by
n 1/r
(Z u,-:c?) ,7£0
#:1
H z) ,7=0.
i=1

We shall define the weighted generalized logarithmic mean of positive numbers
Ti,..- Ty DY

My(u) = M, (z;u) =

(2.1) Fiwia) = [ M ().

For r = 0 this reduces to the generalized weighted logarithmic mean

Ly z)= /E H:c;-“dp(u)

n-14=1
defined in [6].

The close correspondence between (1.3) and (1.4) enables the following results
to be deduced as simple extensions of results from [6].

min{z;;1 <i < n} < Fr(p;z) < max{z;;1 <@ < n},

Frlwz,...,z) =z (x> 0)

and
(2.2) Frlpaz) = aF (g z) (o > 0),
where ar = (azy,... ,az,). In association with this we have also

= 0
;xla—xsz(/IHI) - }-T(y’:m)v

which is Euler’s equation for a homogenous function with order of homogeneity
equal to unity.

The following result generalizes a result of Yang and Cao [7] that Fi(z,y) is
nondecreasing in .
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Theorem 2.1. The means F,(u;z) are nondecreasing in r.

PrOOF. If is well known that the power mean M, (z; 1) is nondecreasing in r. By
(2.1) the same is valid for F,(y; z). O

Remark. Denote by w; = / wdu(u) (1 < i < n) the ith weight associated
En—l
with the probability measure g on E,_;. Clearly w; > 0 (1 < ¢ < n) and

wy + - + wy, = 1. From the inequality
Folp;x) < Fil(ps x)
we have the result
n
L{p;z) < Zwﬂi
i=1
given in [6].

3. ADDITIVE AND MULTIPLICATIVE PROPERTIES

Theorem 3.1. Let «, 8 be positive numbers with a + 3 = 1 and suppose that
r > 0. Then

Fr(wi2®y?) < Fo(pi ) Folp ),
where £oyP = (z‘f‘y?, T

PrOOF. We have for r > 0 from the integral Holder inequality that

FolpizoyP) = o M, (z°y?; w)dp(u)

n 1/r
= /E (Z u, (x?y?)r) dpa(u)

i=1

n a/r n B/r
< / (Z ) (}: uz-y:) dps(u)
Bn-1 i=1

i=1

n 1/r @ n 1/r
< / (Z uﬂ{) du / (Z uiy; ) dp(u)
Bn-1 \i=1 En-1 \i=1

= Folp; ) Fr(p9)®.
For r — 0 this gives the result
L x%y®) < L )L y)?
in [3]. 0

B
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Theorem 3.2. For each real number r we have
Frlp z%y?) < Frlp; az + By),
where az + By = (az1 + By1, - .- , Zpn + Byn).

PrROOF. We have for 7 # 0 by the arithmetic-geometric inequality that

Fo(pzoy?) = . M, (z*y"; w)dp(u)

" 1/r
-/ (Z u (zfyf’)’"> dp(u)

=1

n i/r
< /E%1 <z u; (a:ci-l-ﬁyi)T) dp(u)

i=1

Letting 7 — 0 gives the result
L(p; z°y") < L(p; oz + By)
for r =0. ]
Alzer [2] has shown that

(3.1) Fo(z1 +y1,z2 + y2) < Fr(zy,22) + Fr(yn,y2) if 72>1,
' Foz1 +y1,22 4+ ¥2) > Fo(z1,30) + Fo(yn,y2)  if 7 < 1.

We give a generalization of this result. In the case of classical means F,. our proof
in fact provides a shorter derivation of (3.1).

Theorem 3.3. We have for r > 1 that
(32) Fr(sz +y) < Frlpsz) + Frpsy),

while for r < 1 the inequality ts reversed.

ProoF. For r > 1, we have by the discrete Minkowski inequality that

n 1/r
Fr(sz+y) = /E (Z ui (zi + yz‘)r> dp(w)
i=1

n—1

n r n 1/r
< /En—1 <§uiw2> d/l(u)-F[E"—1 (Zuix:) dp(u)

i=1

= Fr(p;x) + F(piy)-
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For r < 0 the reverse result applies by virtue of the corresponding Minkowski
result. O

Remark. The case r = 0 gives the interesting result
(3.3) L(wiz+y) > L{pz) + L1 y).
4. MEANS USING DIRICHLET MEASURE

Neuman devotes considerable attention to the case where the measure p is
Dirichlet measure p;, which for n > 2 is given by

po(w) = [Tu=1/B0),
i=1

where b = (b1,...,b,) is an n-tuple of positive numbers and B stands for the
multivariate beta function. In particular he noted that
Lup;z) = S(b;jlnz) := S(b;lnzy,Inz,, ... ,Inz,),

where S is the confluent hypergeometric function. For z = (z,...,2,) € C",
this function has an integral representation

S(b; z) :/E exp (Z uizZ') dup(u).

n—1

b= (1,...,1) and if z; # x; for all i # 7, then

n

Llpp; ) = (n— 1)1 \; z,./ f[ In (2:/z;)
So in this case, (3.3) becomes -
3 ($i+yi)/ﬁ1n ((%“Fyi)/(%‘ +yj))

=1

J#
=3 I

Remark. The map: z — F(u;z) is convex for » > 1 and concave for r < 1.
Indeed, let o, 8 > 0 with @ + 8 = 1. Then by (3.2) and (2.2) for » > 1, we have

Frlpiaz + By) < Fr(p; oz) + Fr(p; By)
= aF(u;x) + BF(159).
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The reverse inequality applies for r < 1.
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