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ON WEIGHTED GENERALIZED LOGARITHMIC MEANS 
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Communicated by Bernhard H. Neumann 

ABSTRACT. An integral representation of Neuman is extended and used to 
suggest a multidimensional weighted generalized logarithmic mean. Some 
inequalities are established for such means. A number of known results 
appear as special cases. 

1. INTRODUCTION 

The logarithmic mean L(z,Y) of a pair of positive numbers II: and Y, defined 

by 

I 
X-Y 

Ina:--lny ,X#Y 

L(?Y) = 

X ,z=y, 

has proved a seminal concept (see, for example, Bullen, Mitrinovii: and VasiC [3], 
Carlson [5]). It has been given the integral representation 

(1.1) V 
1 dt 

1 

-1 

L(z, Y) = 0 tx + (1 - t)y 

(Carlson [4]). Neuman [3] found a further representation 

(1.2) 

and made extensive use of it to develop a variety of extensions of known results. 
These include a weighted logarithmic mean of several numbers. 
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Alzer [l, 21 has considered an interesting form of generalized logarithmic mean 
that is a special case of the Stolarsky mean. Define 

I 
r XT+1 -f+I 

rfl XT - YT 
,r#O,-l,x#y 

X-Y 
In x - In ,r=O, x#y 

FT(x,y) = xylnx-%y 
,7-=-l, xfy 

x-y 

so that L(x, y) = Fo(x, y). 
In this article we present an integral representation for Alzer’s generalized log- 

arithmic mean that includes (1.3) in the case r = 0. This is used to develop 
a multidimensional weighted generalized logarithmic mean that subsumes Neu- 
man’s multidimensional weighted logarithmic mean as the case r = 0. This turns 
out to be a unifying concept from which a number of known results fall out as 
special cases. 

Our starting point is as follows. The argument of the integral in (1.3) is a 
classical weighted geometric mean. Now the power mean of order r and weights 
t and 1 - t (for t E [0, I]) of positive numbers x, y is defined generally by 

m.(x, y; t) = 
i 

(tx’ + (1 - t)y’)‘l’ , r # 0 

.vt ,r=O. 

Set MT(t) := Mr( x, 5; t). Then one ccn verify readily that, 
1 

(1.3) FT(X,Y) = 
I 

&&.(t)dt. 
0 

We proceed from this convenient integral representation. 

2. MULTIDIMENSIONAL WEIGHTED GENERALIZED LOGARITHMIC MEANS 

Define 

n-1 

&_I = (UI,... ,%-I) : Ui > 0 (1 < i < 72 - l), c IL3 5 1 
j=l 

and put un = 1 - 2~1 - . . . - IL,-1. Let 1-1 be a probability measure on En-l. We 
write x to represent an n-tuple (xl,. . . ,x,) of positive real numbers. 
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The power mean of order r of positive numbers xl, . , x, with weights ~1,. . , u, 
is defined by 

i&(u) = Aqx;u) = 1 ( ) 2 t&X; l” ,r#O 
2=1 

fix;% ,r =O. 
z=l 

We shall define the weighted generalized logarithmic mean of positive numbers 

xl,... ,x, by 

(2.1) 

For r = 0 this reduces to the generalized weighted logarithmic mean 

defined in [6]. 
The close correspondence between (1.3) and (1.4) enables the following results 

to be deduced as simple extensions of results from [6]. 

and 

FT(PL; 5,. . )X) = x (x > 0) 

(2.2) F&L; ox) = @Fr(IL; x) (a > O), 
. 

where ox= (oxi,... , ax,). In association with this we have also 

which is Euler’s equation for a homogenous function with order of homogeneity 
equal to unity. 

The following result generalizes a result of Yang and Cao [7] that Fr(x, y) is 

nondecreasing in r. 
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Theorem 2.1. The means 3T(~; x) are nondecreasing in r. 

PROOF. If is well known that the power mean MT(z; p) is nondecreasing in r. By 
(2.1) the same is valid for 3T(p; x). 0 

Remark. Denote by wi := i u,dp(u) (1 < i 5 n) the ith weight associated 

with the probability measure p on &_I. Clearly wi > 0 (1 5 
WI+.” + w, = 1. From the inequality 

3&L; x) 5 31(II; z) 

we have the result 

given in [6]. 

3. ADDITIVE AND MULTIPLICATIVE PROPERTIES 

Theorem 3.1. Let cx,p be positive numbers with a + f3 = 1 and suppose that 
r > 0. Then 

where xDyp = (xyyf, 

PROOF. We have for 

3T(Pu; X"lYO) 5 3&xIoL3T(cL;Y)~, 

" 7 e&. 

r > 0 from the integral HGlder inequality that 

i 5 n) and 

= 341-L; 2Y3T(P; YIP. 

For r --+ 0 this gives the result 

L(/J; Py@) I Q; XYW YY 

in [3]. 
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Theorem 3.2. For each real number r we have 

F&J; XcaYP) 5 FT(K cry3: + PY), 

where CYX + Py = (cxzr + Pyi, . . , CYX, + Pyn) . 

PROOF. We have for r # 0 by the arithmetic-geometric inequality that 

Letting r 

for r = 0. 

= F&4 QX + PY). 

+ 0 gives the result 

C(/& xayq 5 qp; cm + PY) 

0 

Alzer [2] has shown that 

(3.1) 
FT(Xl + Yl, x2 + Y2) 5 FT( ~1~x2) + F,(Y~,Y~ if r L 1, 
F,(zI+YI,Q+Y~) >F,(~,x~)+~,(YI,Y:!) if rl 1. 

We give a generalization of this result. In the case of classical means F, our proof 
in fact provides a shorter derivation of (3.1). 

Theorem 3.3. We have for r > 1 that 

(3.2) FT(K 2 + Y) I FT(K x) + FT(cli Y), 

while for r 5 1 the inequality is reversed. 

PROOF. For r > 1, we have by the discrete Minkowski inequality that 
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For r < 0 the reverse result applies by virtue of the corresponding Minkowski 
result. 0 

Remark. The case r = 0 gives the interesting result 

(3.3) &G x + Y) > W x) + q/J; Y). 

4. MEANS USING DIRICHLET MEASURE 

Neuman devotes considerable attention to the case where the measure ,Q is 
Dirichlet measure pb, which for n 2 2 is given by 

,&,(u) = fi +‘,B(b), 
i=l 

where b = (bi, . . , b,) is an n-tuple of positive numbers and B stands for the 
multivariate beta function. In particular he noted that 

c(pb;x) = S(b;lnx) := S(b;lnxi,lnxa,... ,lnx,), 

where S is the confluent hypergeometric function. For z = (~1, , z,) E C”, 
this function has an integral representation 

&b(u). 
\z=l / 

If b = (1,. . ) 1) and if xi # x~j for all i # j, then 

So in this case, (3.3) becomes 

2 (xi+y,)/iiln((r,+y~)/(zi+y~)) 
i=l [ j=1 

3f’ 1 r 1 r 

Remark. The map: x + Fr(p; x) is convex for r > 1 and concave for r 5 1. 
Indeed, let a,P > 0 with (Y + p = 1. Then by (3.2) and (2.2) for r > 1, we have 

F&L; ox + PY) 5 F&L; ox) + FT(K PY) 
= oFr(P; x) + PWPL; Y). 
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The reverse inequality applies for T < 1 

REFERENCES 

[l] H. Alzer, Gber ezae einparametrige Familie wra Mittelwerten, Sitzungsber. Bayer. Akad. 
Wiss., mat.-naturw. Kl. (1987), l-9. 

[2] H. Alzer, l?ber eine eznparametrige Familie VOR. Mittelwerten II, Sitzungsber. Bayer. Akad. 

Wiss. mat.~naturw. Kl. (1988), 23-39. 
[3] P. S. Bullen, D. S. Mitrinovic and P. M. VasiC, Means and their inequalities, Reidel, Dor- 

drecht, 1989. 

[4] B. C. Carlson, The logarithmic mean, Amer. Math. Monthly 79 (1972), 615-618. 
[5] B. C. Carlson, Special functions of applied mathematics, Academic Press, New York, 1977. 

[6] E. Neuman, The weighted logarzthmic mean, J. Math. Anal. Appl. 188 (1994), 8855900. 
[7] Ft. Yang and D. Cao, Generalizatzon of the logarithmzc mean, J. Ningbo Univ. 2 (1989), 

1055108. 

Received March 19, 1997 

Revised version received April 7, 1997 

(C.E.M. Pearce) APPLIED MATHEMATICS DEPARTMENT. UNIVERSITY OF ADELAIDE, ADELAIDE 

S.A. 5005, AUSTRALIA 

E-mail address: cpearceQmaths. adelaide edu. au 

(J. PeEariC and V. SimiC) FACULTY OF TEXTILE TECHNOLOGY, UNIVERSITV OF ZAGREB. 

PIEROTTIJEVA 6, 41000 ZAGREB, CROATIA 


