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ABSTRACT. Let X and Y be operators on Hilbert space, and let L be a 
nest of projections on the space. We consider the problem of finding an 
operator A in Alg L: such that A is Hilbert-Schmidt and such that AX = Y. 
A necessary and sufficient condition involving X,Y, and the projections in 
the lattice is found. We also indicate how the statements of the results can 
be modified so that the main theorem is true for any commutative subspace 
lattice Is. 

A number of authors have considered the equation Ax = y, where x and 
y represent given vectors in Hilbert space and the (bounded) operator A is to 

be found subject to certain criteria. For instance, suppose that JV is a nest of 
projections acting on the Hilbert space; what conditions on x and y guarantee 
the existence of an operator A E Alg N so that Ax = y? This question was 
discussed by Lance [7]. Several subsequent articles have generalized and expanded 
on Lance’s original result, including ones by Munch ([8]), Hopenwasser ([3], [4]), 
and the authors of this paper, in conjunction with Anoussis and Katsoulis ([l], [a], 
and [6]). Of particular interest for this article is Munch’s discussion of the problem 
of finding a Hilbert-Schmidt operator A in Alg N so that Ax = y, a problem 
motivated by general systems theory. Munch’s characterization and construction 
depend on the Arveson model, which represents commutative subspace lattices as 
lattices of increasing subsets of a partially ordered measure space. In this article, 
we adopt a point of view that proved useful in [6]; namely, we consider an operator 
equation AX = Y instead of the vector equation Ax = y. This change allows us 
to investigate both single-vector and multiple-vector interpolation simultaneously. 
At the same time, we want to use a “coordinate-free” approach, so we have avoided 
the Arveson model. We first consider the case in which N is a nest, and then we 
indicate how certain definitions can be changed so that the main theorem remains 

true for other CSL algebras. 
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The issue, then, is this: Let N be a (strongly closed) nest of (self-adjoint) 
projections on a Hilbert space 3t, and let Alg N represent the collection of op- 
erators that leave invariant all the projections in the nest N. Let X and Y be 
bounded operators on Ifl; we don’t require that X and Y be in Alg N. Ques- 
tion: Under what conditions on X and Y can we be sure that there will exist a 
Hilbert-Schmidt operator A in Alg N so that AX = Y? We first consider the 
simplest possible version of the problem, namely, the case where N is the triv- 
ial nest (0, I}. In case, Alg N consists of all bounded operators on the Hilbert 
space and the problem becomes one of finding a Hilbert-Schmidt operator A that 
solves the equation AX = Y. The celebrated range inclusion theorem of Dou- 
glas [5] tells us when there is an operator (not necessarily Hilbert-Schmidt) such 
that AX = Y; namely, such an A exists precisely when the range of Y* is con- 
tained in the range of X’, or, equivalently, there exists some number K so that 
Y*Y 5 K2X*X; in this case, the norm of the solution A can be chosen to be no 
greater than K. Note that the inequality Y’Y < K2X*X implies that the set of 

llY4Z . 
numbers {m . e is any vector in 3t) is uniformly bounded by Ic, provided we 

understand the expression “E” to mean “0.” For the Hilbert-Schmidt result, we 
obviously need a stronger condition. 

Given a pair of operators X and Y, an orthonormal basis {fn}, and any se- 
quence of vectors {e,}, we define the following quantities: 

~52(X, Y, CL)) = w{b(X, Y, {h}, {en}) : en E W; 

L(X,Y) = SUP-l~2(X,Y{fn)) : Unl is an orthonormal basis of 8.); 

In performing these computations, we use the conventions that i = 0 and that 
g = 00 if a > 0. Our first theorem will show that these quantities are not as 
impractical to compute as the definitions make them seem. 

Theorem 1. Suppose that L(X, Y) < 00. Then 

(a) ranY* C ranX*. 

(b) I! {fn) and {sn) are any two orthonormal bases, then 

L2(X,Y {.fn)) = L2(X, Y, hh)). 

(c) Y is a Hilbert-Schmidt operator. 

(4 If{fn) Y th 2s an or onormal basis, and if, for each n, we choose a vector 

qn E ker’ X’ such that X’q, = Y*fn, then L(X, Y) = c jlqn112. 
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(e) There exists a Hilbert Schmidt operator A such that AX = Y and such that 

IIAII; 5 L(X, Y). 

PROOF. (a) Let e be any vector in ‘?t and choose er = e, ej = 0 for j 2 2. Since 
any unit vector f can be considered to be the first element of an orthonorma1 
basis, we have 

I(Ye7 f)12 
llXel12 

< L(X,Y) < 00. 

By choosing f to be the vector Ye/llYell, we have (IYell 5 L(X,Y)IIXe(12 for 
any unit vector e. Consequently, Y*Y <_ L(X,Y)X*X, and by Douglas’ range 
inclusion theorem, we have that ran Y’ 5 ran X*. The same theorem guarantees 
the existence of an operator A such that [IAll 5 (L(X, Y))1/2,ranlX s ker A, 
and such that AX = Y. 

(b) Let {fn} be a fixed orthonormal basis of 3t. We have 

L2(X,Y,{fn)) = sup{CFzl !$$$+C :e, E%} 

= sup{Cr=r ‘(A,E”‘if;)‘2. e E 3t) e, ‘m 

= sup-E=1 ““$~~*,i’;‘“’ : e, E 7-t) 

= 
k 

sup{CZr I(~7A*_fn)12 : en E ‘W 
= sup{Crzl l(~~,A*_k)l~ :G E ranX,llunll = 1) 

L C llA*fnl12~ 
Now, since ran’-X & kerA = ranlA*, it follows that (ranX)- > (ranA*)). 

Consequently, given a positive number E, we can find unit vectors {un} in ranX 
that are sufficiently close to the vectors A*fn that I C llA*f7Lj12-C \(u,, A*fn)121 < 
E. Therefore, &(X, Y, {fn}) = J-J llA*fn112. S ince this sum is finite, we know that 
A is a Hilbert-Schmidt operator, and (since AX = Y) so is Y. Furthermore, the 
sum C 11A*fnlj2 is equal to the square of the Hilbert-Schmidt norm of the oper- 
ator A, and it doesn’t matter which orthonormal basis {fn} is used to compute 
the sum. Thus, parts (b) and (c) are proved. For any orthonormal basis {fn}, 
we have X*A* fn = Y* fn. Letting qn = A* fn, we have X’q, = Y’ fn and 

L(X, Y) = L2(X, Y, {fnl) = c l14nl12. 

Moreover, qn E ranA* 2 (ranX)- = ker’ X*. The proof is complete. 0 

Most of the authors who have considered interpolation problems in nest alge- 
bras or CSL algebras have found it convenient to reduce first to the case of finite 
lattices, and we will follow their lead in this respect. Suppose that F = {Ek}~=“=, 



486 MOORE AND TRENT 

is a finite nest of projections on 7-l, where 0 = Ea < El < ... < E,_l < E, = I. 
We define m 

Lo(X, Y, 3) = c L(E,I_,X, (El, - Ek-l)Y). 
k=l 

The result we wish to prove is this: 

Theorem 2. Let N be a nest of projections on a Hilbert space 3t and let X and Y 
be operators defined on 7-l. Let K = sup{Lo(X, Y, 3) : 3 is a finite subnest of N}, 
and suppose that K < co. Then there exists a Hilbert-Schmidt operator A in Alg N 
such that AX = Y; furthermore, A can be chosen so that llAlli 5 K. 

Suppose, first, that the theorem can be proved whenever the nest involved is 
finite. Now suppose that N is any nest, and the conditions of the theorem hold. 
Then, to any finite subnest 3 of N, there corresponds an operator A in Alg 3 
such that AX = Y, and llAl/i 5 K. Note that Alg 3 > Alg N, and that Alg N = 
n{Alg 3 : 3 is a finite subnest of N}. Order the collection of finite subnests of 
N by inclusion, and choose any increasing net {F,} such that 3, t N; let the 
corresponding operators be denoted A,. The operator norms of the operators A, 
are bounded (being smaller than the Hilbert-Schmidt norms), so there is a weakly 
convergent subnet; without harm, we assume that the whole net {Aa} converges 
weakly, say to the operator A. Since any projection E E N is eventually in the 
subnest 3a, it is easy to see that A lies in Alg N. Likewise, the equation AX = Y 
holds because A,X = Y for each (Y. Thus, the operator A would satisfy our 
requirements, provided that it were Hilbert-Schmidt. We include a proof of the 
following fact for the convenience of the reader. 

Lemma 3. Suppose that {A,} as a net of Hilbert-Schmidt operators, with uni- 
formly bounded Hilbert-Schmidt norms, and that A, -+ A in the weak operator 
topology. Then the operator A is Hilbert-Schmidt, with norm no larger than the 
uniform bound of the Hilbert-Schmidt norms of the A,. 

PROOF. Suppose that {A,} converges in the weak operator topology to the 
bounded operator A and suppose that supa IIA,(lz 5 K < 00. Let {e,} be an 
orthonormal basis for the Hilbert space. Fix a number N > 1 and choose vectors 
{ui}p such that C,“=, ~~u~~~2 = 1. Then 

I C,“=l(Aei,ui)I = lima I C~I(&ei,ui)I 
5 lb C& ll&e~llll~~ll 
I lim,(CL_, llAaeil12)1/2 . 1 
5 K, 
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where the next-to-last line is a result of Schwartz’s inequality. But 

Consequently, A is Hilbert-Schmidt and l\A\l 2 K. u 

PROOF OF THEOREM 2. We have already seen that we may restrict attention 
to the case that the nest n/ is finite, say n/ = {Ek}pxl with 0 = Eo < El < 
... < E,_, < E, = I. By Theorem 1, there is an operator Al, such that 
AkEkzlX = EkEk__lY, and we may obviously assume that EkE,i,AkEi_, = Ak. 
Then, if Et is any projection in h/, we have 

E,IAkEe = E;EkEjh_,I_,AkE,I_,Ee. 

Now, if 15 k - 1, then Et < Ek-1 and EeEt_l = 0; on the other hand, if C 2 k, 
then El, 5 Ee and EkEk = 0. In either case, the quantity EtAkEe is zero, and 
it follows that Al, E Alg N. 

Put A = Czxl Ak. The operator A lies in Alg N and we have 

AX = (CEkE;_,)AX 
= C EkE;_lAE;-,X (since A E Alg N) 
= c Ed-&A&,X (since EkEk_ i Ae = 0 if C # k) 
= CEkE;-lY 
= Y. 

Furthermore, 

ItAll; = 11x Akit; 
= 11 CEkE,I_,&ll; 
= c h\l; (since the intervals EkJ?k_r are mutually orthogonal.) 

= c L(-$_J, E&;-rY) 
= Lo(x, Y, N) 
< K. 

This complete the proof. 0 
As promised, we now indicate how the theorem can be extended to other 

CSL-algebras. Recall that, if a lattice ,C of projections on Hilbert space com- 
mutes pairwise, the lattice is called a commutative subspace lattice (CSL), and 
the associated algebra is called a CSL algebra. If E and F are projections in C, 
and if E < F, then the projection P = F - E is an interval drawn from L. If 
the interval P is minimal among the collection of intervals C, then P is called 
an atomic interval; it is not hard to show that, if P is an atomic interval from 
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C, then, for every projection G in ,C, either P 5 G or P 5 G’. If P is such an 
interval, let F(P) be defined by F(P) = v{G E C : P < G’}. [Note that, if N 
is a nest, then atomic intervals from N have the form F - F_ where there is no 
projection G that lies strictly between F_ and F; if the nest is finite, then every 
projection in N is the span of a finite number of atomic intervals. In this case, if 
P=F-F_,thenF(P)=F_.]N ow let L be a CSL, let J’ be a finite sublattice 
of C, and let F be a subnest of J of maximal length; then every atomic interval 
from F is also an atomic interval from J. If X and Y are operators, we define 

k=l 

where F(Pk) is computed inside the lattice J’. Let Kz = sup{L~(x,Y,F) : 
3 is a subnest of J}, and let K = sup{L 3 : J is a finite sublattice of C}. With 
these changes, Theorem 2 becomes true for any CSL C. 
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