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ABSTRACT. In a recent paper, S.-E. Takahasi defined the notion of a BSE 
Banach module over a commutative Banach algebra A with bounded ap- 
proximate identity. We show that the multiplier space &f(X) of X can be 
represented as a space of sections in a bundle of Banach spaces, and we use 
bundle techniques to obtain shorter proofs of various of Takahasi’s results 
on P-algebra modules and to answer several questions which he raised. 

1. INTRODUCTION 

In this paper, A will denote a commutative Banach algebra with bounded 
approximate identity {q}. Denote by A = AA the space of multiplicative func- 
tionals on A, and, for h E A, let Kh = ker h c A be the corresponding maximal 
ideal. We give A its weak-* topology. Let X be a Banach A-module, and, for 
h E A, let KhX be the closure in X of span{ax : a E Kh,x E X}. As usual, 
Co(A) is the space of continuous complex-valued functions on A which vanish at 
infinity, and -: A -+ Co(A) is the Gelfand representation of A. If A is a C*- 
algebra, we will id. &ify A and &(a~). Following the notation of Takahasi [7], 
if h E A, we choose eh E A such that Ch(h) = h(eh) = 1, and we let Xh be the 
closure in X of KhX + (1 - eh)X. Then Xh is independent of the choice of 6%. We 
set Xh = X/Xh. If A is a C*-algebra, for each h E A we will choose (lehll = 1. 

Let & = fi {Xh : h E A}be the disjoint union of the Xh. (We can, if we like, 
identify - confuse! - & with U ({h} x xh : h E A} ; the h’s are useful for book- 
keeping purposes.) We give an element z + Xh E E (x E X, h E A) its coset 
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norm 113: + Xh]I . Let 7r : E -+ A be the obvious projection map. Given this data, 
let C(E) denote the linear space of selections ( = choice functions) c : A t E, 
and let Cb(&) denote the subspace of bounded selections. Since each Xh is a 
Banach A-module, so is each Xh. In particular, for each a E A and z E X we 
have az - Z(h)zr E Xh. (Proof: az - Z(h)zr = (az - aehz) + (aehz - z(h)ehz) + 
(z(h)e@-$(h)z); the first two terms of the sum are in KhX, and the last term is 
in (I- eh)x.) H ence, a(z+Xh) = ii(h)a:+Xh. It follows that C(E) and Cb(&) are 
both A- and z-modules under the operation (u a)(h) = Z(h)a(h) = (2. a)(h). 

Consider the space M(X) = Ho~A(A, X) o multipliers of X. Again, following f 
[7], for T E M(X), we define a selection ? : A -+ E by T(h) = T(Q) + Xh E Xh, 
where e;(h) = 1. We see that this definition is also independent of the choice of 
eh. The map -: M(X) -+ P(f) is an A-module homomorphism of M(X) into 

C(E), as noted in [7]. (In fact, MT) IS an A- and z-submodule of Cb(&).) We 
also note that T(A) c X,, the essential part of X. Further, if 2 E X, then the 
map T, : A + X, a ti m, is an element of M(X). If X is an A-module, then so is 
X*, with the multiplication given by (z, f u) = (ax, f) (u E A, z E X, f E X”). 

We associate two topologies with the fibered space &, and study the properties 
of the spaces of continuous and bounded selections from A to & under these 
topologies. In [7], Takahasi explores some of the consequences of endowing E 
with the quotient topology induced by the product topology on A x X and the 
projection map p : A x X + E, (h,z) +-+ 2 + Xh = E(h) = Z(h). We denote E 
with this topology by El. 

In this paper, we show that & can be endowed with a topology which makes 
n : & -+ A a bundle of Banach spaces; we denote & with this topology by Es, and 
call it the multiplier bundle of X. In particular, we show that if A has a bounded 
approximate identity, then the bundle and quotient topologies coincide; i.e. &i = 
Ea. We then show that the multiplier bundles for X and for X, are homeomorphic, 
and we use this result and the machinery of section spaces of Banach bundles to 
subsume several of the examples concerning C*-algebra modules adduced in [7]. 
We also answer several questions posed in [7]. The reader may also wish to consult 
[8] for more recent developments and applications of this construction of a field 
of quotient modules. 

2. THE BUNDLETOPOLOGY 

We refer the reader to [l], [2], or [4] for fundamental notions regarding bundles 

of Banach spaces and Banach modules, and we especially draw upon the following 
results, which are key to our investigations. 
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Proposition 2.1. fl2, Corollary 3.71) Suppose that U is a topological space, and 
that {Y, : p E U} is a collection of Banach spaces. Let E be the disjoint union of 
the YP, and let y : E + U be the obvious projection. Suppose that Y is a vector 

space of bounded selections u : U + & such that I) & = 6 {a(u) : u E U, g E Y} 
(‘5’ is a full space of selections”); and 2) f or each g E Y, the map u I-+ 11c(u)11 is 
upper semicontinuous. Then there is a unique topology on & making y : E + U 
into a full bundle of Banach spaces, and such that each o E Y is continuous. 

As a special case of the above, we obtain 

Proposition 2.2. (14, Proposition 1.31) Let U be a topological space, and let 
{XP : p E U} be a collection of closed subspaces of the Banach space X. Let & = 

fi {X/XP : p E U} be the disjoint union of the quotient spaces X/XP. Then & can 
be topologized in such a way that 1) r : & + U is a bundle of Banach spaces; and 
2) for each x E X, the selection 5 : U -+ E, E(p) = x + XP, is a bounded section 
of the bundle x : & + U, iff the function p I--+ IlZ(p)ll is upper semicontinuous on 
U for each x E X. 

Lemma 2.3. Let h E A, and let C be the bound on the approximate identity for 

A. Then llhll > A. M oreover, we may choose our collection {e,, : h E A} so that 

(11ehll : h E A} is bounded. 

PROOF. For a given 6 > 0, we may choose u = I+, in the approximate identity 
1-b 

so that d(h) > 1 - 6. Hence, llhll > AG(h) > c, and since S was arbitrary, 

it follows that llhll > A. N ow, for a fixed but arbitrary h, if we choose u in the 

approximate identity so that G(h) > 1 - 6 and if we set eh = 
1 

-u, we see that 
Q(h) fl 

Corollary 2.4. For any T E M(X), the selection ? : A + & is bounded. 

PROOF. For h E A, we have li!?(h)(l = 1) T e ( h) + Xhll 5 /IT( 5 lITI\ lIehI i 
and the collection of eh’s can be chosen to be bounded, by the preceding. 0 

Proposition 2.5. Given the data above, let T E M(X). Then the map h t+ 

/?(h)li = IIT + Xhl( is upper semicontinuous on A. 
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PROOF. Suppose that E > 0 is given, and that I\?(h)(/ < 6. Choose ai E Kh,yi E 

x (i = 1, . ..) rr),z E X, such that 

IIT(h))l 5 IIT + C aiyi + (1 - eh1.j < Ey 

and set 

E’ = E - (IT(eh) + C aiyi + (1 - eh)zlj 

Prom the upper semicontinuity of the map h’ I-+ \]a + K~J)) (see [5]) and the 
continuity of the function e; on A, we can choose a neighborhood V of h such 
that when h’ E V all of the following hold: 

c II@ + GII < 3;;,y.Il; 
z 

and 

I 

I1 - e^hWl < 3Jl,z,l 

(where C is the bound on the approximate identity). Since the definition of 
Xh’ is independent of the choice of eh’, for h’ E V we may just as well take 

1 
-eh. We also make use of the fact that, for a E A and h E A, we have eh’ = ch(h/) 

]]a + Kh]] = h Ii?(h)1 ; see [5, Lemma 1.31. 

Then, for h’ E V, we have the following: 
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I IIT(ehr) - T(eh) + X’“‘II + 1(T(eh) + Caiyi + (1 - eh)z + Xh’/I 

+ II C aiyi + (1 - eh)z + X h’ II 
5 iiT(eh!) - T(eh)ll + iIT + c Wi + (1 - eh)Zll + IIc aiYi + x’“‘// 

+ (eht - eh)z + Xh’ 

5 ,1-l’ 

II 
L IIT(eh)li + iiT + c %yi + (1 - eh)d + IICwi + Kh’XI( 
&z(h’) 

/ 

+ (ehl - eh)z + Xh’ II II 
< &‘/3 + IiT + Caiyi f (1 - eh)zlj + IIc ai% + Kh’Xll 

+ ll(eh - eh’) + Kh' 11 l[Z + Kh’Xlj 

5 E’/3 + IIT + c %yi + (1 - eh)zll + c 11% + &‘)I llYi/l 

+ IG(h’) - e^h(h’)l llzll 
llh’ll 

< E’/3 + iIT + ~W/i + (1 - eh)zll + E’/3 + c 11 - G(h’)l llZl[ 

< E. 

The space X = {E : 2 E X} is a full space of selections in C?(E), since, for each 
each 2 E X and h E A we have E(h) = Tz(eh)+Xh = ehx-+Xh = x+Xh E Xh. 

The space MT) = {? : T E M(X)} > 2 is therefore also full. It follows by 
Proposition 1 or Proposition 2, above, that there is a unique topology on & which 
turns rr : E + A into a bundle of Banach spaces, such that each T (T E M(X)) 
is a member of the Banach &(A)-module Ib(.rr) of all continuous and bounded 
sections of the bundle K : & --+ A. Moreover, we may regard Ib(.rr) as a Banach 
A-module under the operation (u . n)(h) = ii(h)cr(h), as described above. In the 
language of [4], the map -: M(X) + Pb( ) 7r is a sectional representation of M(X) 
of Gelfand type. 
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We recall that, in this bundle topology on E, neighborhoods of a point x + Xh 
are described by tubes: let cr E rb(rr) be such that a(h) = z + Xh, let V be a 
neighborhood in A of h, and let E > 0. Then ‘i’- = T(V, 0, E) = {.z + Xh’ : h’ E V, 

/I - (z + Xh’)\\ < E} is a neighborhood of a(h), and in fact sets of this form, 

as V ranges over all neighborhoods of h and E > 0 varies, form a fundamental 
system of neighborhoods of a(h). Denote by Es the set E with its bundle topology 
generated by the ? (T E M(X)), and let p : A x X + &z be the natural map 
(h, z) ++ E(h). 

Proposition 2.6. Let A be a commutative Banach algebra with bounded approx- 
imate identity, and let X be a Banach A-module. Then the spaces El and &z are 
homeomorphic. 

PROOF. Since the topology on &i is the quotient topology on & induced by the 
map p : A x X + E, it suffices to show that the topology &z is also the quotient 
topology. We will show that the map p : A x X -+ Es is continuous and open, 
and the desired result then follows from a standard topological argument. 

a) p is continuous: Let 7 = 7(V, 5, E) be a bundle neighborhood of 5(h) = 
x + Xh = p(h,x) in Es, as described above. If B(x,E) denotes the open ball 
around x E X of radius E > 0, then V x B(x,E) is a neighborhood of (h, x) 
in the product topology on A x X. If (h', y) E V x B(x,&), then h’ E V, and 
l[!E(h’) - y(h’)\( <_ 1(x - y/ < c; i.e. Q(h’) = p(h’, y) E 7. 

b) p is open: Consider a set of form V x B(0, E), which is nearly a typical open 
set in the product topology on A x X. We claim that p(V x B(O,e)) is open in 
Ez. Let h E V and y E B(O,E), and set E’ = E - 1jy11. 

Consider the tube 7 = 7(V, 6, E’) around y(h), and let Z(h’) E 7. Then h’ E V, 
and llE(h’) - y(h’)lj < E’. From the definition of the coset norm, we may choose 

q=Caiw,+(l- eh,).z E KhlX + (1 - eh,)X C Xh’ such that 

IF@‘) - G’)ll 5 II(x - Y) + 411 < E’. 
Then 

11% + 411 I lb - Y + sl\ + IlYll < E 

and 

(z)(h’) = E(h’) + c(h’) = Z(h’). 

That is, S(V) E p(V x B(0, E)). Hence, 7 c p(Vx B(0, E)), and thus p(V x B(O, E)) 
is an open set. The final result follows by translation. 0 
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The space My) = {!? : T E M(X)} is a subspace of rb(7r) for the bundle 
r : El= &2 -+ A. Given the homeomorphism of II and E2, for the remainder of 
the paper we will denote by & the fibered set with its bundle topology, and we 
will speak of the section space I’(r) (rb(n)) f 11 o a continuous (bounded) sections 
of the bundle r : & -+ A. We will call this the multiplier bundle for X. 

We now examine for a moment the module Y = X, = closure in X of span{ax : 
a E A, x E X}. We note that, due to the Hewitt-Cohen factorization theorem, we 
actually have X, = AX. 

As an A-module, Y has a representation (its sectional Gelfand representation, 
in the language of [4]) as a space p c I'(d) of a “canonical bundle” of Banach 
spaces n’ : 3 + A; the fibers of this bundle are the spaces Yh = Y/Yh, where 
Yh = closure in Y of span{ay : a E Kh,y E Y}. It can be easily checked that, 
because Y is an essential A-module, we actually have Yh = KhY + (1 - eh)Y, as 
defined earlier. We note that we can also write Yh = KhX, since A has a bounded 
approximate identity and is therefore factorable. The mapping -: Y + I’(r’) is 
given by c(h) = y + Yh. 

Consider the space M(Y) = Hom,~(A,y) of multipliers from A to Y. Let 

y E Y, and let Ty E M(Y) be given by Ty(a) = ay. Then c(h) = Ty(eh) + Yh = 
ehy + Yh = y + Yh = Q(h). In 0th er words, the representation of Tz/ as a section 
in the multiplier bundle for Y can be identified with the representation of y as a 
section in the canonical bundle for Y. It turns out that the fibers of the multiplier 
bundle for Y = X, and the multiplier bundle for X are related in general. 

Proposition 2.7. There is a topological linear isomorphism of the fiber Xh = 
X/Xh of the multiplier bundle for X and of the fiber Yh = Y/Yh = X,/(X,)h of 
the multiplier (canonical) bundle for Y = X,. If llehll 5 1, then these fibers are 
isometrically isomorphic. 

PROOF. Let i : X, + X be the inclusion map, and let Ph : X + Xh = X/Xh 
be the quotient map. Then Ph o i : X, + Xh is norm-decreasing and surjective 
(because, for each x E X, we have (Ph o i)(ehx) = eh2 + Xh = x + Xh). If 
ay E KhX = (X,)h = Yh, then ay E Xh, and so (~hoi)(ay) = ay+Xh = Xh; i.e. 
KhX C ker(phoi). Thus, there is a norm-decreasing map & : X,/(X,)h -+ X/Xh 
which carries ax + KhX = ax + (X,)h to ax + Xh. 

On the other hand, consider the map of X + X, given by x ++ ehx; this map 
clearly has norm 5 \lehll. We compose this with the quotient map pk : X, + 

X,/$&X = X,/(X,)h = (X&P;, : X, + X,/KhX = X,/(X,)h = (&)h and 

obtain a map $JL : X + (Xe)h of norm < Ilehll. If ‘w = ay+ (1 - eh)z E Xh, then 
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+x(w) = ehW + KhX = KhX, so that we obtain a map I+!& : X/Xh + Xe/KhX, 
with ll$hll 5 Ilehl(. Note also that 1c, h is surjective, since, for ax E X,, ?,bh(az $ 
Xh) = eha2 + KhX = &(h)(az + KhX) = ax + KhX. 

It is now easily checked that & o +h and $h o & are the identities on the 
appropriate spaces. This establishes the desired topological linear isomorphism. 
That the isomorphism is isometric if l/ehll < 1 is evident. Cl 

The preceding establishes a bijection between the fiber space & of r : & + A, 
the multiplier bundle for X, and the fiber space 3 of the multiplier bundle 7r’ : 
.F + A for X,. We define the maps Q : F -+ E and 4 : & -+ .F fiberwise; e.g. 

@(x + (X,)h) = ‘$h(x + (-&)h). 

Proposition 2.8. The spaces & and 3, with the bundle topologies generated by 
X and X,, respectively, are homeomorphic. 

PROOF. We will show that Q : & -+ 3 is continuous; the proof of the continuity 
of @ will be similar. Let D = sup{llehll : h E A}, let z+Xh E E, and consider the 
tube 71 = 71(V, G,E) around ehx+(X,)h = @(z+Xh) = &(z+Xh) E 3. Then 
72 = 72(V, Z;-, e/D) is a neighborhood of 2 + Xh = Z(h) in E. Let y + Xh’ E 7s. 
Then h’ E V, and 

Then 

II(y +Xh’) - z(h’)I( = II( y +X”‘) - (x + Xh’)ll < E/D. 

11% + Xh’) - ‘cx + xh’)II = I~+& + xh’) - ?+bh’(x + x”‘)ll 

5 D(l(y+Xh’) - (x+Xh’)ll 

so that Q(y + Xh’) E 7r. 0 

We offer the following without proof. 

Corollary 2.9. Let K : & -+ A and K’ : 3 -+ A be the multiplier bundle of X 
and the multiplier bundle for X,, respectively. Then there is a topological linear 

isomorphism $I : rb(r) -+ rb(d), w ac h’ h 2s an isometry if the approximate identity 
for A is bounded by 1. Moreover, y!~ is a Co(A)-linear map. For u E I?(r), we 
have $(a) = 9 o (T. The inverse map C#J : Pb(x’) + Pb(.rr) is given by $(T) = @ o T. 
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The following diagram illustrates the relationship among the maps constructed 
in this section. Here, oh and pi will denote the quotient maps, eVh will denote 
the evaluation maps, and - will denote the section maps. 

x -G rbw 

xh 

lTb(7r’) ; x, 

3. THE BSE CONDITION 

An element o E C(E) is said to be BSE (this refers to Bochner-Schoenberg- 
Eberlein; see [7] for an etymology of the term) if there exists some p = Sir > 0 
such that, for any choice of hi E A, fi E (Xhi)* (i = 1, . . . . n) we have 

where Ph : X -+ Xh is the quotient map and evh : C(t) + xh, CT c) a(h), is 
the evaluation map. Takahasi [7] shows that if x E X, then E is BSE. If in 
addition A is a regular Banach algebra, then ? is BSE for each T E M(X). The 

fundamental question explored in [7] is, When is MT) equal to the space of all 
continuous &-valued BSE selections on A, with & given its quotient topology? 
From the work done in the previous section, this is equivalent to the question 

of when MT) is equal to rBsE(n), the space of BSE sections of the multiplier 

bundlen:&-+A.IfM6)=I BSE(r), then the A-module X is said to be BSE. 
We first make an elementary observation, noted without proof in [7]. 

Lemma 3.1. Suppose that (T E C(E) is BSE. Then u is bounded. 
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PROOF. From the definition of the BSE property, there exists p = & > 0 such 
that for each h E A and f E (X/Xh)*, we have 

since ll~hl) 5 1. We choose f E (X/Xh)*, with llfll = 1, such that I(a(h),f)l = 
ll~(h)ll, and we obtain 

lldh)ll = I(dh)> f)l 5 P llfll = P, 
i.e. IIuII = sup{llo(h)ll : h E A} 5 p. 0 

Thus, the question of when an A-module X is BSE can now be studied by 
using only elements of rb(rr), the bounded sections of the bundle rr : & + A. 
There is a relationship between JZ’ss~(rr) and I’BsE(~T’). 

Proposition 3.2. Let 11, : rb(rr) -+ rb(rr’), 4 : rb(rr’) + rb(rr) be the topological 
linear isomorphisms described at the end of the previous section. If o E rssE(7r’) 
(arising from X,), then 4(a) E rBsE(x) ( arising from X). Conversely, if A = 
C’s(A) is a C*-algebra, and ifa E rgsE(r), then g(o) E lTBSE(7r’). 

PROOF. First, let h E A, let f E (Xh)*, and let CKE E X,. Then 

(ax, f 0 ph) = (ax + Xh, f) 

= (4hk + (xe)hL f) 

= (a5 + &)h, 4xf,) 

E ( ax, 4’hC.f) O P;, . ) 
That is, 4$(f) 0 P; E (X4 * is the restriction to X, c X of f o oh E X”, where 

Ph : X + Xh and p; : X, + (Xe)h are the quotient maps. 
With this in mind, we now let hi E A, fi E (Xh,)*, i = 1, . . . . n, and suppose 

that u E l?Bse(rr’). Then 

IC([~(u)I(hi),fi)I = IC (k(dhi)),.fi)l 

5 PO IIc fi o PhiIIX* 
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Thus, +(a) E ~BSE(~). 
Now, let A be a C*-algebra. We first note that, given h, E A (i = 1, .., n) we 

can choose our eh, to have disjoint support. We also note that, if ax E X, and 
f E (X,)‘,, we have 

(a? @i(f) O Ph) = (ax -k XhT$$(f)) 

= (Ilrh(ax + Xh), f) 

= (ax + (Wh, f) 

= ( ax,.fo& . > 
That is, f o p; E (X,)” is the restriction to X, of r/$(f) o Ph E X*. 

Let hi E A, fi E (X,);l,, (i = 1, . . . . rz). Let (T E I’BsE(~); we claim that 
$(u) E I?BsE(~~‘). We have 

Ix ([@(a)l(hi)~ fd = Ix (tih,(dh)), fi)l 

= IC WJ> GJ.fi,> I 

5 h IIc6&fi) oph,llx. 

If E > 0 is given, we can choose z E X, llxll = 1, such that 

from our choice of eh, (i = 1, . . . . n) to have disjoint support, we see that II II = 
c, eh, 

1 and that [$J;~ (fi) 0 ph,] . (eh,) = 6ij [$ii (fi) 0 ph,], where &j is the Kronecker b. 
It follows that 
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Set w = c ehi (q + zi). Then w E X,, and so 

II41 = IIC & (xi + ~>ll 
= max{llehill llzi + ~11) 

(because X, is Cc(A)-locally 
have disjoint support) 

< lld + E. 
Hence, it follows that 

convex and the ehi 

Ici (fl(hi), fi)l = Ici (xi + zi, fi o /‘hi)1 

= [xi (ehi(% + &jr fi o Phi)1 

= ICi(Cjehj(sj+Zj),f,OPhi)l 

(since eh,(hj) = &, = Kronecker 6) 

= Ici (w,fi OPhi)l 

2 ilwII I& fi o Philip 

< (b’ii + &) llci fi o Phi I&* . 

(We note that for z E X and a E A, we have (f o ph)(az) = f@(h)) = 

f(a(h)Z(h)) = a(h)(f O Ph)(Z) ). 
For part 2), suppose that 4 : r,(r) -+ X, is the isometric Co(A)-isomorphism 

of the assumption. Among other properties of 4, we have [$(a)]-(h) = a(h) for 
each g E l’e(r). Now, let c E l?‘(n). We define T, : A --+ X by T,,(a) = 4(m). 
Then, for b E Co(A), we have 

bT,(u) = bq5(u. 0) = ~#@a. 0) = T&z). 

Clearly, T, is bounded, and so T E M(X). Moreover, for h E A, we have 

T?;(h) = [T,(%)]-(h) = [4(eh . a)]-(h) = (eh . a)(h) = a(h). 

0 

Two examples, worked out at some length in [7], then follow as corollaries: 

Corollary 3.5. Let A be a commutative C*-algebra, and let I c A be a closed 
ideal. Then I is BSE as un A-module, and A is BSE as an I-module. 
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PROOF. As an A-module, I = 1, is essential, and since I c CO(AA) is cob- 
locally convex, the result follows. On the other hand, as an 1-module, A, = I = 
CO (AI), which is Co ( AI)-locally convex. 0 

Corollary 3.6. Let A be a quasi-central C*-algebra, with center Z. Then A is 
BSE as a Z-module. 

PROOF. Prom the proof in ([7], Theorem 3.2), A is essential as a Z-module. Note 
that Z z Co(Az). A variant of a result by Varela ([9], Theorem 3.5) shows that 
A is isometrically isomorphic to the space I’s(r) of sections of 7r : E 3 A, which 
vanish at infinity, and hence that A is Co(Az)-locally convex. 0 

We now address questions asked by Takahasi in [7], as to whether ~‘BsE(YT) c 
l%(n) is a Banach A-module. 

Proposition 3.7. Let A and X be as generally given. Then FSSE(YT) is an A- 
module. 

PROOF. Let g,r E l’BsB(n). Choose ,& and /$ as in the definition of BSE, and 
let h, E A, fi. E (X,;)* (i = 1, . . . . n). Then 

so that (T + T E l’BsE(n). Similarly, let a E A. Then 

IC ((a. I), fdl = IC @(hMhi)l fdl 
= IC (4h),~(hi)fi)l 
5 Po IIC~(hiKfi 0 ,ai)llx* 
= Pg IIC(fi ohi) .alI,* 

I Pg II4 IIC fi 0 hi IL y 
since C(fi o oh,) . a = C(fi o ,oh,)i?(hi). Thus, a. CT E I’Bm(r). 0 

However, as the following example shows, l’gsE(r) may not be a Banach space, 
even when A is about as nice as it can be. 

Example 3.1: Let A = C([O, l]), and let X = A*, the set of bounded Bore1 

measures on [0, 11. Since A has an identity, we have M(X) = X, and it can be 
shown (see [lo] or [4]) that, for h E A = [O,l], we have Xl, N C. Under this 
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identification, for 1-1 E X and h E [0, l] we have F(h) = ~({h}), so that ker(-) is 
the space of continuous measures on [0, l]. Evidently, for any /-L E X = M(X), 
E has only countable support in [O,l], and we can identify l’(r) = r*(r) with 
co([O, ll), the closure under the sup-norm of the space of functions on 10, 11 which 
vanish off finite sets. 

Now, A is a regular algebra, and so each element of );I: = MT) is BSE. We 
will describe an element 0 E I’(r) such that u # ,iI for any /-L E X but such that 
there is a sequence {Pi} c X such that c = 1imE in I’(r); thus I’BSE(r) is not 
complete. 

For each h E [0, 11, we have Xh N Cc, so that for f E (X,)” the action of 
f on Xh can be identified with multiplication by some cz = cyf E C. We show 
that, given hi E [0, I] and fi E (Xh,)* (i = 1, . . . . n), we have [Ix fi. o oh, /Ix* = 
max{lcvf, I : i = 1, . . . . 7~). First, let E > 0 be given. We can choose ~1 E X, ~~,LL~~ = 1 
such that 

IIc fi ’ Ph, I/x* < Icb~fi OPh,)l f& 

= IC w4Wl+ E 

< C l~fi I IP({hi))l+ & 

5 max{bj, I> C I/4{hzI)I + E 

i maxkf, I) + E, 

since c Ip({hi})l < llpll = 1. Hence, [Ix fi 0 &iI(x* 5 max{laf,[). On the other 
hand, for each j = 1, . . . . n, we let pj E X be the unit point mass at h,. Then 

IIPL~II = 1, and 

so that max{lql) 5 IIC .A o~h,Il~. . 
Now, consider cr E J?(r) given by u(h) = h, if h = l/rC for some lc = 1,2, . . . . 

u(h) = 0 otherwise. Let hj = l/j for j = 1, . . ..n. and let fJ 6 (Xh3)* be 
determined by ~lf~ = 1. Then 

2 WjL I-j) = 2 l/i 
j=l j=l 
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but IIC fj O Ph, [Ix* = 1, so that g $ I’BsE(T). However, let pL, E X be the 
discrete measure on [0, l] such that p,({l/j}) = l/j for each j = 1, . . . . n. Then 
I;;E E I’BsE(~) and rr = 1imL. 

Example 3.2: It is also shown in [7] that when G is a compact abelian group, 
each of the convolution L1(G)-modules C(G), P(G) (1 2 p 2 CO) and M(G) is 
BSE, and the question is asked whether the same is true for the case of non- 
compact G. This is true, at least for P(G) when 1 < p < CO, but the reason 
turns out not to be especially interesting, as the following shows: 

We have noted that for algebras A of the sort we are using, and A-modules 
X, we have a(z + Xh) = Z(h)(z + Xh). Thus, if f E (X,)’ = (X/Xh)* Y 
(Xh)l, we may write (f . u)(x + Xh) = Zi(h)f(z + Xh), that is, f. a = Z(h)f 
in (X,)‘. Hence f (actually, its isomorphic image in (Xh)‘) generates a one- 
dimensional submodule in X’. Conversely, each element of X* which generates 
a one-dimensional submodule in X’ clearly annihilates Xh, and therefore has an 
isomorphic image in (Xh)* . 

It is shown in [3] that for any locally compact abelian group G, the one dimen- 
sional submodules in D(G) (1 < p 5 cm) are scalar multiples of characters of G. 
But when G is non-compact, these characters are not in P(G) for 1 < p < co, 

and so D(G) has no one-dimensional submodules. It follows that if 1 < p < co, 

X = P(G), and G is non-compact, then Xh = 0 for each character h E ALI = 

2. In this case, the only section of the multiplier bundle for Lp(G) as a module 
over L1(G) is the zero section, which is trivially BSE. 

Acknowledgment: The author wishes to thank the referee for his several helpful 
suggestions and for calling an additional reference to his attention. 
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