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ABSTRACT. Suppose H2(LF) is the Hardy space over the unit polydisk Dn, 

and [h] is the closed submodule generated by a function h E Hm(Dn). The 
quotient H2(D”) 8 [h] is an A(Dn) module and the coordinate functions 
21, 22, . ..I zn act on H2(D”) 8 [h] as bounded linear operators. In this 
paper, we first make a study of the spectral properties of these operators 
and reveal how these properties are related to the function h. Then we will 
have a look at the analytic continuation problem. At last, we will show a 
rigidity phenomenon of quotient Hardy modules. 

0. INTR~DUOT~~N 

We let C” denote the Cartesian product of n copies of the complex field. The 
points of C” are thus ordered n-tuples z = (~1, 22, . . ..z.). D” will be the 
unit polydisk in C” with distinguished boundary T”, where T is the unit circle. 
The closure of polynomials over Dn under the supremum norm will be denoted by 
A( Dn) and called the polydisk algebra. The Hardy space H2 (D”) is the collection 
of holomorphic functions over D” which satisfy the inequality 

with norm 

where dm is the normalized Lebesgue measure on Tn. H” (D”) is the space of 
all bounded holomorphic functions in Dn with 

llfllm = wlfb)l> z E Dn> 
and it is easily seen that H”(D”) 1s a Banach algebra with pointwise multipli- 

cation and addition. The collection of invertible elements in algebra H”(D”) 
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is denoted by [Hi]-‘. The Hm spaces over other domains are similarly 
defined. Suppose R is any open set that contains Dn. For any natural number j 
less than or equal to n and any p E 0, we set 

which is called the slice of R at zj = p. In many places of this paper, we will 
assume some functions to be holomorphic in a neighborhood of Dn. The slice 
sets will be useful in the discussion there. For any h holomorphic in a domain, 
Z(h) will denotes the set of zeros of h in that domain. 

It is well known that the space H2(D”) is an A(D”) -module with action 
defined by the pointwise multiplication by A( D”) functions. For any h E H2( D”), 
we let 

[h] := Ao”)hHZ 

be the submodule generated by the function h. A function h E H2(D”) is called 
Helson outer(denoted outer(H)) if [h] is equal to H2( D”) and is called inner if 
[h(z)1 is equal to 1 almost everywhere on T”. It is easy to see that when h is 
inner, 

[h] = hH2(Dn) 

Normally [h] is a proper subspace of H’(D”). If we let 

p : H2(D”) -+ [h], q : H2(D”) + H2(D”) 8 [h] 

be projections, then one checks that the map S : A(D”) + B(H2(D”) 8 [h]) 
defined by 

%s := 4fSI f E A(D”), g E H2(D”) 8 [h], 

is a homomorphism which turns H2(D”) 8 [h] into a quotient A(D”)-module. 
One sees that the operators S,,, S,,, . . . . SZn are compressions of the Toeplitz 

operators T,, , T,, , . . . . T,,, onto H2(D”) 8 [h]. For convenience we denote S,, 

simply by Sj, j = 1, 2, . . . . n. 
In section 1, we make a study of the the spectra of the operators Si, Sz, . . . . S, 

as well as the joint spectrum of the n-tuple (Si, Sz, . . . . S,). Section 2 is devoted 
to the study of some functional properties of certain functions in H2(D”). In 
section 3, we establish a rigidity phenomenon of quotient modules. 

We thank the referee for bringing [CR] to our attention and making other 

comments on this paper. 
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1. SPECTRUM 

We recall from section 0 that Si, Sz, . . . . S,, are the compressions of the Toeplitz 
operators T,, , Tzz, . . . . Tzn to the quotient module H2(O”) 8 [h]. Cowen and 
Rubel made a study of the spectral properties of the operators Si, S9, . . . . S, and 
showed a close relation between the joint spectrum and the zero set of h([CR]). 
In this section we will show that under certain conditions the spectrum of S, is 
exactly the projection of the zero set to the jth coordinate. 

We proceed by proving the following 

Lemma 1.1. If h is holomorphic in a neighborhood of Dn and h(X, 2) E 
[II”(S:)]-‘, then X E p(Sl), the resolwent set of 5’1. 

PROOF. Consider the function 

F(zl z,) = 1 - h(zl, z’W1G6 2’) > 
Zl - x 

By the Weierstrass Preparation Theorem[Kr, Thm. 6.4.51, the numerator of F 
has ~1 - X as a factor, and hence F is a bounded holomorphic function over Dn. 
So SF is a bounded operator on H2( Dn) 8 [h]. 

For every f E H2(D”) 8 [h], 

(5 - X)SF~ = q(zl - A)Ff 

= q(l - h(.,.)h-l(X,.))f 

= qf - qh(., W1(k .)f 

= qf = f. 

This shows that 

(Si - x)SF = 1. 

Since Si commutes with SF, we also have that 

SF(Si - A) = 1 

i.e. X E p(Si). q  

Similar statements are true for the operators Sz, . . . . S, with the corresponding 
assumptions on h. 

In essence, if X is not the j-th coordinate of any of the zeros of h in Dn, then X 
is in the resolvent set of Sj. It is actually possible to give a complete description of 
the spectra of these compression operators when Z(h) satisfies certain conditions, 
but it is convenient to have a look at their joint spectrum first. 



510 DOUGLAS AND YANG 

Let us first give the definition of the joint spectrum. A good reference for this 
subject is Chapter III in [Ho]. 

Suppose B is a commutative Banach algebra with unit e, and 

is a tuple of elements in B. We say that a is non-singular if there are elements 

br, ba, . . . . b, E t? with 

aibz = e. 
i=l 

The tuple a is called singular if it is not non-singular. The joint spectrum of the 
tuple a is defined as 

c(a) := {z E C” : a - ze is singular.} 

Here a - ze denotes the tuple (al - ~1, u2 - ~2, . . . . a, - z,). 
Now we state two more lemmas which are special cases of results in [CR] with 

only slightly different proofs. 

Lemma 1.2. Suppose h is holomorphic in a neighborhood of D” and 

is not empty, then the joint spectrum 

4s1,sz )..., &) c Z(h)nDn. 

PROOF. Without loss of generality we may assume that h is holomorphic in a 
pseudoconvex neighborhood U of D”. Then, for any X = (Xl, Aa, .., A,) E 
D”\Z(h)nD, we can write h as 

h(zl, 22, . . . . 4 = h(&, Aa, . . . . A,) + -& - &)gj 
j=l 

for some functions gj that are also holomorphic in U[Kr, Thm.7.2.91. Since 

h(z)h-l(X) = 1 + h-l(X) e(zj - Xj)gj, 
j=l 
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it follows for any f E H2(D”) 8 [h] that 

= q(1 - h(.)Kl(X))f 
= qf = f. 

This implies that 

-h-l(X) k(Sj - x&9,, = I, 
j=l 

-_ 
and hence X E p(S1, 5’2, . . . . Sn) for any X E o”\ Z(h) n D”, or equivalently 

a(&, s2, ..‘, Sn) c Z(h)nD”. 

Here we note that Z(h) nD” not empty doesn’t imply that \h] is proper. For 
example, [z + w + 21 is equal to H2(D2) ([Gel). In Lemma 1.2 we excluded the 
trivial case [h] = H2(D2). I n case Z(h) n P is not empty, we have an inclusion 
in the other direction. 

Lemma 1.3. If h is holomorphic in a neighborhood of Dn and Z(h) n D” is not 
empty, then 

Z(h) n D” c a(S1, S2, . . . . SJ. 

PROOF. Suppose x = (A,, X2, . . . . A,) E Z(h) n D”. It is easy to see that 

26% - &i)(H2(Dn) 8 [hl) + [hl c e[z, - &1+ [hl, 
j=l j=l 

but X is a common zero of the functions z1 - X1, z2 - AZ,... , z, - A, and h, so 

Cj”=l[ZJ - %I + [hl is a proper subset of H2( D”). This implies that 

e(S, - Xj)(H2(D”) 8 [h]) # H2(Dn) 8 [h] 
j=l 

i.e. X E (T(S~, 572, . . . . S,). 0 

Using module resolution and tensor product one can prove the inclusion in 
this lemma for other submodules. But the statement here is good enough for our 
purpose. 

Combining lemmas 1.2 and 1.3 , we have the following 
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Theorem 1.4. If h is holomorphic in a neighborhood of Dn such that 

(*) Z(h) n D = Z(h) n Dn, 

then 

a(&, Sz, . . . . Sn) = Z(h) n D”. 

For j = 1, 2, 3, . . . . n and any z E Dn, we let 

nj’jz dGf zj 

be the projection to the j-th coordinate of z. It is well known that, 

y$%, S2, ...1 Sn) c a(S,) 

Combining lemma 1.1 and the above theorem, we have 

Theorem 1.5. If h is holomorphic in a neighborhood of Dn that satisfies condi- 
tion (*), then for j = 1, 2, . . . . n, 

CT($) = nj(Z(h) n Dn). 

PROOF. It suffices to show that 

o(Sj) c xj(Z(h) n Dn). 

In fact, if p is inside the complement of xj(Z(h) n D”), then fixing zj = p, h 
doesn’t vanish on the closure of SL. Lemma 1.1 then concludes that ~1 E p(S,). 0 

Theorem 1.5 will be used in section 2 to make a study of the analytic contin- 
uation problem. 

2. ANALYTIC CONTINUATION 

In [AC], Ahern and Clark made a study on the analytic continuation of func- 
tions in certain quotient Hardy modules. In this section, we are going to use a 
result from their work and the results obtained in section 1 to study the analytic 
continuation problem. Again we find that the zero set plays an important role. 

Corollary 2.1. If h is holomorphic in a neighborhood of D” and 
h is in [H”(Si)]-’ setting zj = X with 1x1 = 1, then every function in H2(D”) 8 
[h] has an analytic continuation to a neighborhood of 03-l x {X) x Dn-j. 
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PROOF. We prove the assertion for j = 1. 
Every function of H2(O”) 8 [h] has the property that 

0x1, x2, “‘, 
- 

X,) =< f, (I - KS,)-‘(I - GS2)-‘. ‘. (I- x&J’ql >, 

where q is the projection from H2(O”) onto H2(O”) 8 [h]([AC]). Therefore f 
extends analytically in the first variable to a neighborhood of Xi if l/x is in the 
resolvent set of Si. If Xr = X, then l/x = X is in the resolvent set of Si by Lemma 
1.1 and hence the corollary follows. 0 

In essence, this corollary means that if a X E T is not the j-th coordinate of 
any of the zeros of h in D”, then every function of H2(O”) 8 [h] has an analytic 
continuation to a fixed neighborhood of Dj-l x {A} x D”-j. 

Example : If h( Z,W) = I - pw for some nonzero p E D, then h(X,w) is 
holomorphic in a neighborhood of D for every X E T and h(X, .) is invertible in 
Hm(D). Then by the corollary, all the functions of H2(02)e[~--~] are analytic 
in a neighborhood of the unit disk in the first variable. 

When n = 1, it is well known that every function of H2(D), the Hardy space 
over the unit disk, has an inner-outer(H) factorization. But that is far from the 
case even when n = ~([Ru, pp 631). (H ere we alert the reader that the notion of 
outer function considered in [Ru] is not the same as that used here even though 
they are the same when n=l. We refer the reader to [Ru] for a detailed discussion.) 
Equipped with corollary 2.1 and a theorem from [AC], we find a simple way to 
determine that certain functions have no inner-outer(H) factorization. 

Theorem 2.2. Suppose h is holomorphic in a neighborhood of Dn satisfying the 
condition (*) in theorem 1.4 such that 
1. Z(h) n Dn is not a subset of a countable union of slices of D”, and 
2. there is an integer j < n such that rrj(Z(h) n D”) doesn’t contain the unit 
circle T. 
Then h has no inner-outer(H) factorization. 

We note that condition 1 demands in particular that Z(h) n D” is not empty. 
The proof uses the following theorem of P.Ahern and D.Clark[AC]. 

Theorem 2.3. Suppose M = gH2(D”) where g is inner, X = (Xl,&, . ..A.) E 
dD” with IXjl = 1, and there is a neighborhood B of X such that every function 
in H2(D”) 8 M has an analytic continuation into B. Then g is a function of zj 
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alone. In particular , if more than one of the Xi has modulus 1, g is a constant 
and ML =O. 

We now come to the proof of theorem 2.2. 

PROOF. Suppose h is a function with the properties mentioned in the theorem. 
If h has the inner-outer(H) factorization GF, then 

Z(h) n Dn = Z(G) n Dn 

and [h] = GH2(D”). 
If I_L E T \xj(Z(h) n Dn) , then I_L E p(Sj) from theorem 1.5. Let B(p) c p(Sj) 

be a neighborhood of CL. Corollary 2.1 shows that each f of H2 ( Dn) 8 GH2 (D”) 
has an analytic continuation into Dj-l x B(p) x D”-j. Then the theorem of Ahern 
and Clark implies that G depends on zj only. Therefore Z(h) n D” must be a 
subset of a countable union of slices of Dn which contradicts the assumption. 0 

In view of the results in [ACD], theorem 2.2 enables one to construct many 
examples of submodules that are not equivalent to H2( Dn). 

3. QUOTIENT MODULE 

Submodules with thin zero sets exhibit the so called rigidity phenomenon 
[DY][Pa]. Things are much different when the zero sets are hyper-surfaces. For 
example, it is well known that M is equivalent to gM for any submodule if g is 
inner. But the zero sets of M and gM can be quite different. In this section, 
we prove a theorem which shows that for quotient modules this is by far not the 
case. 

Let us first recall some definitions. If Hi and HZ are two A(D”) modules, then 
HI is said to be unitarily equivalent(similar) to Hz if there is a unitary(invertible) 
module map from HI to Hz. A bounded module map T from HI to HZ is called 
quasi-a&e if it is one to one and has dense range. HI and Hz are said to be 
quasi-similar if there are quasi-afline module maps from HI to Hz and from HZ 
to HI. One sees that similarity implies quasi-similarity . 

In [DF], the first author and C. Foias have shown that if HI and HZ are two 
submodules of H2(D”) then H2( D”) 8 H1 is unitarily equivalent to H2(D”) 8 H2 
if and only if HI = Hz. In [DC], the first author and Xiaoman Chen were able 
to prove that if either Ji or Js is principal in C[Z, w], then H2(Ci) 8 [Jl] is quasi- 
similar to H2(s2) 8 [Jz] if and only if 51 = J2, where R can be any bounded 

domain. They proved the result through a detailed analysis of the zero varieties 
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of the two ideals. We refer the reader to [FS] and [Wo] for definitions of Hardy 
spaces over general domains. 

Recently we discovered a direct approach which generalize the results in [DC]. 
This approach was also suggested by Keren Yan in a less general context some 
years ago. We state our result in the polydisk case. 

Proposition 3.1. If Ml and MZ are submodules of H2(D”) such that there is a 
quasi-afine module map from H2(D”) 8 Ml to H2(D”) 8 M2, then every bounded 
function in Ml is also contained in h/r,. 

PROOF. Suppose 

pl : H2(D”) + M1, q1 : H2(D”) + H2(D”) 8 M1, 

p2 : H2(D”) + M2, q2 : H2(D”) + H2(D”) 8 M2, 

are projections and let the operator T : H2(D”) 8 Ml + H2(D”) 8 M2 be the 
quasi-affine module map. Then 

qa_fT = Tqlf, for any f E A(D”). 

As multiplication operators acting on H2(D”), HO”(D”) is the weak operator 
closure of A(Dn), so the equality 

q2fT = Tqlf 

holds for every f E HOO(D”). In particular, for any bounded function g E Ml, it 
follows 

qzgT = Tag = 0, 

and hence the operator q2g = 0 since T has dense range. If we choose q21 E 
H2(Dn) 8 M2, then 

cl = 92d421) = Q2(9). 

This shows that g E Mz. 0 

This proposition leads to the following theorem which shows the rigidity phe- 
nomenon of quotient Hardy modules. 

Theorem 3.2. If Ml and M2 are submodules both generated by bounded holomor- 
phic functions , then H2(D”) 8 Ml and H2(D”) 8 M2 are quasi-similar A(D”) 
modules if and only if Ml = M2. 
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PROOF. Sufficiency is obvious. 
From the above theorem every bounded function of Ml also belongs in Mz. 

Since MI is generated by bounded functions and Mz is a closed submodule, we 
have that 

MI c Mz. 

Similarly we also have the inclusion 

MzcMlr 

and hence 

M1=M2. 

Here we note that the above theorem in the case of the Hardy space over the 
unit disk is also implied by the Livsic-Moeller theorem[Ni]. We also point out that 
the proofs work for other A(D”) modules, such as the weighted Hardy modules 
and even the Bergman modules. 

We end this paper by a conjecture suggested by theorem 3.2. 

Conjecture. If Ml and 1112 are submodules of H2(D”), then H2(D”) 8 MI 
is similar to H2(D”) 8 M2 if and only if Ml = M2. 
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