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ABSTRACT. Compactly supported orthogonal wavelets are built on the Can- 
tor dyadic group (the dyadic or a-series local field). Necessary and sufficient 
conditions are given on a trigonometric polynomial scaling filter for a mul- 
tiresolution analysis to result. A Lipschitz regularity condition is defined 
and an unconditional P-convergence result is given for regular wavelet ex- 
pansions (p > 1). Wavelets are given whose scaling filter is a trigonometric 
polynomial with 2n many terms; regular wavelets with filters with 8 terms 
are detailed. These wavelets are identified with certain Walsh series on the 
real line. A Mallat tree algorithm is given for the wavelets. 

1. INTRODUCTION 

To better understand the construction of orthogonal wavelets and to better un- 
derstand analysis on groups, we study compactly supported orthogonal wavelets 
on the locally compact Cantor dyadic group; this group, also known as the 2-series 
local field, is rather different in structure than other groups for which wavelet con- 
structions have been carried out. 

Our purpose here is to extend and strengthen the results in Lang [lo]. In that 
paper, compactly supported orthogonal wavelets were constructed on the locally 
compact Cantor dyadic group. These wavelets were identified with certain Walsh 
series on the real line, and form bases for L2 on the line. These bases included 
the familiar Haar basis, and a basis arising from a scaling filter of length 4 (4 
nonzero terms, each a Walsh function). 

Here, necessary and sufficient conditions analogous to those of A. Cohen are 
given on a scaling filter for a multiresolution analysis, and wavelets forming a 
basis of L2, to arise. We also give a Lipschitz regularity condition and a Calderhn- 
Zygmund theory which leads to an unconditional LP-convergence result (p > 1) 
for our wavelet expansions. 
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We describe length 2n wavelets (compactly supported orthogonal wavelets aris- 
ing from scaling filters with 2” many terms). We detail length 8 wavelets, some 
of which satisfy our Lipschitz-regularity condition. We also describe completely 
the regularity of the length 4 wavelets of Lang [lo]. 

We give a fast tree algorithm for expansions in these wavelets; these wavelets 
may be identified with Walsh series on the real line, where analysis using the tree 
algorithm is possible. 

We note that our work complements the work of S. Dahlke [l], who constructs 
wavelets on locally compact abelian groups (under certain natural assumptions), 
resembling spline wavelets. Spline wavelets may be built by repeated convolutions 
of a simple Haar-like scaling function (a “box” function). That construction on the 
Cantor dyadic group would actually be trivial: the natural choice for the Haar- 
like scaling function has itself as its convolution powers. Other constructions 
of wavelets on locally compact groups include Grochenig and Madych [6], and 
Lemarie [12]. Also see [8], Chapter 5, sections 8, 9 and 10. 

1.1. Notation. For the convenience of the reader, we reiterate the description 
in Lang [lo] of the locally compact Cantor dyadic group. 

Let 

G = fi* Z,(2) 
?I=--DC, 

= {(z~)~~z : ~:j E (0, 1) for all j and x3 = 0 for all j > n, for some n E Z}. 

Then G is an abelian group with coordinate-wise addition; G is locally compact 
under the Cartesian product topology. 

We may think of x E G as a binary expansion x = x,x,-r . . x~xo.x-~x_~~~~ 
and we identify G as a measure space with the half real line [0, co) under the 

mapping 2 --j 1x1 = Cjez 3 x .2j. This induces Haar measure on G. 
Let A C: G be the ‘lattice’ subgroup A = {x E G : xj = 0 for j < 0) and let 

D = {z E G : xj = 0 for j 2 0). Thus A is countable and closed, D is compact, 
and G/A = D. Under the map x + 1x1, A is identified with the nonnegative 
integers in the half real line, and D is identified with the interval [0, m). 

We now define dilation on G by p : G + G where Pi = x3-r for x E G. 
(This corresponds to x --t 2x on the real line, under the map x + Ix].) We let 
c : G + G be the inverse mapping cry = xj+r for x E G. We let $ be PO.. ‘0 p 
(j times) if j > 0 and cr o . o CT (j times) if j < 0; p” is the identity mapping. 
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The Pontryagin dual group d of G is topologically isomorphic to G. We may 
write 

G = {w = (Wj)jEZ : wj E {O,l} f or all j and wj = 0 for all j > n for some n) 

and define W(Z) = njez(-l)w-l-jz~ f or x = (~j)~ in G. This gives w E G as a 
group character on G. Note the minus sign in the exponent, in the subscript of 
w, so that the product actually has only finitely many terms different than 1. 

We define dilation on & just as on G: p(w)j = wj-r for w = (wj)j in d. We 
find that the character p(w) evaluated at x = (~j)~ is equal to w evaluated at 
p(x), i.e., w o p = p(w). This is analogous to the situation for characters on the 
real line: ei(2z)Y = ei2(2Y). We define I E G to be the set of A-periodic characters 
on G: w(x + n) = w(x) for z E G, n E A. The lattice subgroup A in 6 turns out 
to be exactly I. 

We will use the notation Ww(x) = w(z) for w E 6’ and z E G. If w E F then 
Iw( is an (ordinary) integer, and W, is identified with an ordinary Walsh function 
on the real line. Here we will use the Paley enumeration: if we let Q(X) = 
sign(sin(2K2”x)) be the k-th Rademacher function, then the Walsh function W, 
is the product of the functions rk such that the Ic-th bit in the binary expansion of 
n is a 1. Thus WI is the function constantly equal to 1 on the interval 0 5 x < l/2 
and constantly equal to -1 on l/2 < x < 1. 

We will also use the notation Wz(w) = w(x) for x E G and w E G to write 
characters on d; by Pontryagin duality, all characters on d arise in this way. 

The Fourier transform is as usual: for 4 a function on G, let 

See Hewitt and Ross [7]; F. Schipp, W. R. Wade, P. Simon [15]; M. Taibleson 
[17]; B. Golubov, A. Efimov, Skvortsov [5]; or R. E. Edwards, G. I. Gaudry ]4] 
for development of the harmonic analysis of these groups. In [17], the locally 
compact group G is an example of a local field, the 2 series field. Our notation 
follows that of Edwards and Gaudry, and Hewitt and Ross. 

1.2. Multiresolution analyses. We define a multiresolution analysis (or MRA) 
to be a sequence of closed subspaces Vj c L2(G) (J’ E 2) such that 

1. Vj C Vj+, for all j E 2 
2. f E Vj if and only if pf = f 0 p E Vj+, 
3. f E V, if and only if rnf E Vi for all n E A (where ~~j(x) = f(x + y) is our 

notation for translation); so f E Vo if and only if pirn f E Vj. 
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4. UQ is dense in L’(K) and nr/; = (0) 
5. There is 4 E Vo such that (~~4 : n E A} is a Riesz basis of Vo. 

2. SCALING FILTERS 

Suppose for 4 E L2 (G) we define Vj to be the L2-closure of the linear span of 
{4(8(z) + n) : n E A}, for j E 2. To have an MRA we need V, C V,+i for all 
j E 2. In particular, we require V-1 C Vo. This entails 4(or) = 2 CnEll a,4(z + 

n) for some {a,}. Under the Fourier transform, we have &pw) = me(w)&w) 
where me(w) = CnEA anIV,(w). We call me a scaling filter. We seek conditions 

on mo such that J(w) = m~(ow)me(~~w)mc(o~w)~~~ converges, and such that 
(~~4 : n E A} is an orthonormal set whose norm-closed linear span is a space Vs 
which generates an MRA. Here 4 is the inverse Fourier transform of 4; we call $ 
a scaling function for the resulting MRA. 

We may show, similar to S. Mallat [13], that the product m~(ow)mo(~~w) 
mc(03w). . . converges to 4 E L2(G) if mo(0) = 1 and (m~(w+O.l)]~ + Imc(w)12 = 
1. If the scaling filter mc is a trigonometric polynomial, we may give necessary 
and sufficient conditions similar to those of A. Cohen on mo for the translates 
of 4 by A to be orthogonal. For E 2 G we say E is congruent to D module 
A if ]El = 1 (H aar measure) and if for all y E E there exists n E A such that 
y+nED. 

We then have our analogue of A. Cohen’s theorem (see Daubechies ‘[2], 6.3): 

Theorem 2.1. Suppose mo is a trigonometric polynomial with ma(w) = 1 and 
Imo(w +0.1)12 + \mc(w)12 E 1. Define J(w) = n,“,, mo(&w). Then the following 
are equivalent: 

1. There exists a compact set E congruent to D modulo A and containing a 
neighborhood of 0 such that inf+e infwEE Irno(cjw)l > 0 

2. The translates of C#J by A are orthogonal. 

The proof of this theorem is essentially the same as the proof of the original 
version, as detailed in I. Daubechies [2], 6.3. 

For mo and 4 as in Theorem 2.1, we have the result: 

Theorem 2.2. The translates of C$ by A form an orthonormal basis for a space 
Vo, the dilates of which form an MRA. 

PROOF. The proof uses the following version of a lemma of Mallat 1131: Let 

4x7~) = ~g(x-Q(y-V h w ere g is a compactly supported bounded integrable 
kEA 
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function on G, and let Tj be the integral operator with kernel 2jA(#(z), d(y)). 
If sG A(z, y) dy = 1 for almost all 2, then Tj converges to the identity operator. 

Note that 4 as in Theorem 2.1 is compactly supported. This follows from ^ 
4(w) = m&w)mo(,zr2w) ... b em ’ g constant on cosets of PjD for some j (mc is a 
trigonometric polynomial). 

We also make note of the following version of Poisson summation: if 4 E L2(G) 
is compactly supported then ClcEh 4(x - k) = CnEA $(n)Wn(z) (i.e., the right- 
hand side converges in L2 to the A-periodic function on the left-hand side). (See 
Kluvanek [9] or Theorem 8.3.2 of Chapter 5 of [8].) 

This with Theorem 2.1 may be used to show that A(z, y) = c 4(x - k)&x - k) 
satisfies J A(z, y) dy = 1 for almost all 2, so the Mallat lemma applies. 0 

3. THE WAVELET 1c, 

Suppose we have an MRA (&)j of L2(G). W e will construct wavelets from 
this MRA. We will follow the approach of S. Mallat [13], or Y. Meyer [14] chapter 

III section 2. (This is similar to Lang [lo].) 

We know Vj & Vj+l. Let Wj be the orthogonal complement of Vj in V3+1, 
so vj CB Wj = vj+1. Let $J be the scaling function whose translates span Vo. 
We seek q!~ whose translates span WO, whose translates are orthogonal, and such 
that the translates of 1c, are orthogonal to the translates of 4. We should have 

4(0x) = 2 z&e* a,4(z + n) and +(a~) = 2CnEll bn4(zr + n). Upon taking 

Fourier transforms, we have &pw) = mc(w)&w) and q(pw) = ~,(w)&w), where 

ma(w) = Cne* anWn(u) and ml(w) = CnEIZ b, Wn(w). The orthogonality con- 
ditions are met when 

[ 
ma(w) m0 (w 1 

ml(w + 0.1) m,(w + 0.1) 1 
is a unitary matrix. This can be arranged by letting ml(w) = Wc.i(w)fic(w+O.l) 
(note WO.I(W + 0.1) = -WO.J(~)). So 

+(x1 = X(-l) ~n’a,~(p(5) + 72 + 1.0). 
nEA 

This is (3.2) of Lang [lo]. 

4. CALDER~N-ZYGMUND THEORY 

We wish to show that expansions in the wavelets on the Cantor dyadic group 
converge unconditionally in Lp(G) for p > 1. We will do so for wavelets arising 
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from scaling filters as in Theorem 2.1, which satisfy the following Lipschitz-type 
regularity condition: 

Definition 1. We say + is regular if 1$(x) - $(y)l < Clz - yI for some constant 
C, for all 2, y E G. 

This condition differs from the regularity condition of Lang [lo]. 
Our proof of the P-convergence result (Theorem 4.4 below) uses the technique 

of Y. Meyer (see Daubechies [2] chapter 9). This entails showing that the integral 
operator corresponding to wavelet expansion is a Calderbn-Zygmund singular in- 
tegral operator, and hence of type weak( 1,l); it then follows by the Marcinkowicz 
interpolation theorem that the operator is bounded on Lp(G) for p > 1. See M. 
Taibleson [17] for more information and references concerning singular integral 
operator theory on local fields. 

Our definition of a Calderhn-Zygmund singular integral operator is as follows: 

Definition 2. Let T be a bounded integral operator on L2(G), whose kernel 
M(z, y) satisfies for y E yo + g(D), 

J IM(T Y) - M(?Yo)Idz I c < cm. 
G\(yo+~j+‘(D)) 

Then T is a Caldero’n-Zygmund singular integral operator. 

This definition is similar to that given in Dyn’kin [3] (3.24), p. 237. Also see 
E. Stein [16], the discussion following equation (2’), p. 34. The proof that such 
operators are of type weak(l,l) proceeds as usual via the Calderbn-Zygmund 
decomposition theorem (e.g., Edwards and Gaudry [4] Theorem 2.3.2), and the 
following lemma: 

Lemma 4.1. Let T be a Calderdn-Zygmund singular integral operator. Let b E 

L’(G) be supported on yo+pj(D) and let JG b = 0. Then ~G,~yO+P~+l~D~~ ITb(x)l dx 

5 CJG Ib(y)l& 
Lemma 4.1 is similar to equation (3.25) of section 5.1 of [3], p. 237. We have: 

Theorem 4.2. Any Calderdn-Zygmund singular integral operator T is of type 
weak(l,l): There is a constant C > 0 such that meas{x E G : ITj(x)I > X} 1. 
w joranyX>O. 

We have the following theorem: 

Theorem 4.3. Suppose II, has support in p”(D) for some m E Z, and syppose 
1c, satisfies the regularity condition. Let M(x, y) = CjEZ,lcEhBjklClj~(~)~jk(~) 
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where $jk(x) = 2j/‘$(pj(x) + k) and 0jk E (1, -l}. Let y E yo + p’(D). Let 

I = J~\~YO+P’+~~~~~ IM(x, y) - M(x, yo)l dx. Then I is bounded by a constant. 

PROOF. For each j let Qj be the set of lc E A such that $(p7x - k)[q(#y - Ic) - 
q(gyo - k)] # 0. We find that Q3 has cardinality at most 2”+l. So 

I= 
I G\(Yo+#+‘(~)) 

c c 2+,rc$~(tix - k)[&‘y - k) - &$YO - k)l dx. 
3 kEQ, 

Now x $! yo + pe+’ (D) and y E yo + pe( D). Consequently, by the triangle 
inequality, if j > m - e we know p3 x - k and p7 y - k cannot both belong to p”(D) 
for any k, and #x - k and pJy0 - k cannot both belong to pe(D) for any k. So if 
j > m - e it follows that $~(p’x - k)[q($y - k) - q($yo - k)] = 0. 

so 

I= 
s G\(Yo+P’+‘(~)) & & 

2+‘&495 - k)[&% - k) - ~($Yu - k)l dz. 

J 

We may estimate this as follows: 

5 c c C2’(2-‘ll1cIII~)l(dl~ - k) - WYO - k)l 

I c c C2’II?dllIY - YOI 5 c C2m+12wlllY -Y0l 
j<m-e&Q, j+-e 

< C2m+12m-e+1))$)(l(y - yo( 5 C22m+2(($J(l. - 

0 

Theorem 4.4. Let I/J be a wawelet associated as in section 3 with a scaling filter 
as in theorem 2.1. Suppose $ obeys the regularity condition of definition 1. Then 
convergence of wavelet expansions is unconditional in LP for p > 1. 

The proof of this follows from the previous theorem, together with theorem 
2.2 (which implies that the operator with kernel M(x,y) is bounded on L2(G) 
and hence is type weak(l,l)), and the Marcinkowicz interpolation theorem (e.g., 

Edwards and Gaudry [4] theorem A.2.1). 
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5. EXAMPLES OF WAVELETS ON THE CANTOR DYADIC GROUP 

Here we describe compactly supported orthogonal wavelets on the Cantor 
dyadic group resulting from scaling filters which are trigonometric polynomials. 
We first discuss the general situation. 

5.1. Length 2” wavelets. Consider ma(w) = ClcE11,,1;,<2n u,IVk(w) where n > 
0. This has 2” many terms. We wish to select {uk} in such a way that the 
conditions of theorem 2.1 are met. This can be done as follows. 

Consider (TV in d. This set corresponds to the real interval [0,2-“) under 
the map w -+ 1~1. This set is also a subgroup of G, with 2” many cosets in 
the group D. These cosets may be written as Ik,, = a”(k) + gn(D) for k E A, 
llcl < 2n. Then Ik,, is identified with the dyadic interval [lc2-“, (k + l)2Zn); 
0 5 k < 2”. Now Wk for llcl < 2” is constant on the sets Ik,, so the same is true 
for mo. Let Sk be the value of mo on Ik,,. Note that {wk : k E 12, Ik( < 2n} is a 
complete set of 2” many characters on the order 2” abelian group formed by the 
cosets Ik,, of a”(D). This implies that given any choice of values {Sk}, we may 
solve the system of 2n many linear equations mo(o”(k)) = Sk, Ikl < 2’, for the 
2n many unknowns {ak}. 

To meet the condition Imo(w)12 + Imo(w +0.1)12 z 1, all we need to do is select 
{Sk} in such a way that IskI2 + Isk’12 = 1, where k’ = k + 2n-1. (Here by 2n-1 
we mean that member of 6’ whose (n - 1)-th coordinate is 1, and whose other 
coordinates are 0.) Addition here is in A, so the mapping k + k+2”-’ is injective 
on the set of k E A with lkl < 2”. To meet the remaining conditions of theorem 
2.1, we set SO = 1 and we require that (ski > 0 for some selection of at least half 
of the sets Ik,n. 

We are then assured that mo leads to 4 whose translates by A span orthogonally 
a space VO which generates an MRA, by theorem 2.2. 

We now detail some examples, in which we will describe the regularity (defini- 
tion 1) of the resulting wavelets. 

5.2. Length 2 wavelets. Here n = 1 and ma(w) = aolVo(w) + alIVl(w). On 
Io,l we let rng have value 1. Then mo must have value 0 on Il,l. It follows that 
ma(w) = TWO + AWN. A s in Lang [lo], this leads to the Haar wavelets. 

5.3. Length 4 wavelets. We now have mo = UOWOO + alW01+ aaI4’u~ + asW11. 
(Here we use binary notation to indicate the elements of A in the subscripts of 
the Walsh functions W.) We meet the conditions of theorem 2.1 by setting mo to 
have value 1 on Ioo,~, value a on I01,2, value 0 on I10,2, and value b on I11,2, where 
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lul2 + lb12 = 1. A s in Lang [lo], this leads to a0 = (l+a+b)/4, ai = (~+a-b)/4, 
~2 = (1 - a - b)/4, and us = (1 - a + b)/4. This leads to 

J(w) = mo(~(w))mo(~2(w))mo(~3(w)). ‘. 

= f(w) + uf(w + 0.1) + ubf(w + 1.1) 

+ uPf(w + 11.1) + a@f(w + 111.1) + ” 

As in [lo], the inverse Fourier transform of this corresponds to the lacunary Walsh 
function series (on the half real line) 

;1~o,2~(x) [I + uWi(z/2) + UbWa(X/2) + ub2w7(X/2) + ob3%(X/2) + . “1 . 

For information about II, and for graphs of these functions, see [lo]. 
We now consider regularity of these wavelets. Let x, y E p(D). Then [4(x) - 

4CY)l 5 ; (c;, IW) lx - YI so 4 1s re u ar if lb] < l/2. The same is true for .!4 1 
$J (being a combination of four translates of dilates of 4). This condition is also 
necessary, as is seen by considering x = 0 and y = 22” (i.e., the element in G 

corresponding to that power of 2): Id(O) - 4(y)] = 1; C,“=, UV 1 M C(bl”. 

5.4. Length 8 wavelets. Here mo = uoWooo + alWool + u2Wolo + u3WolI + 
CQWIOO + a5IVlol + UF,W~,O + u~W’~,,. We meet the conditions of theorem 2.1 by 
setting mo to have value 1 on 1ese,s, value a on 1001,s~ value b on 10ie,s, value c on 
1cii,s, value 0 on 1ioe,s, value d on I ioi,s, value e on 1ire,s, and value f on 1111,s; 
where ]ul2 + (dl2 = 1, ]b12 + ]e12 = 1, and [cl2 + ]fl2 = 1. Also, at most two of 
a, b, c may be zero. It requires solving a linear system of eight equations in eight 
unknowns to obtain the coefficients ok; we omit this here. 

It is possible to develop an expansion for 4(x) in terms of Walsh functions, as 
for the length 4 wavelets. An expansion of the first 255 terms (87 of which are 
nonzero) has been computed by the present author using C language code; no 
simple patterns appear in the coefficients. 

If we choose certain a, b, c (and hence d, e, f), we do obtain some simple ex- 
pansions. 

If a = b = c = 1, we recover the Haar wavelets. (The resulting mo is 1 on u(D) 
and 0 on the rest of D.) If a = 1 and b = c (so d = 0 and e = f), we recover the 
length 4 wavelets. 
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If a = 1, b = 0 and ICI < 1, then d = 0, e = 1, and IfI < 1. In this case, we 
obtain 4(z) = iF(z/4)1~o,~)(~), where 

F = 1 + IV, + cWs + Fc (fj-3W2j_2 + fj-2W23_-1). 
j=3 

This is regular if IfI < l/2. 
If [al < 1, b = 1 and c = 0, then IdI < 1, c = 0 and f = 1. In this case we find 

that qS(z) = $F(~/4)1lo,~)(z), where 

F=l+aU;+a~3+~ndj(~~~+~2~~), 
j=3 

where m3 = 1 + 4 + 16 + . + 4j. This is regular if IdI < l/4. 
In figure 5.4.1, we give graphs of 4 for certain a, b, c. These illustrate the variety 

of waveforms possible. These graphs were produced using the machine-generated 
expansion of 4 described above. 
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6. ALGORITHMS ON THE LINE 

Here we describe a Mallat tree-type algorithm which may be used to analyze 
functions using the wavelets of the previous section. 

For f a function on G, let 4 = s, ~(z)$(#(x) - k)2jj2 dx and djk = 
J, J(x)$(Pj(x) - k)2jj2 dx for j E 2 and lc E A. Then the reconstruction algo- 
rithm is 

c$+l = 2112 c c$ak_,(,) + c dj,bk_p(,) 
nEA nE.4 

and the decomposition algorithm is 

4 = 2ij2 c a,_,(k,4’I and di = 21f2 c b,_,(k)&+‘. 

nEA nEA 

Here the coefficients {ak}, {bk} are those associated with the scaling filters ms 
and mI respectively (see section 3). These algorithms are easy to develop in the 
usual manner. 

Since the Cantor dyadic group may be identified as a measure space with the 
real half-line, this algorithm may be applied to analyze functions on the real line. 
See figure 6.1 for typical “level-j resolutions” of the function f(x) = &?? over 
[0, l] using the length 4 wavelets, for certain values of the parameter a of section 
5.3. The resolution with a = 1.0 is of course just the Haar approximation; on 
each dyadic interval of length l/8, the function is replaced by its average on that 
interval. 

See [ll] for further discussion of the nature and structure of this algorithm. 
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