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ABSTRACT. A piggyback duality and a translation process between this one 
and a Priestley duality for each subvariety of involutive Stone algebras and 
regular o-De Morgan algebras is presented. As a consequence we describe 
free algebras and the prime spectrum of each subvariety. 

1. INTRODUCTION 

The two varieties in the title were introduced in a paper of R. Cignoli and M.S. 
de Gallego [I] concerning De Morgan algebras with operators. These algebras 
are connected with the theory of n-valued Lukasiewicz algebras, and in those 
we study in this paper the operators are lattice endomorphisms or dual lattice 
endomorphisms. 

An algebra (A; V, A, 0, 1, -, V) [(A; V, A, 0, 1, N, o)] of type (2,2,0,0,1,1) is an 
involutive Stone algebra [regular cu-De Morgan algebra] if the reduct (A; V, A, 0, 1, -) 
is a De Morgan algebra and the operator V : A + A [Q : A t A] satisfies the 
following equations: 

(Sl) vo = 0 L (RI) -cYxvcxx= 1 

(Sz) Z A vx = Z (Rz) (-xVCYx)Ax=2 
(Ss) V(xAy)=VzAVy (Es) cuzAa-x=0 
(S$) -VxAVx=Q (R4) o(x V y) = CYX v c”y 

(&) o(xAy) =cuxAcry 1 
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Let S be the variety of involutive Stone algebras and R be the variety of regular 
a-De Morgan algebras. It is shown in [l] that S is a subclass of the class of 
double Stone lattices, so if A E S then A is a pseudocomplemented and a dual 
pseudocomplemented lattice. In fact, N Vx = x* is the pseudocomplement of x 
and V N x = x+ is the dual pseudocomplement of x. Developing a dual category 
equivalence the authors determined the subdirectly irreducible algebras in S. The 
lattice of subvarieties of S is the chain Si c Ss c . c Ss = S, where Si is the 
class of one element algebras and Sj, for 2 < j < 6, is the equational subclass of 
S generated by & (see [l], Theorem 2.8). The diagrams of these L+ for j 2 3 
are those of figure 1. Analogously, the subdirectly irreducible algebras of R were 
determined in Theorem 3.10 of [l], and we denote them also by &, with 1 5 j < 5, 
because it will be clear in each case if we are referring to an algebra of S or to 
an algebra of R. Their diagrams, with the exception of those of L2 and Li, are 
presented in figure 2. 

9l=Vl=Va l 1= Vl= Va = Vb l l=Vl=Va=Vb=Vc 

oc=-a 
Ob=Na 

()a=-a ob=-b 

()a=-b 
oa=Nc 

l o=vo l o=vo .o=vo 

L3 & L -5 
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1 l=UI=Uc=Ua=Ub=Ud 

a=wa 

d=-c 

L -6 

Figure 1 

l 1 = a(b) = o(l) 

#lb=-a 

oa=-b 

. 0 = cl(O) = cl(a) 

L4 

Figure 2 

0 1 = Q(l) = Q(C) 

oc=wa 

ob=wb 

. 0 = ~$0) = a(a) = a(b) 

L -5 

The lattice of the subvarieties of R is described in [l, page 3901 as the finite 
distributive lattice having as join-irreducible elements the classes R, ordered as 
follows: Ra 5 RJ, Rz 5 R* 5 R5 = R and Rs not comparable with Rd. We 
observe that R:! as well as S2 are doubled Boolean algebras since U and o must 
be the identity. For this reason we will not be concerned with them. 

When j E {3,5,6} the subdirectly irreducible algebras in Sj are isomorphic 
to subalgebras of L+ so %SP(&) = ZSP(&j). When j = 4 it results, applying 
Jonsson’s Lemma and using the fact that Ls E X(h), that S4 = ZSP&, &). In 
what follows we will not be concerned with Ss since this class of algebras coincides 
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with the class of regular Q-De Morgan algebras denoted by R3 (see [l], pages 381 
and 390). 

For the subvarieties of R it is clear that R, = ZSP(~j) for j E {3,4,5}, and 
that Rs V R4 = ZS’P(&, &) follows once more by Jonsson’s Lemma. 

2. PIGGYBACK DUALITIES FORINVOLUTIVE STONE ALGEBRAS AND FOR 

REGULAR Q-DE MORGAN ALGEBRAS 

About the theory of natural dualities it must be emphasized that a very useful 
survey is presented in [6]. The book [3] is recommended. 

We suppose the reader familiar with the fundamental facts of how to obtain 
restricted Priestley dualities and natural dualities, how to translate between nat- 
ural and restricted Priestley dualities, and how to apply them in the description 
of free algebras. 

In this section we present a piggyback duality (see [7] and [12]) for each variety 
under consideration and we obtain a nice translation process between this duality 
and a restricted Priestley duality. We apply the Generalized Piggyback Duality 
Theorem (see [7], Theorem 2.5) in its brute force “multiple algebra, single carrier” 
formulation. This theory as it applies to dist,ributive-lattice-ordered algebras was 
presented in [7]. W e use the refinement of Theorem 2.5 of [7] as presented in [13]. 
We will not repeat the definitions here, and we will use the habitual symbology. 

Theorem 2.1. (The Generalized Piggyback Duality Theorem, for distributive- 
lattice-ordered algebras) Suppose that A = ZSP(lI), where Q is a finite set of 
finite algebras of a given fixed type each having a D-reduct. For each f in a let 
0~ be a (possibly empty) subset of D&2). 

Let n= (n; 7, RA) be the topological relational structure on ti {P 1 p E lI} zn 

which 

i) r is the discrete topology, 
ii) RA = SA U TA where 

a) SA is the collection of maximal A-subalgebras of sublattices of the form 

(a, P)-‘(I) = {(a, b) E P x & I da) 5 P(b)} , 

where ff E 02p, p E nQ (f, Q E a), and 
b) TA is the set of graphs of a set &A C U{A(l’,Q) 1 l’,Q E IJ} of endo- 

morphisms satisfying the following separation condition (S): 
for all f E II, given a, b E p with a # b, there exist Q E II, u E 
A&Q) n &A and CY E RQ such that cz(u(a)) # a(u(b)). 
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Then RA yields a duality on A. 

When we say that RA yields a duality on A we mean that the structure n 

generates a class X = ZS,P(n) f o multi-sorted objects such that the natural 

horn-functors D and E into Q and II set up a dual equivalence, as described in 

PI. 

We will now prepare the way to apply Theorem 2.1 to our concrete cases. 
First we must choose JJ and 0~ for each p E I. We have several choices. We 

could minimize the size of II; but then we would have \!A,\ > I in general. As in 
[14], we find that the description of the translation process is most transparent 
when we allow multiple copies of an algebra p in a and then choose JR,1 = 1 for 
all f E 0. 

Let’s consider S4 = ZSP(&4,p14,p24) where PO4 = PI4 = & and pz4 = &. 
Let’s consider S5 = ZXP(&, &,), where Eas = PI5 = LLg, and S6 = ZSP(&) 
where & = As. We will abbreviate this by saying that Sj = ZSP(& 1 i E 13) 
where I3 = (0, 1,2} if j = 4, Ij = (0, 1) if j = 5 and 1j = (0) if j = 6. Where 
convenient we will refer to Sj = ZSP(lJ) to be more concise. 

We are now going to specify suitable carriers for the natural dualities we are 
setting up. For each case f12pil = {cyij} where (~04, (~14 are respectively the bottom 
and the top of H(&), 0~24 is the midpoint of H(&,), ~05, a15 are respectively the 
element of H&) that covers the bottom and the one that is covered by the top, 
and a06 is the element of H(&s) such that crri (1) = [a). 

In the case of regular a-De Morgan algebras it will be convenient for our 
purposes to consider R, = ZS’P(I’,j, I’,,) with PO3 = I& = & for 3 I: j 5 5 
and R3 V R4 = ZSP(l’,,,E,,,P 04,p14). We will abbreviate this writing Rj = 
ZSP(II, 1 i E Ij) where Ij = (0, l} if 3 < j 5 5 and 

R3vR4=ZSP Qu~~,,li~I~, i’e14 
( > 

Where convenient we will refer to these varieties as ZSP(II). 
For 3 5 j < 5, and i E {O,l} we take 02p,) = {aij} where (YQ, CQ are 

respectively the top and the bottom of H(&). 

Since we have so many different cases to handle we will pick out the most 
interesting one and we will work with it. The more relevant results of the other 
cases will be tabulated in table 1. We observe that, in this table, for the subvariety 
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R3 V R4 each column is obtained doing the union of the corresponding columns 
of R3 and Rd. 

Often in what follows A = S4 = Z3p(&rP14,P24) = ZSp(II, 1 i E 1, = 
(0, 1,2}). However we continue specifying A = Sd to make it clear when we are 
dealing with S4 and when we are dealing with a general subvariety A. 

For each A E A, let X” = d(A, p,,) and 

Y” = y E H(A) 1 3x E X”, at3 o x = y 
> 

for each i E IJ 

Lemma 2.2. For each A E A = S4 consider 

CBat4: X” + Y” 

such that @ Ly14(x) = cyi4 o x. Then @Cl,q are bijections. 

PROOF. Consider 

i@ 0124 : X2 =,A@,&,)+ Y2 = {Y E H(A)1 3X E AUP,,), Q24 0 2 = IJ 
> 

X + cY24 0 X 

we want to show that if o!240%1 = (Y24OX2 (i.e., (v S E A) @4(51(s)) = %4(X2(s))) 
then x1 = x2. We must consider the following four cases: 

Case 1) xl(s) = 0. 

We have Q24(Xl(vS)) = CY24(Vxl(S)) = a24(vo) = a24(0) = 0 = Q24(xZ(vS)). 

Then VX~(S) E {a,O} and x2(s) = 0. 

Case 2) xl(s) = a. 

Since c+J~(x~(s)) = c~24(a) = 0 = @~4(x2(s)), then x2(S) E {a,o>. But 

Q24(xl(vS)) = a24(vxl(s)) = CZ24(Va) = Ck’24(1) = 1 = (Y24(xZ(vs)) = a24(vx2(s)) 

Then Vxz(s) E {l,b}, xx(s) E (1, a, b} and consequently x2(s) = a. 

Case 3) xl(s) = b and Case 4) xl(s) = 1 can be proved by entirely analogous 

reasoning. 
If we consider @‘a,,4 or @‘ai4 it can be easily seen that t,hey are also bijections. 

0 

To apply the Generalized Piggyback Duality Theorem for S4 we need to deter- 
mine the monoid of endomorphisms of L4 and L3 which in fact reduce to the iden- 
tity map. It will also be convenient to consider the homomorphism U: p24 + p14, 
the graph of which is {(l,l),(b,a),(a,u),(O,O)}, the identity maps go4 from PO4 
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to e14 and g14 from PI4 to PO4 and i&d, the identity map on et4 for i = 0,l and 

For any of the varieties that we will consider, gij as well as idij will have a 
similar meaning to that we presented above for the case of S4. 

Using the restricted Priestley duality as it appears in [l] or using a merely 
algebraic method we can easily determine S(&,Lj) for j E {5,6} [or R(&,&,)] 
the monoid of endomorphisms of &. In fact for & E S it is (uj’, uj’) with 
j E {5,6} where, using the same symbol for an endomorphism and its graph, we 
have 

$1 = { (1, I), (c, b), (b, b), (al b), (0,O)) , u52 = ihs , 

$1 = {(WI, (44, @,aL(%b),(c,c), (1.1)}, 

p = { (O,O), (4 a), (4 a), (a, a), (Gal, (1, I,} 

For & E R, when j = 3 it reduces to the identity map and when j E {4,5} it is 
(wjl, vj’), where we have v41 = id&,, w42 = {(O,O), (a, 0), (b, l), (1, l)}, u51 = idLs 

and v52 = ((0, O), (a, O), (b, b), (c, I), (1,1)). 
Consider &A = &sq = {god, 914, id24, id04, idId, u}. We can state the following 

lemma: 

Lemma 2.3. Let A = S4 = ZSP(II) and Td be the graphs of the elements of 
&A, then the separation condition (S) of the Theorem 2.1 is verified. 

PROOF. We will see what happens with pairs of elements of p24. Consider (a, 0) 
and (b, 1). We have ~Q~(u(u)) = 1 # (~14(21(0)) = 0 and also 004(21(b)) = 0 # 
CQ~(U(~)) = 1. For the other pairs of p24 it is enough to consider ~~24 0 id24 to get 
them separated. We can act analogously to verify the condition (S) on the pairs 
of elements of PO4 and of p14. 0 

Since in the algebras we are dealing with the unary operations are homomor- 
phisms or dual homomorphisms, we obtain the following proposition: 

Proposition 2.4. Let A E S [A E R]. Let B be a sublattice of A, then the 
maximal S-subalgebra [R-subalgebra] of B is 

B”= 
{ 

XEB( -x,Vx,~Vx,V~x,~V~x,V~Vx E B 
> 

[ { 
B”= XEB( -IC,LYZ, ~c~x:)~~-x,-~~~x,c~-c~x E B 11 . 

PROOF. It results easily as a consequence of Lemma 3.5 of [7] using among others 
the equations cy2x = crx and CY N CYX = N ax [V2x = Vx and V N Vx = N OX]. 0 
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In what follows instead of saying that B” is a maximal A-subalgebra of B we 
will simply say that it is a “maximal subalgebra of’. 

We will denote in A = S, with j E {4,5.6} and A = Rj with j E {3,4, S}, 
(CYQ, c~lc~)-r(I)~ by rik. We adopt this notation because the context makes clear 
the variety we are referring to. For each A E A the pointwise extension of r,k to 
A@, &) x A(& I&) will be denoted by r,Ak. 

For A = S4 we let Sd consist of the following relations: 

r01 = {(Od), (%a), (l,l)} ; r10 = {(W W)} ; 

r00 = ((04, ((%a), C&1)} ; r11 = {C&O), (a,a), (Ll)) ; 

r02 = {(O,O), (%a), (a,b), C&l)} ; r20 = {(Ll), C&O)} ; 

r21 = {(W, (%a), (ha), (Ll)} ; r12 = {(O,O), (W)} ; 

r22 = {(o,o), (%a), (hb), (14) 

We can now state the following theorem: 

Theorem 2.5. Let A = S4 = ZS’P(lJ), Td and SJ, us indicated above. Let 
n= (ti P,j; Rd, 7) in zvhich 

a) r is the discrete topology. 
b) Rd =TdUSd. 

Then Rd yields a duality on A. 

Although we have ]Td] = 6 and ISA] = 9, we shall see that the resulting duality 
is easily applied, for example, to give the translation process between the natural 
duality and the restricted Priestly duality and to find free algebras. 

The question of whether this natural duality is optimal remains open. At 
this stage, no general theory which explains the relationship between piggyback 
dualities and optimal dualities has been developed.Nevertheless, the techniques 
developed in Davey and Priestly [9, lo] could be applied to settle this question. 

We will see in what follows that the natural duality we have determined for 
S4 has the advantage of providing us with a nice translation process between this 
one and the known restricted Priestley duality (see [I] and section 6.3 of [5]). 

Here, as in [I], the symbol g denotes the continuous involutive order reversing 
map from H(A) to H(A) associated with N, the De Morgan negation on 4. 

We observe that fo denotes the continuous order-preserving map from H(A) to 
H(A) associated with the (0, 1}-lattice homomorphism V: 4 -+ A. The symbol 
fa has analogous meaning in the case of regular o-De Morgan algebras. 
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Proposition 2.6. Let A E A = Sq = ZSP(II). Let i, k E I4 = (0, 1,2}, x E X” 
and y E X” then x r,“k y if and only if 

PROOF. Let consider x E X0, y E X1 and XT& y. Then 

(\JscA) (x(s)&)) E (Qo4>%l-‘(I)” * 

* @SEA) (a04 0 x)(s) I (a14 O Y)(S) 

(by Proposition 2.4) 

= @aor 5 @CII,(Y) . 

We can argue analogously with the other relations of the form r:. 0 

Let A = Sj, j E {4,5,6} or A = Rj with j E {3,4,5}, we will denote by Bg 
and M,$ certain sublattices of l& x Pkj, that in the case of A = ‘& we will define 
in the following proof. Whenever we use these sublattices it will be clear which 
variety we are working in, so we will write &k and M&, respectively. The utility 
of these sublattices will be clear in the proof of the next theorem and in table 1. 

For the second part of the next theorem, which gives the translation process 
from the natural dual to the Priestley dual of an algebra A E S4, we need to 
introduce some notation. Thus for each pair (Tik, rki) we define 

‘i’ = 2 
1 

(ai, bk) E Rj x pkj 1 (a%, bk) E r%k, (bk, %) E rkz 
1 

For each A E A we denote by I”” the pointwise extension to D(A) of i”’ where 
i,Ic E Ij and by 

I = id”( U (I’” u (Ppl)) 
z,kEIj 

Theorem 2.7. Let A = S4 = ZS?(II) and A E A. From the Priestley space 

Y = H(A) = (Y, T, <_,g, fo) f orm the a-indexed structure Y= (ti Y”; G’, R’, r’) 

as follows: 

i) T’ is the union of the topologies induced by T on the sets Y”; 

ii) G’ = {g/y’ 1 i E Ij} U {fojp 1 i E Ij}; 
iii) R’ = (5 nYi x Y” I i,k E Ij}. 

Then X = D(d) InA is isomorphic to Y. 

Conversely, from DyA) define U = (2,7”,, <z, gz, fo,) as follows: 
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1. Z = X/p where p is the equivalence relation on X given by xp y iff (x, y) E 
I; rz is the quotient topology; 

2. Denoting by r: X + X/p the canonical projection, n(x) <Z r(y) in Z iff 
(x, y) E r,Ak for some (i, k) E If; 

3. gz is the function whose restriction to X0, X’, X2 are respectively god, 

g14, i&4 and fv, is the function whose restriction to X0, X1, X2 are 
respectively god, idr4, u. 

Then U is a well defined involutive Stone space isomorphic to H(A). 

PROOF. We will prove 3) since the other statements of the theorem can be proved 
following very closely the proof of the corresponding parts in Theorem 3.8 of [7]. 

Consider the sublattices Bik of Pz4 x Pk4 such that B,I, = {(a, b) E P24 x 

pk4 1 g(%4)(a) = ak4@)}, where (i, k) E ((0, l), (l,O), (2,2)}. We can see that 

B& = god, By0 = g14 and B2, - ’ - ids4. It is now easy to verify 3) in what respects 
gz. We will see that gz is the function whose restriction to X0 is god. 

For any x E d(A,P,,), y E .A@,&,) we have 

(2, Y) E go4 - (V’s E A) (x:(s), Y(S)) E go4 

- b’s E A) g(w4)(x(s)) = o14(y(s)) (since go4 = B&) 

= (Vs E A) ((Yo.l(-Z(S)) = 0 @ %4(!/(S)) = 1) 

(by Priestley duality for De Morgan algebras) 

e (VssEA) (9( a04 0 x) = 1 e (cq4 0 y)(s) = 1) 

= da04 0 x) = a14 0 Y 

- s(Q)aor(x:)) = @a,,(Y) 

Using By0 and Bt, we can see that gz is the function whose restrictions to X1 
and X2 are g14 and id24, respectively. 

To see what fv, is, we must consider the following sublattices M+,k of the 
lattices pi4 x pk4 

Mik = -f (a, b) E Pi4 X Pk4 1 a,4 0 o(a) = %4(b)} , 

where (i, k) E ((0, l), (1, l), (2,l)). Then it is easy to verify that A4& = gob, 
n/if1 = idI4 and M& = u. 

We will see that fvz is the function whose restriction to X0 is god. The other 
two cases can be proved analogously. 
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For any z E d&P,,), y E d(A,P,,) we have 

(?!I) E Q04 - (V's E A) qs)so4 Y(S) 

e+ (V.5 E A) ~04 0 V(z(s)) = w~(Y(s)) (since g04 = M&j 

- (V’s E A) Qo4(QS)) = W4(Y(S)) 

- (Vs E A) fv(ao4 0 z)(s) = Q14(Y(S)) 

- fV(~‘cy”4(~)) = @a,,(y) 

Table 1 

A sublattices associated to g 

s4 
fhf ={(u,b)EPi1XPk41 g(ai4)(a)‘akd(b)} $-y=~:, 

(il~")E(OO 11, (LO),(2,2)} 
gz 1x2 = id24 = Bi2 

ss Bik = (a, b) E P,s x PM I g(w)(a) =ak5(b) gzIxo=gos=B& 

(4 k) E ((0, I), (1,O)) gzIxl=g1s=@o 

s6 Bti = (a,b)~PisxP,e I g(aie)(a)=cui6(b) 

(4 4 E ((0, 0)) 
gzlxo =tfl = B,O, 

RS Bik = (a, b) E pi3 x pk3 1 g(%3)(a) =ak3(b) gzlxo =g03=B& 

(il k) E ((0, I), (1,O)) gzlxl =g13=& 

R4 &k = (%b)EPi4XPk4I g(W)(CL)=CW(b) gzlxo = go4=B& 

(i,~)G(O, l),(l,O)> gzIxl=gla=B:o 

R5 Bik = (%b)EPisxPk5I g(aos)(u)=als(b) gz 1x0 = go5 = B,O, 

(i, Ic) E {CO, 1). f1.0)) gzlx1 =g15=&l 
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Table 1 (cont.) 

A II sublattices associated to V[cx] I I 
s4 

Mir, ={(U,b)-z4Xpk4 1 cu,&(a)=cxk4(b)} 
fVZIxO=g04=M& 

(i> k) E ((0, 1)) (1, I), (%I)} 

fv,lx~ =id14=MFl 
fVZIX’ =21=M& 

s5 
Mzk = (a, b) E pz5 X 45 1 a,soV(a) ‘aks(b) fv, 1x0 =go5Ou= = M$ 

(21 k) E {(0,1), (1,1)) ~v~I~I=u~~=M;~ 

ss Mit = (U,b)EPi6XPt6[ g(%G)OV(U)=&6(b) 

(K 4 E {(O,O)l 
1 ~v~~~o=u~~=M& 

R3 
Mik = (a, b)EPz3XPk3 1 &3OCY(U)=ak3(b) fnzh=go3=M& 

(C k) E ((0, I), (1,1)} fazlx~ =id13=Mfl 

R-4 
Mzk = (U,b)EP,qXPkq/ C&,OCY(U)=O(k4(b) fa, 1x0 =go40u4* = M,o, 

(4 k) E ((0, 11, (1,l)) fazlX’ =u4’=MFl 

R5 
Mik = (U,b)EPi5XPk5[ CY,5O(Y(U)=(YkS(b) fazIxo=gosou52=M& 

(4 k) E{(O, 11, (1,1)) faz(X~=u51=M;1 

3. FREE ALGEBRAS 

Since we have obtained a translation process between the natural duality and 
the Priestley duality for the subvarieties of both S and R, we can now very easily 
describe the free algebras on n. generators with n < w (see [7], Lemma 1.2). 

However, before doing that, we will show that the maps fo and fa can be 
nicely described. In fact using the Priestley duality obtained by R. Cignoli and 
M.S. de Gallego in [l], for the two classes of algebras we are dealing with, we can 
show the following two propositions: 

Proposition 3.1. Let A E S. Given the (0, l}-lattice homomorphism 

v: A-+/J 

the associated continuous order preserving map 

fo: ff(A) + H(A) 

is such that, for each y E H(A), fo(y) = nY where ny is the unique element of 
Max H(A) such that y < ny. 
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PROOF. It is known that fo : H(A) + H(A) is such that fo(y) = Max{% E 
H(A) ]y E V[X)}, for each y E H(A). But if zr E H(A) and y E V[z) then 

Y E (%I, nz = ny and z < ny (see [l], page 382) Since y E V[n,) we have that 

fo(Y) = ny. q  

Proposition 3.2. Let 4 E R. Given the (0, l}-lattice homomorphism 

CY: AtA 

the associated continuous order preserving map 

fa: H(A) + H(A) 

is defined, for each y E H(A), by f,(y) = my, where my is the unique element of 
Max{z E H(A) : z 5 g(z)} which is comparable with y. 

PROOF. We have to show that Max{z E H(A) 1 y E a[~)} = my for each y E 
H(A). Applying Lemma 3.6 of [I] we have y 2 my or my < y and also that 
y E c~[z) iff my E [z). So we can conclude that for each 2 E H(A) such that 
y E o[z) we have z < my. Since y E cy[my) the proposition is proved. 0 

We can now describe the distributive lattice duals and the distributive lattice 
reducts of the free algebras on n generators for the varieties we are working with. 
As a corollary we also obtain the free spectra of these varieties. In order to do 
this we need to establish some notation. 

Let P and Q be disjoint finite ordered sets such that Q = P6. Let 4 be 
a bijection from MinQ onto Max P. The new partially ordered set obtained 
superimposing Q over P and then collapsing each minimal point a of Q with the 
element 4(a) of P is called the collapsed sum of P and Q and it will be denoted 

by P&Q. 
Denote by C?(Q) the lattice of all up-sets of Q. Consider P C& Q and let 

0 # Y & MinQ. In what follows YQ denotes the element [Y) of O(Q) and Yp 
denotes the element [4(Y)) of U(P) Letting 0(Q)’ = {YQ ] 8 # Y C MinQ} 
and c?(P)’ = {Yp 1 8 # Y C MinQ} we have that the map ‘p from C?(Q)’ onto 
O(P)’ such that cup = Yp is a bijection. 

Remark. The partially ordered set CJ(P& Q) may be obtained by superimposing 
C?(P) over C?(Q), deleting the element 0 of c?(P) and collapsing each YQ E O(Q)' 
with c~(YQ) E c?(P)‘. W e will call 0(P $C Q) the special collapsed sum of O(Q) 
and 0(P) and it will be denoted by C?(Q) & U(P). 

Starting from the results of Theorem 2.7 and those we tabulated in table 1, 
we will represent in the figures numbered from 3 to 9, the diagrams of DFd(1). 
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These are exactly the multi-sorted schizophrenic objects on which the duality is 
based. In the figures we will only evidence that part of the relational structure of 
these objects that pertains to the partial orders underlying HFd(1) and nothing 
more. 

We note that in the figures which follow, with the exception of figure 8, the 
subscript on the elements is the i in Pi3, and that we will refer to the elements 
with subscript i as the Pz3 component of the figure. In fact the bijection from l& 
to d(Fd( l), J&) explains this notation. 

In the case of figure 8 we attribute the subscript 2 to the elements of the 
component Pi4 of figure 7, and the subscript 3 to the elements of the component 
Po4 of figure 7. The subscripts 0 and 1 were attributed according to those of 
figure 6. 

Furthermore to a better understanding of these figures we point out that, for 
example, figure 3 is constructed from the relations rij FS4(1) with 0 2 i, j 5 2, 
where riJ are the elements of 5’~ for A = S4, that we presented before. 

It must be said that the referred figures are sort of “generalized Hasse dia- 
grams” (where the loops are to be understood as the quasi-order relation going 
both ways) for the quasi-orders whose partial order quotients are exactly the 
underlying orders of the Priestley duals, HFd(1). 

01 
a1 

808 
11 

02 b2 a2 12 

00 
a0 

lo 

Figure 3 - DFS4(1) 
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bl 

01 a Cl 

:Q” 

11 

00 a co lo 

v 
bo 

Figure 4 - DFS5(1). 

a0 

00 l do ccl l 

Figure 5 - DFSs(L). 

a0 

al 

lo 10 11 

10 

Figure 6 - DFR3(1). 
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Figure 7 - DFR4(1). 

Figure 8 - DF(R.3 V R.r)(l) 

al 1 1 Cl 

Figure 9 - DFRs(1) 
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On the figures mentioned above we did not indicate the maps g in those that 
respect the subvarieties of S nor in those that respect the subvarieties of R. In 
fact since in these varieties the free algebras have a Kleene negation dual to the 
map g this one is uniquely determined. The maps fo and fa have been explicitly 
described in Propositions 3.1 and 3.2, respectively. Thus it is unnecessary to 
describe these maps on the figures. 

We observe that HFS,(n) is derived from DFS,(n) which, as is well known, 
is obtained by taking the n-fold power of DFS,(l) for j = 4,5 and 6. In our 
cases the partial order is obtained via the pointwise extension of the relations 
“maximal subalgebras of’. The maps g and fo in HFSj(n) are obtained in the 
obvious way. 

Analogous comments can be made about the process of obtaining H(R3 V 

Rb)(n) and HFRj( n with j E {3,4,5} starting with the natural dual of the ) 
corresponding free algebra on one generator. 

In what follows 2, 2 and 1 = 2’ = 2’ denote the two-element chain, the two 
and the one-element antichain, respectively. The disjoint union of m copies of a 
poset P will be denoted by mP with the convention that OP means a one-element 
chain. 

Note that (1@2)@,(2@1) = HFK(l), w h ere HFK(l) denotes the poset of 
the Priestley dual of the free Kleene algebra on one generator. 

Considering just the underlying ordered set of Priestley duals of the free alge- 
bras on n generators and the distributive lattice reducts of the same algebras for 
the subvarieties of S under consideration, we can state the two following results: 

Theorem 3.3. Consider Sj with j E {4,5,6}. Then the following are descrzp- 
tions of the partial order reducts of the respective Priestley spaces: 

a) HF%(n) = 2” (3 (1 CT% 2’ @I, I) ti (fi,,,,,, ~~‘(7) (LB 2% CB 1)); 

b) HFSs(n) =&,i<71 2’“-“(y) HFK(i); 

c) HFSe(n) =fiOczin 2”pi(7) (z2)“. 

PROOF. These results follow from the knowledge that we have obtained of the 
translation process between natural dual and Priestley dual. In particular, notice 
that n = 1 gives a description of the order quotients of the quasi-orders given in 
figures 3, 4 and 5. 

To make clear the combinatorial calculations that we have done to obtain these 

results, we take the case of the variety Sb, so we concentrate on figure 3. For the 
other varieties the reasoning is analogous. 
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We suppose on a first level the elements of the n-fold power of the component 
Pl4, on a second level, under the first one, the elements of the n-fold power of the 
component P24 and in a third level, under the second one, the elements of the 
n-fold power of the component PO*. For each n-tuple of the first level we must 
consider the following two cases: 

Case 1) The n-tuple of P;L4 has no coordinates equal to al, so they belong to 
{01,11}. Clearly there are 2n of these n-tuples and each one is tied by a loop with 
exactly one n-tuple of the component PTd. This last one is tied by a loop with 
exactly one n-tuple of the component P&. These three n-tuples collapse into a 
point and give the parcel 2”(t) (I$, 2O $c 1) of HFS4(n). 

Case 2) The n-tuple of P;“4 has exactly s coordinates equal to al, with s E 
(1,. . , n}, while the other ones belong to (01, ll}. The number of these n-tuples 
is 2”-” (y). To facilitate th e explanation we will suppose that s < n and that the 
coordinates equal to al fill in the first s positions, with the other ones being equal 
to 01. 

Above this n-tuple we must consider the antichain formed by the n-tuples of 
P& which have a2 or b2 in the first s coordinates and have the other ones equal 
to 02. Clearly this antichain has 2’ elements. 

Consider on the third level the n-tuple that has a0 on the first s positions and 
has the other ones equal to 00. Since the order is the product order we obtain 

I@2s@I. 
This case gives the parcel 2 “-“(f)(l$ 25 $1) of HFS4(n). 17 

Denoting by “FB(n)l the distributive lattice reduct of the free Boolean algebra 
on n generators with a new zero and a new unit adjoined, by FD(n) the (0, I}-free 
distributive lattice on n generators and by FK(n) the distributive lattice reduct 
of the free Kleene algebra on n generators, we have the following theorem: 

Theorem 3.4. Consider Sj, with j E {4,5, S}, subvarieties of S. Then the fol- 
lowing are descriptions of the lattice reducts of the respective free algebras on n 
generators: 

a) FS4(n) = FD(0)2” x nF=, ‘FB(i)y-‘(‘); 

b) F&(n) = n;=“=, FK(i)2”-‘(:); 

c) F&(n) = nr=, FD(2i)2’“m’(:). 

PROOF. The result follows from the previous theorem applying Priestley duality 
and remembering that 0(I@ 2% $1) = /‘FB(i)l and that 13(2”) = FD(2i). 0 
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The next corollary is now immediate. 

Corollary 3.5. Consider Sj withj E {4,5, S}. The free spectra of these varieties, 
are given by: 

a) IFSd(n)l = 2’” n/k,(22z + 2)2”-1(:); 

b) IFSs(n)l = ny=“=, IFK(i)12”-‘(y); 

c) IFSs(n)l = ny=, IFD(2i)l”“-‘(:). 

Analogously we can deduce the following two theorems describing the under- 
lying posets of Priestley duals and the distributive lattice reducts of the free 
algebras on n generators for the subvarieties of R, respectively: 

Theorem 3.6. Consider R,, with j E {3,4,5}, and Rs V R4 subvarieties of R, 
then the following are descriptions of the partial order reducts of the respective 
Priestley spaces: 

a) HFRz(n) = 2”@‘) ii (3” - 2,‘) (2’ @I 2’); 
b) HFRd(n) = 2n(2n @c 2”); 
c) HF(R3 V Rb)(n) = 2”(27L ec zn) ti (3” - 2”) (2’ @ 2’); 

d) HFRs(n) = 2”(;;) (2” $, 2”) ti (lj,,,,, 2’“-“(y) (2”-i $2+“)). 

PROOF. These results follow from the knowledge that we have obtained of the 
translation process between natural dual and Priestley dual. In particular notice 
that n = 1 gives a description of the order quotients of the quasi-orders given in 
figures 6, 7, 8 and 9. 

To make clear the combinatorial calculations that we have done to obtain these 
results, we take the case of the variety R 3, so we concentrate on figure 6. For the 
other varieties the reasoning is analogous. 

We suppose on a first level the elements of the n-fold power of the component 
Pcs and on a second level, under the first one, the elements of the n-fold power 
of the component PI3. For each n-tuple of the first level we must consider the 
following two cases: 

Case 1) The n-tuple of P,$++ has no coordinates equal to ao. Clearly there are 
2” of these n-tuples.. Under this n-tuple we must consider the n-tuple that has 
no coordinates equal to aI and such that each coordinate in the n-tuple of the 
top level is tied by a loop with the corresponding coordinate below. These pairs 
of n-tuples collapse into a point and give the parcel 2”(2’) of HFRs(n). 

Case 2) The n-tuple of P,“, has s coordinates equal to as, with s E { 1,. , n}, 
while the other ones belong to (00, lo}. The number of these n-tuples is 3” - 2”. 
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To facilitate the explanation let’s suppose that s < n and that the coordinates 
equal to ae fill in the first s positions, with the other ones being equal to 00. 

Consider on the second level the n-tuple that has al filling in the first s positions 
and that has the other ones equal to 01. 

These two n-tuples form a two element chain, since the order is the product 
order, and give the parcel (3” - 2”)@’ @ 2’) of HFRs(n). 0 

Let Mn = c?@” @c zn), N,9 = 0(2” @ 2”) with s E {O,...,n - 1). Then 
according to the previous Remark we have Mn = FD(n) eSc FD(n) and I& = 
FD(s) @c ID(s). 

As a consequence of Theorem 3.6, applying Priestley duality, we have the next 
theorem: 

Theorem 3.7. Consider Rj with j E {3,4,5} and Rs V R4 subvarieties of R. 
Then the following are descriptions of the lattice reducts of the respective free 
algebras on n generators: 

a) FRa(n) = FD(0)2” x FD(l)““-‘“; 
b) FRd(n) = A&z”; 
c) F(Rs V Rb)(n) = hlz” x FD(1)3”-2”; 

As a consequence of the Theorem 3.7 we easily conclude the following corollary: 

Corollary 3.8. Consider R,, with j E {3,4,5}, and R3 V R4 subvarieties of R. 
The free spectra of these varieties, are given by: 

a) IFRs(n)l = 2’” 33”-2”; 
b) \FRa(n)\ = (2\FD(n)\ - 2)‘” ; 
c) IF(Rs V Rd)(n)j = (2lFD(n)l - 2)2” 33”-2”; 
d) IFRs(n)/ = (2lFD(n)l - 2)‘” n,,,,,(2lFD(i)l - l)2n-‘(:). 
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