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1. INTRODUCTION 

It is well known that for a proper field extension k c K the group KX /kx 
is not finitely generated if k is infinite ([6, Theorem 4.3.111). In this paper we 
generalize this to the case where k and K are semilocal noetherian rings and K 
is a finitely generated k-module. 

Our interest in such quotients comes from the theory of class groups. Let R 
be a noetherian integral domain whose integral closure R is a finitely generated 
R-module and let 5’ be the monoid of non zero divisors of R/R. Then the rings 
&, Rs are semilocal and there is an exact sequence ([5]) 

1 + RX/RX + fig/R; + Cl(R) + Cl(R) + Cl(&) + 0 

Thus, in order to study the singular part of Cl(R) (i. e. the part coming from 
non normal points in Spec(R)) one is naturally led to consider the quotient group 
R,X /R,X . 

All rings in this paper are assumed to be commutative and to possess an unit 
element. 

2. THE KESUI,~ 

Let R be a ring. We let RX be its group of units. For a R-module M we denote 
by AssR(M) the set of prime ideals associated to M. 

Theorem 2.1. Let RI c R:! be an extension of rings such that RI is noether- 
ian and semilocal and such that Rz is a finitely generated RI-module. Th,en the 
following assertions are equivalent: 

1. Each p E Assn,(Ra/R1) has a finite residue class field. 
2. RJR1 is finite. 
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3. R,XIRp is finite. 
4. Rz / Rf is finitely generated. 

Remark. For related results see [2]. 

For the proof of this theorem we need some lemmata which handle special cases 
of the theorem. 

Lemma 2.2. Let k be an infinite field and A a finite dimensional k-algebra such 
that k # A. Then AX/kX is not finitely generated. 

PROOF. This follows from [4, Lemma 1.61. 0 

In the following let RI c Ra be as in the theorem. Let !3Jl be the set of maximal 
ideals of RI. We denote by Ji = n,,, m the radical of RI and set 52 = 51 Rz. 
Then we have, Jz n RI = 51, 1 + Ji c Rzx and an exact sequence 

(1) 

For 1 > 0 let Ul be the image of 1 + 5452 in (1 + Jz)/(l + 51). Further set 
M = Jz/J1. 

Lemma 2.3. For all 1 > 0 we have Ul/Ul+l ” J~M/J~+‘M. 

PROOF. Let z E J1 and y E 54 52. Then we have 

l+~+y=(l+~)(l+(l+s)-ly)~(l+Ji)(l+J~J~) . 

Hence we obtain (1 + JI)( 1 + Ji Jz) = 1 + JI + 54 52. Define a map 

p: I+ JI + 5452 -+ 
51 + 5452 

J1 + J;+lJ2 

by cp(1 + CC) = z + J1 + Ji”J2. Since (51 + 545~)~ c JI + Ji+lJz, p is a 
homomorphism. It is surjective and has kernel 1 + Ji + 54” 52. Hence we obtain 

an isomorphism 

(1 + Jl)(l + J:Jd 
““‘+’ = (1 + J1)( 1 + J;+l J2) = 

1+51+J;Jz 

1 + J1 + J;+‘Jz 

N Jl+J;Jz - 
J1 + Jl+‘J 

= J;M/J;+% 
1 2 

q  

Lemma 2.4. The following assertions are equivalent: 

1. R,X fR,X is finite. 
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2. Rz/Rl is finite. 
3. Each p E AssR~(R~/R~) has a finite residue class field. 

PROOF. The exact sequence (1) shows that R; fR: is finite if and only if 

1-t J2 

1 + 51 
and (WJz)” 

(RI/JI)~ 
are both finite. By Lemma 2 (1 + J2)/(1+ 51) and Jx/Jl possess filtrations with 
isomorphic quotients. Hence (1 + J2)/( 1 + 51) is finite if and only if Jz/ J1 is finite. 
By the Chinese Remainder Theorem there are isomorphisms 

WJ2 ” II 
&/m&a 

WJI TnErn Rllm 
and (%I Jdx 

(%/JI)~ 

By Lemma 2.2 the second product will be finite if and only if (R~/J~)/(R~/JI) 
is finite. Hence Rc/R: is finite u J2/J1 and (R~/J~)/(R~/JI) are finite 
e R2/R1 is finite. The equivalence of 2 and 3 is obvious. 0 

Lemma 2.5. Suppose that RI is an infinite integral domain and AssR~(R~/R~) = 
(0). Then Rc/Rf is not finitely generated. 

PROOF. We assume first that there is some maximal ideal m of RI having an 
infinite residue class field. Then (RI), # (Rz), (since AssR~(R~/R~) = (0)). 
By Nakayama we obtain RI/m # R2ImR2. By Lemma 2.2 (R2/mR2)X/(Rl/m)X 
is not finitely generated. The projection R2 + Rz/rnRz induces a surjective 
homomorphism 

(here we use the elementary fact that RX + (R/I)X is surjective for a semilocal 
ring and an ideal 1 of R, see for example [l, Lemma 21). Hence Rc /Rf is not 
finitely generated. 

From now on we assume that the maximal ideals of RI (and hence these of R2) 
have a finite residue class field. In particular dim RI 2 1 (since RI is assumed to 
be infinite). We consider two cases. 

1. dim RI = 1. Let % be the nilradical of Rz. First we suppose ‘J1 # 0. Let 
k > 1 be the smallest integer such that (nk+’ = 0. Mapping 2 to 1 + z gives 
an embedding of groups Ytk E 1 + %” c Rg /RF. Suppose that (n” is a finitely 
generated abelian group. Since it is a torsion free RI-module (AssR~(R~/R~) = 
(0)) this implies that RI is finitely generated, too. In particular RI is integral 
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over its prime ring. Since RI is semilocal this is only possible if the prime ring 
and hence also RI is a finite field. This contradicts our assumption dim RI = 1. 

Next assume (n = 0. Let pi, , pT be the minimal prime ideals of Ra. Then 
we have 0 = pr n n p,. Suppose r > 2. We have the following inclusions: 

Since (Rz),,, = I?,,% we have pi $ AssR,(R/R~). By Lemma 2.4, fix/R,” is 
finite. Hence it suffices to show that RX/RF is not finitely generated. Note that 
p, n RI = 0. Hence (embedding Rp diagonally ) we have an inclusion 

But (R;)‘/R: = (R:)‘-l. N ow RI contains one of the following rings: Z&z, (p 
prime) or Ic[T] where !C is a finite field and T an indeterminate. Hence Rf is not 
finitely generated. 

It remains to handle the case r = 1. Then R2 is an integral domain, too. Let 
K, be the quotient field of R, and R, the integral closure of R,. We have K1 # Kz 
and R:! n K1 = RI (since Assn,(RzlR1) = (0)). If K2 is purely inseparable over 
K1 then R$/Rf is a torsion group and hence by Lemma 2.4 it is not finitely 
generated. So we may assume that K2 is not purely inseparable over K1. For 
an abelian group G let r(G) be its torsion free rank. By [3, Proposition 3.61 
r(Kc/Kp) = cm (note that since dimR 2 = 1, K2 cannot be algebraic over a 
finite field). By the Theorem of Krull-Akizuki Rz is a principal ideal domain with 
only (up to associates) finitely many prime elements. Hence r(Kt /i?,X ) < 00. 
From the exact sequence 

we deduce r(Rc /@ ) = 00. Let T be a subring of Rs containing Rz such that T 
is a finitely generated Rz-module. By Lemma 2.4, TX/R,” is finite. Since & is 
an union of such rings T, Rc/Rz is a torsion group. Using the exact sequence 

we see that r(RclRF) = cm. 

2. dim RI > 2. We suppose that R,X/Rr is finitely generated, say by n 
elements. As above let Ul (1 2 0) be the image of 1 + J:Jz in (1 + Js)/(l + 51). 
Then Ul/Ul+i can be generated by n elements, too. Set d = n,,,charRi/m. 
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By Lemma 2.3 d annihilates Ul/Ul+r. Denoting the length of a module M over a 
ring R by /!n(M) we obtain for all 1 > 0: 

~Z(~,/U~,l) 5 &((Z/dZ)“) < cc . 

On the other hand we have by Lemma 2.3 (M = 52/51): 

&(UL/Ut+l) = &(J;M/J;+‘M) > &,(J;M/J;+lM) 

But it is well known that the function 1 ti ~~~ (JiM/Jl+‘M) is a polynomial 
function (for large 1) of degree dim M - 1. Since ASSR, (Rz/Rl) = (0) we have 
dim M - 1 = dim RI - 1 > 1. Hence that function cannot be bounded. This 
contradiction finishes the proof of the Lemma. 0 

We come now to the proof of the Theorem. 1 w 2 I 3 by Lemma 2.4. 
3 =+ 4 is clear. So it remains to show 4 + 1. Let p E AssR, (Rz/Rl) be a prime 
ideal having an infinite residue class field. We show that RCIR: is not finitely 
generated. 

By replacing p with some minimal member of ASSR, (Rz/Rl) contained in p we 
may suppose that p is already minimal. Let 

R = {r E R2 ) sr E RI for some s $ p} 

be the p-primary component of RI in Rz. Obviously R is a subring of Rx and 
we have Assn,(Rz/R) = {p}. F rom (RI), = &, we deduce that there is only 
one prime ideal b of R lying above p. From Assn,(Rz/R) > {q n RI 1 q E 
Assfi(Ra/R)} we obtain Assfi(Rz/R) = {fi}. Hence replacing RI by R we may 
assume that p is the only prime ideal associated to Rz/Rl. Let x E Rz be such 
that p = {r E RI 1 TX E RI}. Then we have px c RI n pR:! = p,which implies 
pRr[x] c RI, i. e. p is the conductor of RI c Rl[x]. Therefore we obtain an 
isomorphism 

[ll 

[21 

By Lemma 2.5, R1[xlX / RT is not finitely generated. 
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