A NOTE ON QUOTIENTS FORMED BY UNIT GROUPS OF SEMILOCAL RINGS

FORIAN KAINRATH Communicated by Klaus Kaiser

1. INTRODUCTION

It is well known that for a proper field extension $k \subset K$ the group K^{\times}/k^{\times} is not finitely generated if k is infinite ([6, Theorem 4.3.11]). In this paper we generalize this to the case where k and K are semilocal noetherian rings and K is a finitely generated k-module.

Our interest in such quotients comes from the theory of class groups. Let R be a noetherian integral domain whose integral closure \bar{R} is a finitely generated R-module and let S be the monoid of non zero divisors of \bar{R}/R . Then the rings \bar{R}_S , R_S are semilocal and there is an exact sequence ([5])

 $1 \longrightarrow \bar{R}^{\times}/R^{\times} \longrightarrow \bar{R}_{S}^{\times}/R_{S}^{\times} \longrightarrow \operatorname{Cl}(R) \longrightarrow \operatorname{Cl}(\bar{R}) \longrightarrow \operatorname{Cl}(\bar{R}_{S}) \longrightarrow 0$

Thus, in order to study the singular part of $\operatorname{Cl}(R)$ (i. e. the part coming from non normal points in $\operatorname{Spec}(R)$) one is naturally led to consider the quotient group $\overline{R}_S^{\times}/R_S^{\times}$.

All rings in this paper are assumed to be commutative and to possess an unit element.

2. The result

Let R be a ring. We let R^{\times} be its group of units. For a R-module M we denote by $\operatorname{Ass}_R(M)$ the set of prime ideals associated to M.

Theorem 2.1. Let $R_1 \subset R_2$ be an extension of rings such that R_1 is noetherian and semilocal and such that R_2 is a finitely generated R_1 -module. Then the following assertions are equivalent:

- 1. Each $\mathfrak{p} \in Ass_{R_1}(R_2/R_1)$ has a finite residue class field.
- 2. R_2/R_1 is finite.

- 3. $R_2^{\times}/R_1^{\times}$ is finite.
- 4. $R_2^{\times}/R_1^{\times}$ is finitely generated.

Remark. For related results see [2].

For the proof of this theorem we need some lemmata which handle special cases of the theorem.

Lemma 2.2. Let k be an infinite field and A a finite dimensional k-algebra such that $k \neq A$. Then A^{\times}/k^{\times} is not finitely generated.

PROOF. This follows from [4, Lemma 1.6].

In the following let $R_1 \subset R_2$ be as in the theorem. Let \mathfrak{M} be the set of maximal ideals of R_1 . We denote by $J_1 = \bigcap_{\mathfrak{m} \in \mathfrak{M}} \mathfrak{m}$ the radical of R_1 and set $J_2 = J_1 R_2$. Then we have, $J_2 \cap R_1 = J_1$, $1 + J_i \subset R_i^{\times}$ and an exact sequence

(1)
$$1 \longrightarrow \frac{1+J_2}{1+J_1} \longrightarrow R_2^{\times}/R_1^{\times} \longrightarrow \frac{(R_2/J_2)^{\times}}{(R_1/J_1)^{\times}} \longrightarrow 1$$

For $l \ge 0$ let U_l be the image of $1 + J_1^l J_2$ in $(1 + J_2)/(1 + J_1)$. Further set $M = J_2/J_1$.

Lemma 2.3. For all $l \ge 0$ we have $U_l/U_{l+1} \cong J_1^l M/J_1^{l+1}M$.

PROOF. Let $x \in J_1$ and $y \in J_1^l J_2$. Then we have

$$1 + x + y = (1 + x)(1 + (1 + x)^{-1}y) \in (1 + J_1)(1 + J_1^l J_2)$$

Hence we obtain $(1 + J_1)(1 + J_1^l J_2) = 1 + J_1 + J_1^l J_2$. Define a map

$$\varphi \colon 1 + J_1 + J_1^l J_2 \longrightarrow \frac{J_1 + J_1^l J_2}{J_1 + J_1^{l+1} J_2}$$

by $\varphi(1+x) = x + J_1 + J_1^{l+1}J_2$. Since $(J_1 + J_1^lJ_2)^2 \subset J_1 + J_1^{l+1}J_2$, φ is a homomorphism. It is surjective and has kernel $1 + J_1 + J_1^{l+1}J_2$. Hence we obtain an isomorphism

$$U_l/U_{l+1} = \frac{(1+J_1)(1+J_1^lJ_2)}{(1+J_1)(1+J_1^{l+1}J_2)} = \frac{1+J_1+J_1^lJ_2}{1+J_1+J_1^{l+1}J_2}$$
$$\cong \frac{J_1+J_1^lJ_2}{J_1+J_1^{l+1}J_2} = J_1^lM/J_1^{l+1}M \quad .$$

Lemma 2.4. The following assertions are equivalent:

1. $R_2^{\times}/R_1^{\times}$ is finite.

614

- 2. R_2/R_1 is finite.
- 3. Each $\mathfrak{p} \in Ass_{R_1}(R_2/R_1)$ has a finite residue class field.

PROOF. The exact sequence (1) shows that $R_2^{\times}/R_1^{\times}$ is finite if and only if

$$\frac{1+J_2}{1+J_1}$$
 and $\frac{(R_2/J_2)^{\times}}{(R_1/J_1)^{\times}}$

are both finite. By Lemma 2 $(1 + J_2)/(1 + J_1)$ and J_2/J_1 possess filtrations with isomorphic quotients. Hence $(1 + J_2)/(1 + J_1)$ is finite if and only if J_2/J_1 is finite. By the Chinese Remainder Theorem there are isomorphisms

$$\frac{R_2/J_2}{R_1/J_1} \cong \prod_{\mathfrak{m} \in \mathfrak{M}} \frac{R_2/\mathfrak{m}R_2}{R_1/\mathfrak{m}} \quad \text{and} \quad \frac{(R_2/J_2)^{\times}}{(R_1/J_1)^{\times}} \cong \prod_{\mathfrak{m} \in \mathfrak{M}} \frac{(R_2/\mathfrak{m}R_2)^{\times}}{(R_1/\mathfrak{m})^{\times}}$$

By Lemma 2.2 the second product will be finite if and only if $(R_2/J_2)/(R_1/J_1)$ is finite. Hence $R_2^{\times}/R_1^{\times}$ is finite $\iff J_2/J_1$ and $(R_2/J_2)/(R_1/J_1)$ are finite $\iff R_2/R_1$ is finite. The equivalence of 2 and 3 is obvious.

Lemma 2.5. Suppose that R_1 is an infinite integral domain and $Ass_{R_1}(R_2/R_1) = \{0\}$. Then $R_2^{\times}/R_1^{\times}$ is not finitely generated.

PROOF. We assume first that there is some maximal ideal \mathfrak{m} of R_1 having an infinite residue class field. Then $(R_1)_{\mathfrak{m}} \neq (R_2)_{\mathfrak{m}}$ (since $\operatorname{Ass}_{R_1}(R_2/R_1) = \{0\}$). By Nakayama we obtain $R_1/\mathfrak{m} \neq R_2/\mathfrak{m}R_2$. By Lemma 2.2 $(R_2/\mathfrak{m}R_2)^{\times}/(R_1/\mathfrak{m})^{\times}$ is not finitely generated. The projection $R_2 \rightarrow R_2/\mathfrak{m}R_2$ induces a surjective homomorphism

$$R_2^{\times}/R_1^{\times} \to \frac{(R_2/\mathfrak{m}R_2)^{\times}}{(R_1/\mathfrak{m})^{\times}}$$

(here we use the elementary fact that $R^{\times} \to (R/I)^{\times}$ is surjective for a semilocal ring and an ideal I of R, see for example [1, Lemma 2]). Hence $R_2^{\times}/R_1^{\times}$ is not finitely generated.

From now on we assume that the maximal ideals of R_1 (and hence these of R_2) have a finite residue class field. In particular dim $R_1 \ge 1$ (since R_1 is assumed to be infinite). We consider two cases.

1. dim $R_1 = 1$. Let \mathfrak{N} be the nilradical of R_2 . First we suppose $\mathfrak{N} \neq 0$. Let $k \geq 1$ be the smallest integer such that $\mathfrak{N}^{k+1} = 0$. Mapping x to 1 + x gives an embedding of groups $\mathfrak{N}^k \cong 1 + \mathfrak{N}^k \subset R_2^{\times}/R_1^{\times}$. Suppose that \mathfrak{N}^k is a finitely generated abelian group. Since it is a torsion free R_1 -module (Ass_{R1}(R_2/R_1) = $\{0\}$) this implies that R_1 is finitely generated, too. In particular R_1 is integral

FLORIAN KAINRATH

over its prime ring. Since R_1 is semilocal this is only possible if the prime ring and hence also R_1 is a finite field. This contradicts our assumption dim $R_1 = 1$.

Next assume $\mathfrak{N} = 0$. Let $\mathfrak{p}_1, \ldots, \mathfrak{p}_r$ be the minimal prime ideals of R_2 . Then we have $0 = \mathfrak{p}_1 \cap \cdots \cap \mathfrak{p}_r$. Suppose $r \geq 2$. We have the following inclusions:

$$R_1 \subset R_2 \subset \prod_{i=1}^r R_2/\mathfrak{p}_i =: \tilde{R}$$

Since $(R_2)_{\mathfrak{p}_i} = \hat{R}_{\mathfrak{p}_i}$ we have $\mathfrak{p}_i \notin \operatorname{Ass}_{R_2}(\tilde{R}/R_2)$. By Lemma 2.4, $\tilde{R}^{\times}/R_2^{\times}$ is finite. Hence it suffices to show that $\tilde{R}^{\times}/R_1^{\times}$ is not finitely generated. Note that $\mathfrak{p}_i \cap R_1 = 0$. Hence (embedding R_1^{\times} diagonally) we have an inclusion

$$(R_1^{\times})^r/R_1^{\times} \subset \tilde{R}^{\times}/R_1^{\times}$$

But $(R_1^{\times})^r/R_1^{\times} \cong (R_1^{\times})^{r-1}$. Now R_1 contains one of the following rings: $\mathbb{Z}_{p\mathbb{Z}}$, (p prime) or k[T] where k is a finite field and T an indeterminate. Hence R_1^{\times} is not finitely generated.

It remains to handle the case r = 1. Then R_2 is an integral domain, too. Let K_i be the quotient field of R_i and \bar{R}_i the integral closure of R_i . We have $K_1 \neq K_2$ and $R_2 \cap K_1 = R_1$ (since $\operatorname{Ass}_{R_1}(R_2/R_1) = \{0\}$). If K_2 is purely inseparable over K_1 then $R_2^{\times}/R_1^{\times}$ is a torsion group and hence by Lemma 2.4 it is not finitely generated. So we may assume that K_2 is not purely inseparable over K_1 . For an abelian group G let r(G) be its torsion free rank. By [3, Proposition 3.6] $r(K_2^{\times}/K_1^{\times}) = \infty$ (note that since dim $R_2 = 1$, K_2 cannot be algebraic over a finite field). By the Theorem of Krull-Akizuki \bar{R}_2 is a principal ideal domain with only (up to associates) finitely many prime elements. Hence $r(K_2^{\times}/\bar{R}_2^{\times}) < \infty$. From the exact sequence

$$1 \to \bar{R}_2^\times/\bar{R}_1^\times \longrightarrow K_2^\times/K_1^\times \longrightarrow K_2^\times/\bar{R}_2^\times K_1^\times \longrightarrow 1$$

we deduce $r(\bar{R}_2^{\times}/\bar{R}_1^{\times}) = \infty$. Let T be a subring of \bar{R}_2 containing R_2 such that T is a finitely generated R_2 -module. By Lemma 2.4, T^{\times}/R_2^{\times} is finite. Since \bar{R}_2 is an union of such rings T, $\bar{R}_2^{\times}/R_2^{\times}$ is a torsion group. Using the exact sequence

$$1 \longrightarrow R_2^{\times}/R_1^{\times} \longrightarrow \bar{R}_2^{\times}/\bar{R}_1^{\times} \longrightarrow \bar{R}_2^{\times}/R_2^{\times}\bar{R}_1^{\times} \longrightarrow 1$$

we see that $r(R_2^{\times}/R_1^{\times}) = \infty$.

2. dim $R_1 \geq 2$. We suppose that $R_2^{\times}/R_1^{\times}$ is finitely generated, say by n elements. As above let U_l $(l \geq 0)$ be the image of $1 + J_1^l J_2$ in $(1 + J_2)/(1 + J_1)$. Then U_l/U_{l+1} can be generated by n elements, too. Set $d = \prod_{m \in \mathfrak{M}} \operatorname{char} R_1/\mathfrak{m}$.

616

By Lemma 2.3 d annihilates U_l/U_{l+1} . Denoting the length of a module M over a ring R by $\ell_R(M)$ we obtain for all $l \ge 0$:

$$\ell_{\mathbb{Z}}(U_l/U_{l+1}) \le \ell_{\mathbb{Z}}((\mathbb{Z}/d\mathbb{Z})^n) < \infty$$

On the other hand we have by Lemma 2.3 $(M = J_2/J_1)$:

$$\ell_{\mathbb{Z}}(U_l/U_{l+1}) = \ell_{\mathbb{Z}}(J_1^l M/J_1^{l+1} M) \ge \ell_{R_1}(J_1^l M/J_1^{l+1} M)$$

But it is well known that the function $l \mapsto \ell_{R_1}(J_1^l M/J_1^{l+1}M)$ is a polynomial function (for large l) of degree dim M - 1. Since $\operatorname{Ass}_{R_1}(R_2/R_1) = \{0\}$ we have dim $M - 1 = \dim R_1 - 1 \ge 1$. Hence that function cannot be bounded. This contradiction finishes the proof of the Lemma.

We come now to the proof of the Theorem. $1 \iff 2 \iff 3$ by Lemma 2.4. $3 \Rightarrow 4$ is clear. So it remains to show $4 \Rightarrow 1$. Let $\mathfrak{p} \in \operatorname{Ass}_{R_1}(R_2/R_1)$ be a prime ideal having an infinite residue class field. We show that $R_2^{\times}/R_1^{\times}$ is not finitely generated.

By replacing \mathfrak{p} with some minimal member of $\operatorname{Ass}_{R_1}(R_2/R_1)$ contained in \mathfrak{p} we may suppose that \mathfrak{p} is already minimal. Let

$$\hat{R} = \{ r \in R_2 \mid sr \in R_1 \text{ for some } s \notin \mathfrak{p} \}$$

be the p-primary component of R_1 in R_2 . Obviously \tilde{R} is a subring of R_2 and we have $\operatorname{Ass}_{R_1}(R_2/\tilde{R}) = \{\mathfrak{p}\}$. From $(R_1)_{\mathfrak{p}} = \tilde{R}_{\mathfrak{p}}$ we deduce that there is only one prime ideal $\tilde{\mathfrak{p}}$ of \tilde{R} lying above \mathfrak{p} . From $\operatorname{Ass}_{R_1}(R_2/\tilde{R}) \supset \{\mathfrak{q} \cap R_1 \mid \mathfrak{q} \in$ $\operatorname{Ass}_{\tilde{R}}(R_2/\tilde{R})\}$ we obtain $\operatorname{Ass}_{\tilde{R}}(R_2/\tilde{R}) = \{\tilde{\mathfrak{p}}\}$. Hence replacing R_1 by \tilde{R} we may assume that \mathfrak{p} is the only prime ideal associated to R_2/R_1 . Let $x \in R_2$ be such that $\mathfrak{p} = \{r \in R_1 \mid rx \in R_1\}$. Then we have $\mathfrak{p}x \subset R_1 \cap \mathfrak{p}R_2 = \mathfrak{p}$, which implies $\mathfrak{p}R_1[x] \subset R_1$, i. e. \mathfrak{p} is the conductor of $R_1 \subset R_1[x]$. Therefore we obtain an isomorphism

$$R_1[x]^{\times}/R_1^{\times} \cong \frac{(R_1[x]/\mathfrak{p})^{\times}}{(R_1/\mathfrak{p})^{\times}}$$

By Lemma 2.5, $R_1[x]^{\times}/R_1^{\times}$ is not finitely generated.

References

- D. D. Anderson, Integral domains with finitely generated groups of divisibility, Proc. Amer. Math. Soc 112 (1991), 613-618.
- [2] D. D. Anderson and B. Mullins, Quotients of unit groups of commutative rings, Commutative Ring Theory (P.-J. Cahen, M. Fontana, E. Houston, and S.-E. Kabbaj, eds.), Lecture Notes in Pure and Appl. Math., vol. 185, 1997, pp. 15-25.

FLORIAN KAINRATH

- [3] E. D. Davis and P. Maroscia, Affine curves on which every point is a set-theoretic complete intersection, J. Algebra 87 (1984), 113-135.
- [4] R. M. Guralnick and R. Wiegand, Picard groups, cancellation, and the multiplicative structure of fields, Zero-dimensional commutative rings (D. F. Anderson and D. E. Dobbs, eds.), Lecture Notes in Pure and Appl. Math., vol. 171, 1994, pp. 65-79.
- [5] F. Kainrath, A divisor theoretic approach towards the arithmetic of noetherian domains, Preprint.
- [6] G. Karpilovsky, Unit groups of classical rings, Clarendon Press, Oxford, 1988.

Received April 4, 1998

FLORIAN KAINRATH, INSTITUT FÜR MATHEMATIK, KARL-FRANZENS-UNIVERSITÄT GRAZ, HEIN-RICHSTRASSE 36, A-8010 GRAZ, AUSTRIA

E-mail address: florian.kainrath@kfunigraz.ac.at