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1. INTRODUCTION

It is well known that for a proper field extension ¥ C K the group K> /k*
is not finitely generated if k is infinite ([6, Theorem 4.3.11]). In this paper we
generalize this to the case where k and K are semilocal noetherian rings and K
is a finitely generated k-module.

Our interest in such quotients comes from the theory of class groups. Let R
be a noetherian integral domain whose integral closure R is a finitely generated
R-module and let S be the monoid of non zero divisors of R/R. Then the rings
Rs, Rg are semilocal and there is an exact sequence ([5])

L— B*/R* — R§/R§ — CUR) — CI(R) — Cl(Rs) — 0

Thus, in order to study the singular part of CI(R) (i. e. the part coming from
non normal points in Spec(R)) one is naturally led to consider the quotient group
RZ/R}.

All rings in this paper are assumed to be commutative and to possess an unit
element.

2. THE RESULT

Let R be a ring. We let R* be its group of units. For a R-module M we denote
by Assg(M) the set of prime ideals associated to M.

Theorem 2.1. Let Ry C Ry be an extension of rings such that Ry is noether-
ian and semilocal and such that Ry is o finitely generated Ry-module. Then the
following assertions are equivalent:

1. Each p € Assp,(R2/R4) has a finite residue class field.
2. Ro/R; is finite.
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3. RS /R{ is finite.
4. Ry /R{ 1s finitely generated.

Remark. For related results see [2].

For the proof of this theorem we need some lemmata which handle special cases
of the theorem.

Lemma 2.2. Let k be an infinite field and A a finite dimensional k-algebra such
that k # A. Then A*/k* 1is not finitely generated.

ProoOF. This follows from [4, Lemma 1.6]. O

In the following let Ry C Rs be as in the theorem. Let 9t be the set of maximal
ideals of R,. We denote by J; = ﬂmemm the radical of By and set Jo = J1Rs.
Then we have, Jo N Ry = Ji, 1+ J; C R and an exact sequence

L+ Jp {Ra/J2)*
- A RX X N el ve; 1
1+J1_~> 2/R1—+(R1/J1)X—}
For | > 0 let U; be the image of 1 4+ J!J; in (1 + J2)/(1 + J1). Further set
M= Jy/ .

(1) 1—

Lemma 2.3. For alll > 0 we have U;/Uyy = JIM/JIM.
PrROOF. Let z € J; and y € JiJ;. Then we have
l+z+y=(1+2)1+1+2)""y) € 1+ )1+ J{J2)
Hence we obtain (1+ J1)(1 + JtJ3) = 1+ Ji + JiJo. Define a map
J1+ JH,
Jy 4 T,

by o(1+2) = ¢+ J1 + JITJy. Since (Jy + J1J)2 € Jy + Ji s, ¢ is a
homomorphism. It is surjective and has kernel 1+ J; + J{“Jz. Hence we obtain
an isomorphism

p: 1+ Ji+ Ly —

1+ J)Q+ ) 1+ +JLh

U /Upsy = _
/Uy A+ J)A+ L) 140+,
!
S CC R YIRS

Lemma 2.4. The following assertions are equivalent:
1. RY/R{ is finite.
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2. Ry/Ry is finite.
3. Fach p € Assg,(R2/R1) has a finite residue class field.

PRrROOF. The exact sequence (1) shows that R) /R is finite if and only if

1+ J5 (R2/J2)X
d A el el
1+ J; an (Rl/Jl)X

are both finite. By Lemma 2 (1 + J3)/(1+ J1) and Jo/J; possess filtrations with
isomorphic quotients. Hence (1+J2)/(1+Jy) is finite if and only if Jo/J; is finite.
By the Chinese Remainder Theorem there are isomorphisms

Ro/J2 Ry/mRy (Ro/J2)™ (R2/mRp)™
Ri/Jy H “Ry/m and (Ri/Jh)* H (Ry/m)*

By Lemma 2.2 the second product will be finite if and only if (Ra/J2)/(R1/J1)
is finite. Hence Ry /R{ is finite <= Jy/J; and (Ra/J2)/(R1/J1) are finite
< Rs/R; is finite. The equivalence of 2 and 3 is obvious. [

medMn

Lemma 2.5. Suppose that R; is an infinite integral domain and Assg, (R2/R1) =
{0}. Then R3 /R is not finitely generated.

Proor. We assume first that there is some maximal ideal m of R; having an
infinite residue class field. Then (Ri)m # (R2)m (since Assg,(R2/R1) = {0}).
By Nakayama we obtain R;/m # Rs/mRy. By Lemma 2.2 (Ra/mRg)* /(R /m)*
is not finitely generated. The projection Ry — Ro/mRy induces a surjective
homomorphism

(Rg/ng)x

(Ry/m)x
(here we use the elementary fact that R* — (R/I)* is surjective for a semilocal
ring and an ideal I of R, see for example [1, Lemma 2]). Hence RS /R{ is not
finitely generated.

From now on we assume that the maximal ideals of Ry (and hence these of R3)
have a finite residue class field. In particular dim Ry > 1 (since R; is assumed to
be infinite). We consider two cases.

1. dim R; = 1. Let N be the nilradical of Ry. First we suppose 9t # 0. Let
k > 1 be the smallest integer such that M*¥*! = 0. Mapping z to 1 + z gives
an embedding of groups M* = 1+ Nk C Ry /RY. Suppose that ME is a finitely
generated abelian group. Since it is a torsion free Rj-module (Assg, (Ra/R1) =
{0}) this implies that R; is finitely generated, too. In particular R; is integral

RS /R —
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over its prime ring. Since R; is semilocal this is only possible if the prime ring
and hence also R; is a finite fleld. This contradicts our assumption dim R; = 1.

Next assume 9 = 0. Let py,...,p, be the minimal prime ideals of R;. Then
we have 0 = p; N--- N p,. Suppose r > 2. We have the following inclusions:

R CRy; C HRQ/)JZ =: R
i=1
Since (Rs)p, = Ry, we have p; ¢ Assp,(R/Ry). By Lemma 2.4, R*/R} is
finite. Hence it suffices to show that RX/RIX is not finitely generated. Note that
pi N Ry = 0. Hence (embedding R; diagonally ) we have an inclusion

(Ry)"/RY € R*/R}

But (RY)"/Ry = (Ry)""!. Now R contains one of the following rings: Z,z, (p
prime) or k[T] where k is a finite field and T an indeterminate. Hence R} is not
finitely generated.

It remains to handle the case r = 1. Then R, is an integral domain, too. Let
K; be the quotient field of R; and R; the integral closure of R;. We have K; # K,
and Ry N K| = Ry (since Assg, (Ry/R1) = {0}). If K3 is purely inseparable over
K, then R} /R is a torsion group and hence by Lemma 2.4 it is not finitely
generated. So we may assume that Ky is not purely inseparable over K. For
an abelian group G let r(G) be its torsion free rank. By [3, Proposition 3.6]
r(Ky /K{) = oo (note that since dim Ry = 1, Ky cannot be algebraic over a
finite field). By the Theorem of Krull-Akizuki Rs is a principal ideal domain with
only (up to associates) finitely many prime elements. Hence r(K, /R)) < oo.
From the exact sequence

1— R} /R — KJ /K — KS/RIK] — 1

we deduce r(Ry /Ry) = oo. Let T be a subring of Ry containing Ry such that T
is a finitely generated Ro-module. By Lemma 2.4, T*/R5 is finite. Since R is
an union of such rings T, Ry /Ry is a torsion group. Using the exact sequence

1— RY/RY — Ry /Ry — RY/RyRy — 1
we see that r(R) /R]") = .

2. dimR; > 2. We suppose that Ry /R{ is finitely generated, say by n
elements. As above let U; (I > 0) be the image of 1 + JiJy in (1 + Jo)/(1 + J1).
Then U; /U1 can be generated by n elements, too. Set d = Hmem char Ry /m.
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By Lemma 2.3 d annihilates U;/U,41. Denoting the length of a module M over a
ring R by ¢r(M) we obtain for all I > 0:

(U /Upir) < 02((Z)dZ)™) < o0
On the other hand we have by Lemma 2.3 (M = J»/J1):
((UifUrr) = ba(JIM/ I M) > 0, (JIM[ I M)

But it is well known that the function I — €, (JEM/JITM) is a polynomial
function (for large !) of degree dim M — 1. Since Assg,(R2/R1) = {0} we have
dimM — 1 = dimR{ — 1 > 1. Hence that function cannot be bounded. This
contradiction finishes the proof of the Lemma. O

We come now to the proof of the Theorem. 1 <= 2 <= 3 by Lemma 2.4.
3 = 4 is clear. So it remains to show 4 = 1. Let p € Assg, (R2/R1) be a prime
ideal having an infinite residue class field. We show that RS /R is not finitely
generated.

By replacing p with some minimal member of Assg, (Rz/R;) contained in p we
may suppose that p is already minimal. Let

R={reRy| sreR, for some s ¢ p}

be the p-primary component of Ry in Rz. Obviously R is a subring of R, and
we have Assp, (Rz/R) = {p}. From (R;), = R, we deduce that there is only
one prime ideal p of R lying above p. From Assg,(Ra/R) D {qN Ry | q €
Assp(R2/R)} we obtain Assp(R2/R) = {p}. Hence replacing Ry by R we may
assume that p is the only prime ideal associated to Ra/R;. Let & € Ry be such
that p = {r € Ry | ro € R1}. Then we have pr C R; N pRy = p,which implies
pRi[x] C Ry, i. e. p is the conductor of Ry C Rilz]. Therefore we obtain an
isomorphism

Rl i = (AR

By Lemma 2.5, Ry[z]* /Ry is not finitely generated.
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