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FINITE GROUPS IN WHICH THE ZEROS OF EVERY 
NONLINEAR IRREDUCIBLE CHARACTER ARE CONJUGATE 

MODULO ITS KERNEL 

YAKOV BERKOVICH AND LEV KAZARIN 
COMMUNICATED BY BERNHARD H NEUMANN 

ABSTRACT. In this note we classify the groups G in which the zeros of every 
nonlinear irreducible character x are conjugate in G/ ker(x). Our proof de- 
pends on the classification of finite simple groups. We prove a related result 
for monolithic characters (see the corollary below). Some open questions are 
posed and discussed. 

Let Irr(G) be the set of irreducible characters of a finite group G (we consider 
only finite groups), Irri(G) the set of nonlinear characters in Irr(G). For x E 
Irri(G), let T(X) = {X E G ] x(z) = 0). The elements of T(X) are called zeros 
of x. By Burnside’s Theorem (see [I, Theorem 3.151 or [K, Corollary 23.1.5]), 
T(X) # 0 for every x E Irri(G). Obviously, T(X)” = T(X) for z E G, i.e., T(X) is 
a union of conjugacy classes of G (= G-classes). For further information on the 
sets T(X) and related subgroups see [K], Chapter 23. 

E.M. Zhmud [Zl], [Z2] treated some properties of finite groups G possessing 
a faithful irreducible character x such that T(X) is a G-class. The set of groups 
satisfying the Zhmud condition, is very big, and it is impossible to classify all 
such groups. In the other extreme, S.C. Gagola [G] studied the groups having an 
irreducible character vanishing on all but two classes. For further information on 
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zeros of characters see [Gal, /Z3], 1241. Note that induced characters have many 
zeros, and we make use of this fact in what follows. 

For X C G and N a G, let XN/N = {xN ( x E X} be the subset in GIN. 
A subset X is invariant in G (or G-invariant) if X9 = X for all g E G. If X is 
G-invariant, then XN/N is G/N-invariant. In particular, if x E Irrl(G), then 
by the above, T(X) ker()o/ ker(x) 1s a nonempty (since T(X) n ker(>o is empty) 
G/ ker(x)-invariant subset. 

Definition 1. A group G is said to be a CZ-group if T(X) is a conjugacy class of G 
for every x E Irrl(G). A group G is said to be a CZK-group if T(X) ker()o/ ker(>o 
is a conjugacy class in G/ ker(>o for every x E Irrl (G). 

By definition, abelian groups are CZ-groups and CZ-groups are CZK-groups. 
Both the properties are inherited by epimorphic images. 

Note that if z E T(X), z E ker(x), then zz E T(X). Indeed, if D is a rep- 
resentation of G with character x, then D(xz) = D(x)D(z) = D(x), and so 
I = tr(D(z)) = x(z) = 0. Th ere ore, f T(X) is a union of cosets of ker(x), and 

so T(X) ker(x)/ ker(x) = T(X)/ ker(x). 
Obviously, G is a CZ-group if and only if the character table of G has a minimal 

possible number (namely, (Irrl (G) I) zero entries. As a corollary of the main 
theorem, we obtain that a subgroups of CZ-groups are also CZ-groups. It is 
surprising that the symmetric group S4 is the only CZK-group that is not a CZ- 
group. Note that Sq has subgroups (namely, A4 and Sylow 2-subgroups) that are 
not CZK-groups. 

The proof of the main theorem in solvable case is based essentially on a corollary 
of the Isaacs-Passman Theorem [IP] on groups all of whose nonlinear irreducible 
characters have prime degrees (see Lemma 3 and Corollary 4 below). To prove 
the solvability of CZK-groups, we make use of the classification of finite simple 
groups and its consequence, due to Willems (see Lemma l(a)). 

Let (1) < N a G, 4 E Irrl(N) and x an extension of 4 to G. Since 4 is G- 
invariant, it follows that T(4) is G-’ invariant and T(4) c T(X). In particular, if 
T(X) is a G-class, then T(X) = T(4). W e make use of this remark in the proof of 

the theorem. 
In the proof of the theorem we make use of the following 

Lemma 1. (u) (LWl], [W2]) E ver simple group of Lie type possesses an irre- y 
ducible character x such that IGI/x(l) is odd (x E Irr(G) is said to be of p-defect 
0 i.fp t M/x(l)). 

(b) A group G, containing a nilpotent subgroup of index 2, is supersolvable. 
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(c) (Bumside; see also [N]) A group G admitting a fixed-point-free automor- 
phism of order 3 is nilpotent (of class at most 2). 

Lemma l(b) follows easily from [BZ, Exercise 3.191. 
For H < G, set HG = nsEG H”, DH = G - UzEH H”. It is known that 

Hc is the maximal normal subgroup of G contained in H and DH a nonempty 
G-invariant subset. 

Lemma 2. Let H be a nontrivial subgroup of a solvable group G such that DH 
is a G-class. Then: 

(a) If H Q G, then ]G : H] = 2 and G is a Frobenius group with kernel H. 
(b) If H is nonnormal maximal subgroup of G, then G/HG is a Frobenius group 

with kernel PIHG of order p” and complement H/HG of order p” - 1, where p 
is a prime. If, in addition, G is a CZK-group, then GIHc g S3, the symmetric 
group of degree 3. 

(c) If G is a nilpotent CZK-group, it is abelian. 

PROOF. (a) Let H a G. Then D H = G - H is a G-class, and so (G/H)# is a 
conjugacy class so that ]G/H] = 2. If x E G - H, then /G : CG(Z)/ = ]G - H] = 
$G], and we obtain a Frobenius group with kernel H of index 2. 

(b) Suppose H is nonnormal maximal subgroup of G. It suffices to consider 
the case when HG = (1). Let P be a minimal normal subgroup of G. Then 
NG(P n H) 2 (P, H) > H, and so P fl H = {l}, G = P. H, a semidirect product. 
Set ]P] = p”. Since P # C DH and DH is a G-class by assumption, it follows _ 
that DH = P# and ]DH U {l}] = ]P] = ]G : HI. On the other hand, it is easy 
to check that ]DH] > ]G : H] - 1 with equality if and only if H fl H” = (1) 
for all z E G ~ H. Therefore, H n H” = (1) for all z E G - H, i.e., G is a 
Frobenius group with complement H and kernel P. Since P# is a G-class and P 
is elementary abelian, it follows that I H] = ]P] - 1 = p” - 1. Let, in addition, G 
be a CZK-group. Every faithful irreducible character of G vanishes outside P by 
[I], Theorem 6.34, and so G - P is a G-class. By (a), ]G : P] = 2 so pa - 1 = 2, 
p” = 3 and GE Ss. 

(c) is a corollary of (a) because a nonlinear irreducible character x of G al- 
ways vanishes outside some proper normal subgroup (since G is an M-group) and 
G/leer(x) is not a Frobenius group. q  

Lemma 3. [IP] Let cd(G) = {x(l) ] x E Irr(G)} = {l,p,q}, where p,q are 
distinct primes. Then G has one of the following normal series: 

(a) G > F > Z(F) = Z(G), where ]G : F] = p, G/Z(G) is a Frobenius group 

whose kernel F/Z(G) of order q 2 is a minimal normal subgroup. 
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(b) G > F > M = Z(G) x R, where JG : F\ = p, IF : MI = q, G/M and 
F are nonabelian, R is elementary abelian of order rm for a prime r, F/M acts 

irreducibly on R, 
rm - 1 

TmlP - 1 
= q. 

Corollary 4. Let cd(G) = {1,2,3} and IG : G’( = 2. Then G ” S4. 

PROOF. By assumption (in the notation of Lemma 3), F = G’, p = 2, q = 3. 
Obviously, G is a group of Lemma 3(b). Then PI2 + 1 = q = 3, and so r = 2, 
m = 2, (G/Z(G)\ = 24. Since Sylow subgroups of G/Z(G) are not normal, it 
follows that G/Z(G) ” S*. By assumption, Z(G) < G’, and so G is an epimorphic 
image of a covering group of Sq. Since covering groups of S4 have irreducible 
character of degree 4, we get Z(G) = {l}, completing the proof. 0 

Our principal result is the following 

Theorem 5. A nonabelian group G is a CZK-group if and only if it is either a 
Frobenius group with kernel of index 2 or 5’4. 

PROOF. It follows from the description of irreducible characters of Frobenius 
groups (see [I], Th eorem 6.34) that a F’robenius group with kernel of index 2 
is a CZK-group (moreover, it is a CZ-group). It is easy to check that Sd is a 
CZK-group (however it is not a CZ-group). 

Let G be a CZK-group. Suppose that the theorem has proved for all CZK- 
groups of order < ]G]. I n what follows we assume that G is not abelian. 

(i) We claim that G is not simple (in the case under consideration, G is a 
CZ-group). Assume that this is false. To obtain a contradiction, we make use of 
the classification of finite simple groups. By [Atlas], the sporadic simple groups 
are not CZK-groups. Therefore, by the classification, it remains to show that the 
simple groups of Lie type and the alternating groups A, of degree n > 4 are not 
CZK-groups. 

Assume that G is a simple group of Lie type. Then by Lemma l(a), there 
exists a character x E Irr(G) of 2-defect 0. By [I], Theorem 8.17, x vanishes on 
all elements of even order. Since, by assumption, T(X) is a conjugacy class, all 
elements of even order in G have the same order, and so are involutions. This 
means that a Sylow 2-subgroup S of G is elementary abelian and CC(Z) = 5’ for 
every z E S#. Hence by Brauer-Suzuki-Wall Theorem (see [HB], Theorem 11.2.7), 
G % L2(2”), n > 1. The group G = L2(2”) (n 2 2) has an irreducible character 
x of degree 2” + 1 (Schur [S]; see also [D], $38). Note that G has a cyclic Hall 

subgroup 2 of order 2n + 1. Since (x(l), ]G]/x(l)) = 1 and T(X) is a conjugacy 
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class, it follows that x vanishes on Z# and all its conjugates by [I], Theorem 
8.17, and so 2” + 1 is a prime number. Set T = UzEG(Z#)z. Obviously, T is 
G-invariant subset, T = T(X) ( . since G is a CZK-group). Since ]NG(Z) : 21 = 2 
and 2 is a TI-subgroup of G, we have ITI = ]Z#] . ]G : NG(Z)] = 22n-1(2n - 1); 
however this number does not divide ]G] = 2n(22n - 1) so T is not a G-class. It 
follows that Lz(2”) is not a CZK-group. 

Assume that G = A,, the alternating group of degree n > 4. For n 5 7 the 
result follows from the character tables of A, (see [Atlas]). In what follows we 
assume that n > 7. Define a function 7r : A, + N U (0) as follows: if g E G, then 
r(g) is the number of points fixed by g. Since G = A, is 2-transitive, we have 
x = 1~ + x, where 1~ is the principal character of G and x E Irr(G). 

Let n = 2m, (m 2 4) be even. Consider the following permutations in G: 

a = (1,2,. . . ,2m - l), b = (1,2)(3,4)(5,. . ,2m - 1). 

Then ~(a) = 0 = x(b), b u a and b are not conjugate in G = A,, so that Asm is t 

not a CZK-group. 
Let n = 2m + 1, (m 2 4) be odd. Consider the following permutations in 

G = A2m+l: 

a = (1,2)(3,. . . ,2m), b = ((1,2,3,4)(5,. . ,2m). 

As in the previous paragraph, a and b are nonconjugate zeros of x, and so G = 
Azm+r is not a CZK-group. 

(ii) We claim that G’ < G. Indeed, if M is a maximal normal subgroup of G, 
then G/M is a simple CZK-group. By (i), G/M is abelian, and so G’ < M < G, 
as desired. 

(iii) Suppose that G has a proper normal subgroup M such that XG = x E 
Irr(G) for some X E Irr(M); then x is nonlinear. Since M a G, x vanishes 
outside M; in particular, ker(x) < M. Therefore, G/ ker(x) - M/ ker(x) = 
T(X)/ ker(x) (since G/ ker(x) -M/ ker()o is G/ ker(x)-invariant and T(X)/ ker(x) 
is a G/ker(x)-class by assumption). In that case, (G/M)# is a G/M-class so 
that ]G : MI = 2. By Lemma 2(a), G/ ker()o IS a Frobenius group with kernel 
M/ ker(x) (of index 2). 

A. Let G be solvable. We will use induction on ]G] to prove the theorem in 

this case. 
(iv) We claim that if G has an abelian subgroup A of index 2, then G is a 

Frobenius group with kernel A. By Lemma l(b), G is supersolvable. By [I], 
Lemma 12.12, ]G] = 2]G’]]Z(G)]. If Z(G) = {l}, then A = G’. In the case 
under consideration, A is of odd order, and every involution from G - A inverts 
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A; it follows that G is a Frobenius group with kernel A. Assume that Z(G) > 
(1). Since the intersection of kernels of the nonlinear irreducible characters of 
a nonabelian group is (1) ( see, for example, [BZ], Theorem 4.35), there exists 
x E Irrl(G) - Irr(G/Z(G)). If X E Irr(xA), then x = XG and ker(x) < A. Then 

T(x)/kerol) = G/kerol) - Alk4x) 1s a G/ ker(x)-class, and, by Lemma 2(a), 
G/ ker(>o is a Frobenius group, which is impossible in view of Z(G/ ker(>o) > {l} 
(by the choice of x). 

(v) We will prove by induction on IG( that IG : G’I = 2. We may assume 
that G’ is a minimal normal subgroup of G. By Lemma 2(c), G is not nilpotent. 
Therefore, by [HI, Satz 3.3.11, G’ $ Q(G) (a(G) is the Frattini subgroup of G), 
and SO G = H G’, where H is maximal in G; obviously, H n G’ = (1) and H 
is abelian. Let HG = {I}; then G is a Frobenius group with kernel G’. Since all 
faithful irreducible characters of G vanish off G’ (see [I], Theorem 6.34), G - G’ 
is a G-class, and we get IG : G’I = 2 by Lemma 2(a). Let HG > {l}. Then 
IG : G’ x HGI = 2 by induction, contrary to (iv) (since HG 5 Z(G) and G’ x HG 
is abelian of index 2 in G). This completes the proof of (v). 

(vi) We claim that if G has a nilpotent subgroup A of index 2, then A is 
abelian. Assume that G is a counterexample of minimal order. By (v), A = G’. 
By Lemma l(b), G is supersolvable. By induction, A is a nonabelian p-group, p is 
a prime, IA’1 = p. Since G/A’ 1s a Frobenius group by (iv) (in particular, p > 2), 
A’ 5 Z(A) and G 1s not a Frobenius group (otherwise, A is abelian by Burnside), 
we get A’ = Z(G). By induction, A’ is the only minima1 normal subgroup of 
G. By Fitting’s Lemma (applied to Z(A)), we get A’ = Z(A). If z,y E A, then 
[X, y”] = [2, y]” = 1 ( since the nilpotence class of A is 2) so y” E Z(A) = A’. It 
follows that A/A’ is elementary abelian so A is extraspecial. Let 0 E Irrl(A). 
Then BG is faithful, vanishes outside A’; therefore, since G - A is not a conjugacy 
class of G, QG = x1 + x2, where ~1, x2 E Irr(G) are two distinct extensions of 0 
(by Clifford theory and Lemma 2(a)). Then T(x~) = T(B)(= A - A’) (see the 
remark preceding Lemma 1). If z E A - A’ = T(x~), then 2p = IG : Cc(~)1 = 
IT( = (A - A’I. Setting (Al = p1+2m, m E N, we get 2p = p2m+1 - p, which 
is impossible. Thus, A is abelian. 

In what follows, we will assume that G’ is not nilpotent; then G” > (1) and 
G” $ a(G) by [HI, Satz 3.3.5. 

(vii) We will prove t,hat if G” is the unique minimal normal subgroup of G, 
then G “_ S4. Set IG”\ = p”, IG : G”( = 2a, where a > 1 is odd; then G/G” 

is a Frobenius group with kernel of order a (see (iv)). Since G” $ Q(G) we get 
G = H G”, where H is maximal in G and H n G” = {l}. By assumption, 
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CG(G”) = G”. Let H = X. A, where /XI = 2, JAI = a, A is the abelian kernel of 
a Frobenius group H. Assume that G’ = A. G” is not a Frobenius group. Then 
yz = zy for some y E A# and z E (G”)#. Since (y) a H and H is maximal in G, 
it follows that (y) Q G, contrary to the uniqueness of G”. Thus, G’ = A. G” is a 
Frobenius group (in part,icular, A is cyclic). Let a nonprincipal p E Irr(G”). Then 
,g = I-lG’ E Irr(G’) by [I], Theorem 6.34. Since G - G’ is not a G-class (see Lemma 
2(a)) and OG vanishes outside G’, it follows that OG = x1 + X2, where x1, X2 are 
distinct extensions of 0 to G. Since (xr)~ = 0, T(Xr) is a G-class and T(B) is a 
G-invariant subset (since 6’ is a G-invariant character of G’ u G), it follows that 
T(xi) = T(B). Note that T(O) = G’ - G” is the set of size apN -pa = (u - l)pa. 
If z E G’ - G”, then (G : CC(Z)\ = 2~“. Hence (cr - 1)~” = 2p”, and so a = 3. 
In particular, G/G” ” Ss. Assume that Irr(G) h as a character X of degree 6. If 
1-1 E Irr(xG”), then X = pG (since ]G : G”] = 6 and p is linear) and X is faithful. 
In the case considered, X vanishes outside G”. This is impossible since G - G” 
is not a G-class in view of G/G” Z SJ. Thus, cd(G) = { 1,2,3} by [I], Theorem 
6.15. By (v) and Corollary 4, G 2 Sd. 

(viii) We claim that if G” is a minimal normal subgroup of G, then G 2 Sd. 
By (vii) we may assume that G has another minimal normal subgroup R. By (v), 
R < G’. Moreover, R x G” < G’, by (iv) and (v). By induction, G/R zz Sq, and 
so ]G”] = 4. We have ]G : R x G”( = 6. As in (vii), Irr(G) has no character of 
degree 6 (if such a character exists, it is faithful, and then G - R x G” is a G-class 
by assumption, which is a contradiction). By Ito’s Theorem ([I], Theorem 6.15), 
cd(G) = {1,2,3}. By Corollary 4 and (v), G 2 S4 (in particular, R does not 
exist). 

(ix) We claim that if G” > (1) 1s abelian, then G g Sb. As before, we will 
use induction on G. By (viii), we may assume that G” is not a minimal normal 
subgroup of G. Let R be a minimal normal subgroup of G contained in G”. By 
induction, G/R ” SJ. It follows that G” is an (abelian) 2-subgroup of index 6 in 
G. As in the proof of (vii) and (viii), cd(G) = {1,2,3}. By Corollary 4 and (v), 
G g S4 (in particular, R does not exist). 

(x) We claim that if G” > { 1) is nilpotent, then G ” Sq. In view of (ix), 
we may assume that G” is nonabelian. By (ix), (G”/G”‘( = 4, and so G” is 
a 2-group of maximal class by Taussky’s Theorem (see [HI, Satz 3.11.9). By 
(vi), G’ is not nilpotent. Therefore, G” is the ordinary quaternion group (if P 
is a 2-group of maximal class such that Aut(P) is not a 2-group, then P is the 
ordinary quaternion group). In that case, G is a covering group of S4 (by Schur’s 
description of covering groups of the symmetric groups [S]; see also [Su], (3.2.21)). 
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Then G has a faithful irreducible character x of degree 4. Since cd(G’) = { 1,2,3}, 
it follows, by Clifford’s Theorem, that XGI = 41 + 42, where $i, 42 E Irr(G’) and 
4:: = x. Then x vanishes outside G’ so G is a Frobenius group with kernel G’ 
(Lemma 2(a)), which is not the case. 

(xi) We claim that G”’ = (1) (in particular, if G” > {l}, then G ” Sd). 
Assume that this is false. Without loss of generality, we may assume that N = 
G”’ is a minimal normal subgroup of G. By (x), G” is not nilpotent, and so 
N $ (P(G) by [HI, Satz 3.3.5. Therefore, G = H. N, where H n N = (1) and 
H is maximal in G. Since G” is not nilpotent, HG = {l}, and so CG(N) = N. 
By (ix), H E G/N E Sq. Set ]N( = pa. We have p > 2 (since G” is not 
nilpotent). In particular, LY > 1. We have 4 E cd(G”) (otherwise, by [A], G” 
has an abelian subgroup of index 2, and then CG(N) > N, which is not the 
case). Let 4 E Irr(G”), 4(l) = 4. If Irr(G) has a character x of degree 24, then 
T(X) = G - N is a G-class (since N is normal abelian of index 24 in G), contrary 
to Lemma 2(a). Let us consider the following two cases. 

(lxi) Suppose that B = 4G’ E Irr(G’). Since 24 +! cd(G), 0 is G-invariant by 
Clifford theory, and so BG = x1 + ~2, where x1, x2 E Irr(G) are distinct (faithful) 
extensions of 0 to G. As above, T(8) = T(xr) ( see the remark, preceding Lemma 
1). But 8 vanishes on G’ - N (since ]G’ : Nj = 12 = e(l) and N is abelian), and 
this set is not a G-class since G’/N E Ad, and we obtain a contradiction. 

(2xi) Let $J~’ @ Irr(G’). Then $G’ = 0 + 8i + e2, where 8,81,82 E Irr(G’) are 
distinct extensions of $J to G’ (by Clifford theory). Since N -$ ker(e), it follows 
that BG = xi + ~2, where x1, x2 E Irr(G) are (faithful) distinct extensions of 0 
to G (see Lemma 2(a)). We have (Xr)G” = 4, and so T(xi) = T(4) (since 4 is 
G-invariant, the set T(4) . 1s invariant in G). Since G is a CZK-group, T(4) is a 
G-class, and, by [I], Th eorem 8.17, it consists of elements of even order in G”, 
which are, consequently, involutions. But this is not true: G” is not a F’robenius 
group (since its Sylow 2-subgroup is nonnormal abelian of type (2,2)), and so G” 
has an element of order 2~. This contradiction completes the proof of (xi). 

Thus, the theorem is proved in the solvable case. It remains to prove that G 
is solvable. 

B. We claim that G is solvable. Suppose that G is a counterexample of minimal 
order. Then G is not simple (by (i)) and has only one minimal normal subgroup, 
say R; R is a direct product of isomorphic nonabelian simple groups, GJR is 
solvable. By (ii) and (v), ]G : G’] = 2. L t e a nonprincipal #J E Irr(R). Assume 

that 4” # 4 for some z E G. Then the inertia subgroup I = IG(4) is a proper 

subgroup of G. Obviously, R < I. If Q E Irr(#), then BG = x E Irr(G) by 
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[I], Theorem 6.11(a). Since R is the only minimal normal subgroup of G and 
R $ ker(x), x is faithful. The induced character x vanishes on DI = G-UzEG I”, 
and so T(X) = D I ( since Dr is a nonempty invariant subset of G and T(X) is 
a G-class by assumption). If I a G, then G is a Frobenius group with kernel 
I, ]G : I) = 2, by Lemma 2(a). In that case, G is solvable, which is not the 
case. Assume that I $ G. Let I < H < G, where H is maximal in G. Since 
DH=G-&~H~ is a nonempty G-invariant subset and DH & T(X), it follows 
that DH = T(X) (since T(X) is a G-class). By the induction hypothesis, G/R 
is solvable. Therefore, by Lemma 2(b), G/He E S3 (if H a G, we obtain a 
F’robenius group with kernel H of index 2 by Lemma 2(a), which is not the case: 
G is nonsolvable). In particular, ]G : HI = 3. Let H, HI, Hz be all G-conjugates 
of H. Then H n Hl = H n HZ = HI n HZ = HG, and so 1 H u H1 u Hz 1 = 
31HI - 21H4 = $IGl. W e o bt ain IDH( = i/Cl. Therefore, if zr E DH, then 
]G : CG(Z)~ = IDH( = 4IGl ( . since DH is a G-class), and so CG(X) = (zr) is of order 
3. Since x # HG, it follows that x induces a fixed-point-free automorphism of HG 
of order o(x) = 3. By Lemma l(c), HG is nilpotent. Since R 5 HG, it follows 
that R is solvable, contrary to the assumption. Thus, all irreducible characters of 
R are G-invariant. By the Brauer Permutation Lemma ([I], Theorem 6.32), every 
R-class is a G-class. Therefore, R is simple. It follows that R is a nonabelian 
simple CZK-group (in fact, if a nonprincipal $J E Irr(R) and x E Irr(4G), then 
XR = e& it follows that T(4) = T(X) . 1s a G-class, and so an R-class), contrary 
to (i). This completes the proof of the theorem. 0 

In particular, a nonabelian group is a CZ-group if and only if it is a F’robenius 
group with kernel of index 2. (According to the report of D. Chillag, he also 
classified CZ-groups.) 

A character x of G is said to be monolithic if x E Irr(G) and G/ ker(>o is a 
monolith. If N aG and x is a monolithic character of G/N, then x (considered as 
a character of G) is also a monolithic character of G. We consider the principal 
character IG of G to be monolithic by definition. As a rule, the set of monolithic 
characters of G is a proper subset of Irr(G). As an easy consequence of the 
theorem we will prove the following 

Corollary 6. If T(x) 2s a conjugacy class for every nonlinear monolithic char- 

acter of a nonabelian group G, then G is a CZ-group. 

PROOF. Let M be a maximal normal subgroup of G. Since all irreducible char- 
acters of G/M are monolithic, it is a CZ-group. It follows from the theorem that 
G/M is abelian. In particular, G’ < G. Moreover, this reasoning shows that if 
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N a G, then (G/N)’ < G/N. Suppose that the corollary is proved for all groups 
of order < ]G]. Let R be a minimal normal subgroup of G. By the induction 
hypothesis, G/R is solvable. 

Assume that G/R is nonabelian. Let H/R be a normal subgroup of G/R such 
that G/H is nonabelian but every proper epimorphic image of G/H is abelian. All 
nonlinear irreducible characters of G/H are monolithic (see [I], Theorem 12.3). 
Therefore by the theorem, G/H is a Frobenius group with kernel L/H of index 2 
(by the above, G/H . IS not nilpotent). Let X be a nonprincipal character of L/H. 
Then XG = x E Irri(G) ( see [I], Theorem 6.34), and x vanishes outside L. By 
what we have said above, the character x is monolithic. Therefore, G - L is a 
G-class, by assumption. By Lemma 2(a), G is a Frobenius group with kernel L 
of index 2. 

Assume that G is not solvable. Then G/R is solvable and R is not solvable. 
By the result of the previous paragraph, G/R is abelian. Since this is true for 
every choice of R, it follows that R = G’. In that case, G is a monolith and all its 
nonlinear irreducible characters are monolithic, i.e., G is a CZ-group, contrary to 
the theorem. 0 

Question 1. Classify the groups G such that the character table of G has 1 Irq (G) I+ 
1 zero entries (A 4, 5’4 and A5 satisfy this condition). 

Question 2. Study the nonsolvable groups G such that T(x) is a conjugacy class 
whenever x E 1rri(G) and x( 1) is even (Lz(~~) satisfies this condition, but 
Aut(La(a3)) does not satisfy by [I], Th eorem 8.17’: it has elements of order 6). 

Probably, Lz (2”) are the only simple groups satisfying Problem 2 (see the 
reasoning in part (i) of the proof of the theorem). We do not know nonsolvable 
groups G such that T(X) is a conjugacy class for all x E Irri(G) of odd degree. 

Question 3. Classify the groups G such that T(X) is a conjugacy class for all 
but one nonlinear irreducible characters x of G (examples: SL(2,3) and, by [I], 
Theorem 3.15, all the groups of Question 1). 

Question 4. Let G be a nonabelian group. For x E Irrr(G), let z(x) be k(x) - 1, 
where T(x) is a union of k(x) conjugacy classes. Set z(G) = xXEIrrl(GJ z(x). 
Classify the simple groups G with small z(G). 

Question 5. Classify the groups G such that T(X)/ ker(>o is a conjugacy class 
for all nonlinear monolithic characters x of G. It is easy to show that all such G 
are solvable. 
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Let x E Irr(G). Set Z(x) = {x E G ( (x(x)( = x(1)). The set Z(x) is a normal 
subgroup of G (the quasikernel of x). It is easy to show that if x E Irrl(G) 
then T(x)Z(x) = T(X). A group G is said to be CZQ-group if it is abelian or 

T(x)IZ(x) is a G/Z(x)- 1 c ass for every x E Irrl (G). The property CZQ is inherited 
by epimorphic images. 

Question 6. Classify CZQ-groups. 

As in part B of the proof of the theorem, we can show that CZQ-groups are 
solvable. If G/Z(G) is a CZK-group then G is not necessary a CZQ-group (indeed, 
if G is a covering group of the symmetric group S4 of degree 4, then G/Z(G) ” S4 
is a CZK-group but G is not a CZQ-group. If a nonnilpotent group G of order 12 
has a cyclic subgroup of order 4, then G is a CZQ-group. Probably, the derived 
length of a CZQ-group G is at most two, unless G = Sq x Z(G). 

We are indebted to the referee for his interesting report (as a result, the paper 
was reworked completely). 
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