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SUBGROUPS WITH THE CHARACTER RESTRICTION
PROPERTY AND RELATED TOPICS
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ABSTRACT. Let P € Syl,(G), N = Ng(P). Isaacs (J. Algebra 100 (1986),
403-420, Theorem B) has proved that if N has the character restriction
property in G, then GG contains a normal subgroup M such that NNM = {1}
and G = N - M (it follows from the classification of finite simple groups, that
M is solvable). We present a character free version of the theorem above
(see Theorem 5) and give the different proof of another Isaacs’ result (the
cited paper, Theorem A). Proposition 7 is a weak form of a character free
version of Theorem 2. A new case of the existence of normal complements to
subgroups having the character restriction property yields Proposition 10.

Let G be a finite group, H < G. We will say that H has the character
restriction property in G (H is a CR-subgroup of G or H has property CR in G)
if every irreducible character of H is the restriction of some (irreducible) character
of G (see [HH]). If H has a normal complement in G, it is a CR-subgroup of G
(but the converse, in general, is not true: every subgroup of an abelian group G
has property CR in G). If H < G’ and H has property CR in G, then H' = H.

Isaacs has proved the following two results:

Theorem 1. [I1, Theorem B] Let P € Syl (G), where p is a prime divisor of
|G). If N = Ng(P) has property CR in G, then N has a normal complement in
G.

Besides, a normal complement in Theorem 1 is solvable (see the remark fol-
lowing Theorem 5).
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Theorem 2. [I1, Theorem A] Let 7 be a set of primes. Let H < G be a solvable
w-subgroup and suppose H mazimal with this property. If H satisfies CR in G,
then G has a normal w-complement and H is a w-Hall subgroup of G.

In this note we generalize Theorem 1 and give another proof of Theorem 2.
Many related results are proved as well.

In what follows, we make use of the following known results:

Lemma 3. (a) (Isaacs ([I1, Lemma 2.2], see also [K, Lemma 27.5.3]) Let H be
a mazimal solvable w-subgroup of G. If L < G is such that H < Ng(L) and
LN H = {1}, then L is a n'-subgroup. In particular, if H is a mazimal solvable
subgroup of HL, then L = {1}.

(b) (Tate [T); see also [12], Theorem 6.81) Let H be normal in G and P €
SyL,(G). If HN P < ®(P) (where ®(P) is the Frattini subgroup of P), then H is
p-nilpotent.

(¢) (Clemens; see [C]) Let a p-group P act on a p’-group G in such a way that
Ce(P) = {1}. Then G is solvable.

(d) (see [I1], Proposition 1.1 or [K], Lemma 27.5.5) Suppose that H < G
satisfies CR in G. If K is normal in H and K€ is the normal closure of K in
G, then K°NH = K and HK®/K© satisfies CR in G/KC.

(e) (Sah [S]; see also [K], Theorem 26.2.2) Let H be a solvable Hall subgroup
of G. If H satisfies CR in G, then H has a normal complement in G.

Definition 1. A triple (G, H, K) is said to be special in G if K < H < G and
HNK® =K.

Definition 2. A subgroup H is said to be an NR-subgroup of G (Normal Re-
striction) if, whenever K is normal in H, the triple (G, H, K) is special in G.

Triples (G, H, H) and (G, H,{1}) are special in G for all H < G.

Lemma 4. Let K < H < T < G and the triple (G, H, K) is special in G. Then

(a) The triple (T, H, K) is special in T.

(b) If L/K® Q4 HKC /K and the triple (G, H, LN H) is special in G, then the
triple (G/KC,HKG /K%, L/K®) is special in G/K® (in particular, if K < G,
then the triple (G/K,H/K,L/K) is special in G/K ).

(¢) If H is an NR-subgroup of G, then HKC®/KG is an NR-subgroup in G/K€.

(d) Every CR-subgroup is also an NR-subgroup.

PROOF. The equality K < HNKT < HNKY = K proves (a).
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To prove (b), enough to show that (LY /K)N(HK®/K%) = L/ K or, what is
the same, LYNHKY = L. It follows from K¢ < L. < KSH that L = K%(LNH),
by the modular law. Therefore, L% = KY(LN H)® = [K(L N H)]¢ = (LN H)®
(since, by assumption, K < LNH). By the modular law, L°NHKS = (LNH)%n
HK® = KG[(Ln H)% N H]. The right hand-side of the last equality is equal to
K% (LNH) (since (G, H, LN H) is special by assumption; obviously, LNH < H).
By what was proved above, K¢(L N H) = L. Thus, L° N HK® = L, as desired.
Obviously, (b) implies (c). (d) is known (see [I1]). O

If H is a subgroup of prime order in a group G, then H is an NR-subgroup
but not a CR-subgroup if G = G’. As Lemma 4 shows, NR-subgroups have some
important properties of CR-subgroups (see Lemma 3(d)).

Recall that a group is p-closed (p-nilpotent) if it has a normal Sylow p-subgroup
(a normal p-complement).

The following theorem is a character free version of Theorem 1:

Theorem 5. Let P € Syl,,(G), N = Ng(P). If the triples (G, N, P) and (G, N, ®(P))
are special, then N has a normal complement in G.

Proor. Write L = P®. By Frattini’s Lemma, LN = G. Note that P is self-
normalizing in L (in fact, N (P) = LNN = PENN = P since the triple (G, N, P)
is special). If L has a normal p-complement, it is a normal complement to N in G
(since, by what has just been said, N N L = P). Therefore, enough to show that
L is p-nilpotent. Write T = ®(P)®. Then ®(P) < TNP < ®(P)° NN = &(P)
(since the triple (G, N, ®(P)) is special), and so TN P = ®(P). Note that the
abelian subgroup PT'/T is self-normalizing in L/T, and thus L/T has a normal p-
complement H/T by Burnside’s Normal p-Complement Theorem. Since PH = L
and PNH = PN(PTNH)=PNT = ®(P), it follows from Lemma 3(b) that L
has a normal p-complement, as desired. O

Remark. If N is a normalizer of a Sylow p-subgroup of G, then every normal
complement H to N in G is solvable. Indeed, then Npy(P)= PHNN = P, and
so H is solvable by Lemma 3(c). Thus, the normal complement to N in Theorem
5 is solvable.

Corollary 6. Let N be a normalizer of a Sylow p-subgroup P of G. If every
irreducible character of N of p’-degree is the restriction of an irreducible character
of G, then N has a solvable normal complement in G.

PRrROOF. In fact, all irreducible characters of N/P and N/®(P) have p’-degrees by
Ito’s Theorem (see {12, Theorem 6.15] ). It follows that (G, N, P) and (G, N, ®(P))
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are special triples in G (since the intersection of kernels of the irreducible charac-
ters of N/K is K/K, and so K¢ N N = K, where K € {P, ®(P)}; recall that all
irreducible characters of N/K have extensions to G by what was said above and
assumption). Therefore, Theorem 5 implies the result. O

PROOF OF THEOREM 2 Assume that the theorem is proved for all groups of
order < |G|. We may assume that H > {1}.

Let R be a minimal normal subgroup of H. Then R is an elementary abelian
p-group for some p € 7. Write K = R®. By Lemma 3(d), KNH = Rand HK/K
has property CR in G/K.

Suppose that HK < G. Then the pair H < HK satisfies the assumption of
the theorem. By the induction hypothesis, HK = H - L, where L is a normal
n’-Hall subgroup of HK. Since HK/K is a m-group, it follows that L < K, and
so LaG (since L is characteristic in K «G). Suppose that HK/K < F/K, where
F/K is a maximal solvable m-subgroup of G/K. Obviously, L is a normal =’-
Hall subgroup of F. Therefore, by the theorem of Schur-Zassenhaus, F' contains
a w-Hall subgroup H; such that H < H;. Since H; is a solvable m-subgroup,
by assumption H; = H, and so HK/H = H1K/K = F/K. Thus, H/K is a
maximal solvable m-subgroup of G/K. Therefore, by the induction hypothesis,
G/K = HK/K - S/K, where S<G and SN HK = K. It follows that HS = G
and SNH =SNHKNH)=(SNHK)NH =KnH=R. If HK = G,
then H N K = R (see the second paragraph of the proof). Thus, in any case, G
contains a normal subgroup S such that G = HS and HNS = R.

Suppose that R <G (in that case, K = R). Then H/R is a maximal solvable
n-subgroup of G/R (see the previous paragraph), and hence, by Lemma 3(a),
S/R is a n’-group. Then H is a m-Hall subgroup of G, and Lemma 3(e) shows
that G has a normal wm-complement,.

Let R 4 G. Then N = Ng(R) < G and H € N. Since the pair H < N
satisfies assumptions of the theorem, it follows by the induction hypothesis, that
N = H-T, where HNT = {1} and T is a normal n’-Hall subgroup of N.
Therefore, [R,T] = {1}. Now, T < S since G/S is a m-group. By the modular
law, N = H(NNS). Now, HN(NNS) = HNS = R, so that |[N] = HLZ0SL
Thus [N N §| = ERM = |T|- |R|, and hence R x T = RT = NN S = Ns(R).
In particular, R is an abelian Sylow p-subgroup of S. By Burnside’s Normal p-
Complement Theorem, S has a normal p-complement U. It follows that U <G
(since U is characteristic in S < G), UNH = {1} (since (|H|,|U|) = 1) and
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G = H-U. By Lemma 3(a), H is a m-Hall subgroup of G, completing the
proof. [

It should be noticed that our proof of Theorem 2 depends on Lemma 3(e) while
Isaacs’ proof does not.

Note that if H is a maximal solvable 7-subgroup and NR-subgroup of G, then
H is not necessarily a Hall subgroup of G (for example, G is a direct product of
PSL(2,5) and the cyclic group of order 3, 7 = {3,5} and H is cyclic of order 15),
i.e., a character free version of Theorem 2 is not true. But the following weaker
result holds:

Proposition 7. Let H be a mazimal solvable subgroup of G. If H is an NR-
subgroup of G, then H = @G.

PRrROOF. Suppose that G is a counterexample of minimal order. By Lemma 4(a)
and the induction hypothesis, H is maximal in G. Clearly, H > {1}. Let K
be a minimal normal subgroup of H.Then K¢ N H = K and K is a p-subgroup
for some prime p. If K¢ = K, then H/K is a maximal solvable subgroup of
G/K and H/K is a NR-subgroup of G/K (Lemma 4(c)). By the induction
hypothesis, H/K = G/K, contrary to the assumption H < G. Thus, K¢ > K,
and so K¢ ¢ H. Thus, HK® = G since H is maximal in G. It follows that
Ng(K) = H, and so Ngo(K) = HNKY = K. Therefore, K is a self normalizing
abelian Sylow p-subgroup of K¢. By Burnside’s Normal p-Complement Theorem,
K€ has a normal p-complement R. Then G = HK® = HKR=H-R and R is
normal in G (since R is characteristic in K¢ <G) and RN H = {1}, contrary to
Lemma 3(a). O

Conjecture 1. Let H be a Hall subgroup of G and let N = Ng(H). If N has
property CR in G, then N has a normal complement in G (this is true if N = H
[F]; the proof in [F| depends on the classification of finite simple groups).

If N of Conjecture 1 is an NR-subgroup of G, then, in general, N has no normal
complement in G (for example, G = PSL(2,11), H = PSL(2,5)).

Corollary 8. Let N be a normalizer of o Sylow p-subgroup P of o group G.
Suppose that, for K € {P, ®(P)}, there exists a subgroup L in G such that NNL =
K and NL = G. Then N has a normal complement in G.

PROOF. By Theorem 5, it suffices to show that (G, N, P) and (G, N, ®(P)) are
special triples in G. This follows from the following lemma. ]

Lemma 9. Let K < H < G. If there exists a subgroup L such that HL = G and
HNL=K, then the triple (G, H, K) is special.
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PROOF. If g € G, write g = hl with h € H and € L. Then K9 = (K*)! = K' <
L, and thus K€ < L. Therefore K < K°NH < LNH = K,andso K°NH = K,
as required. O

We are indebted to the referee for a shorter proof of Corollary 8. (Of course,

Lemma 9 is not new: (it was proved in one of the papers of S.A. Chunikhin about
60 years ago.)

Conjecture 2. If all mazimal subgroups are NR-subgroups of G, then G is solv-
able.

Proposition 10 generalizes and strengthens the following known result: if a
Carter subgroup H of a solvable group G has property CR in G, then H = G.

Proposition 10. Let H be a nilpotent subgroup of G such that Ng{(L) = L for
all subgroups L of G containing H. If H is an NR-subgroup of G, then H has a
normal complement in G, and this complement coincides with the last member of
the lower central series of G.

PROOF. ! Write G® to denote the last term of the lower central series of G.
Note that HG>® = G since H is self normalizing. What must be shown is that
HNG* = {1}. If this is false, let p be a prime divisor of |[HNG*°| and let N be the
normal p-complement of H. Write M = N©. By the NR property, M N H = N.
By assumption, M H/M is self normalizing in G/M and by Lemma 4(c), MH/M
has NR property in G/M. Therefore, by induction, MH/M -T/M = G/M, where
T isnormal in G and MHNT = M. Weget G = HMT = HT, and so G < T.
Thus,

G*NHLTNH=TN(MHNH)=(TNMH)NnH=MnNH=N,
a contradiction since p does not divide |N| and so it does not divide |G*NH|. O

Proposition 11. If all Sylow subgroups of G are NR-subgroups, then G is su-
persolvable.

PROOF. Let p be the smallest prime divisor of |G|, P € Syl,(G). We will prove
by induction on |G| that if P is an NR-subgroup of G, then G is p-nilpotent. Let
R be a normal subgroup of order p in P. Then PN RS = R and PRY/RC is
an NR-subgroup of G/R® (Lemma 4(c)). By the induction hypothesis, G/R® =
PRC/RC.S/RE, where S/RC is a normal p-complement of G/R®. Then G = PS
and PNS = (PNPRY)NS = PN(PR®NS) = PNR® = R, and so R is a Sylow

I This proof is due to the referee.



CHARACTER RESTRICTION PROPERTY 637

subgroup of order p in S. Since p is the smallest prime divisor of |Sj, it follows
that S has a normal p-complement H. Since H normal in G and G = P - H, the
result follows.

We will prove that G has an ordered Sylow tower such as every supersolvable
group has. Let p be the smallest prime divisor of G. By the result of the previous
paragraph, G has a normal p-complement H. Let ) € Syl(H). By Lemma
4(a), @ is an NR-subgroup of H. Therefore, H is supersolvable by induction (in
particular, H has the desired Sylow tower), proving the claim.

Let ¢ be the largest prime divisor of G, Q € Squ(G); by the result of the
previous paragraph, @ is normal in G. If Qg is a normal subgroup of @, then
QS = Qq since Q§ < @, and so Qp is normal in G. Let G = T - Q, where T is
a g-complement of G. By Lemma 4(a) and induction, T is supersolvable. Since
G/Q = T is supersolvable and the indices of the segment @ > Q; > --- > {1} of
a principal series of G are equal to ¢ (by what we have just been proved), all is
done. ]

If all Sylow subgroups of G are cyclic, it satisfies the assumption of Proposition
11 (so G of that proposition is not necessarily nilpotent). However, it follows from
Lemma 3(e) that G is nilpotent if all its Sylow subgroups are CR-subgroups.

Question 1. Let G’ < G. Study the structure of G if G’ has property CR in G
(in that case G" = G').

Question 2. Let H be the solvable residual of G. Study the structure of G if H
has the property CR in G.

For some related results, see [F| and [HH].
I am indebted to the referee for numerous useful comments and suggestions.
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