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ABSTRACT. Let u be a harmonic map from a unit ball B in Rn into a 
nonpositively curved manifold, E(u) the energy of u, E(u\a~) the energy of 
alas. Then we obtain a relationship between E(u) and E(ula~), called the 
isoenergy inequality, (n - l)E(u) 5 E(U\aB). When the target manifold has 
no curvature assumption and u is stationary, it is shown that (n - 2)E(u) 5 
E(ulae). These isoenergy inequalities are sharp because equality is attained 
by some canonical harmonic maps. 

1. INTR~DuOTI~N 

It is the isoperimetric inequality that relates the volume of a domain D in R” 
with the volume of the boundary of D. Steiner [13] proved that for any dimension 
n>2 

nnu,VoZume(D)n-l 5 VoZume(8D)‘“, 

where w, is the volume of a unit ball in R” and equality holds if and only if 
D is a ball. Recently Kleiner [7] and Croke [2] obtained the same isoperimetric 
inequality for domains in a nonpositively curved n-dimensional simply connected 
Riemannian manifold for n = 3 and 4, respectively. But in a nonnegatively 
curved Riemannian manifold, the sharp isoperimetric inequality is known only 
for dimension two (see [I$]). 

In this paper we study an isoperimetric inequality for energy instead of volume. 
Let us consider a smooth harmonic map u from a closed unit ball B c R” to 
Rm,n 2 2. Define E(u) and Eat) to be the energy of the map 2~ and the 
energy of the restriction of u to dB, respectively. Then is there any relationship 

between E(u) and E(ula~) that resembles the isoperimetric inequality? Here we 
answer this question affirmatively: we obtain a relationship in a sharp form, called 
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the isoenergy inequality, for a general target manifold N as well as Rm. First, if 
N is nonpositively curved, then we show 

(n - l)E(u) < E(u18B), 

where equality holds when N = R” and u is a linear map. Second, when N is 
any Riemannian manifold of dimension > 3, we prove 

(n - 2)E(u) 5 E(ulaB), 

where equality holds if N = ,YP1 c R” and u(z) = z/IzI. 
We would like to thank R. Schoen and L. Simon for their interest in this work. 

2. THE ISOENERGY INEQUALITY 

Assume that M”, N” are Riemannian manifolds with Nk isometrically em- 
bedded in R”. We look at a bounded map u : M + N whose first derivatives 
are in L2; such a map is thought of as a map u = (‘~11,. ., u,) : M t R” having 
image almost everywhere in N. Then the energy E(u) of u is defined by 

E(u) = I lW2, 
M 

where IVu12 = C~=“=,IVui12, Vui being the gradient of ui on M. IVu12 is called 
the energy density of u. The critical points of E(u) on the space of maps are 
referred to as harmonic maps. Thus u E C2 is harmonic if and only if 

(I) AM u I T,N. 

A harmonic map u is stationary if its energy is critical with respect to variations 
of the type u o Ft, where Ft : M + M is a smooth path of diffeomorphisms of M 
fixing the boundary. It can be shown that a Co harmonic map is stationary and 
that stationary harmonic maps satisfy the monotonicity property for the scale 
invariant energy in balls. We state an equivalent form of the monotonicity in the 
following lemma. 

Lemma 2.1. Let B, = {x E R” : 1x1 < p} and B = B1. Suppose u : BI+~ + 
N, E > 0, is a stationary harmonic map. We have 

(n - 2) L IVu12 = S,, ( IVu12 - 2 1$4’) , T = 121. 

PROOF. The monotonicity formula [9,11] says 

P 
2-n 

s 
[Vu12 - a2--n 

BP 
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for Cl < 0 < p < I+E. Noting that SaBP f = & s, f for almost all p, differentiate P 
the formula with respect to p and set p = 1. cl 

The first isoenergy inequality of this paper holds for a stationary harmonic 
map of Bl+, into an arbitrary target manifold. 

Theorem 2.2. Let n 2 3 and suppose that u : B1+E + N, E > 0, is a stationary 
harmonic map. Then 

(n - 2)E(ub) I E(uIas), 

where equality can be attained if N = 57-l C Rn and u(x) = x/(x\. 

PROOF. Let vu, denote the gradient of pi on dB. Observe that 

It follows from (2) that 

(3) 

which gives the desired inequality. If u(z) = x/1x1, then l%/drl = 0 and hence 
equality holds. 0 

Remark 1. i) It should be mentioned that Lemma 2.1 and Theorem 2.2 fail to 
hold for nonstationary harmonic maps. See [8,10] for such maps. 
ii) We should remark, in relation to Theorem 2.2, J.C.Wood’s theorem that any 
smooth harmonic map u (n > 2) which is constant on 3B is constant [14] (see 
also [15]); the case for weakly harmonic maps is still open. 
iii) When n = 3,4,5,6, there is a sequence {&} of C2 harmonic maps 4% : B + 
S” c Rn+l (see [12]) such that &(x) = (x,0) for z E dB, E(&) < E(&+I), and 

n - 2 = iqf ‘LTk;). 
2 

Now we prove the isoenergy inequality for a harmonic map from B into R”. 
Although it is a special case of the isoenergy inequality for harmonic maps into a 
nonpositively curved space (Theorem 2.4), we state it independently because the 
proof of the Euclidean case is different and interesting in its own right. 

Theorem 2.3. Suppose that u is a smooth harmonic map from fi C R”, n > 2, 
into R”. Then we have the isoenergy inequality 

(n - l)E(u) F E(ula~), 
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where equality holds 

PROOF. (1) implies 

Hence 
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if and only if u is a linear map from R” to R”. 

Aui = 0, i = 1,. . ‘,m. 

Here, without loss of generality, let us assume 

s 
2Li = 0, i = l,...,m. 

aB 

Using (3) and the fact that n - 1 is the first eigenvalue of the Laplacian on 8B, 
one sees that 

(*) 5 [~~~~~~u,12]1’2:L.(I18zj-(n-2)E(u)~1’2. 

Hence by combining the inequalities above one gets 

EW2 I -&E(ula~) [E(ulaB) - (n - 2)E(u)l, 
which gives the desired isoenergy inequality. Moreover equality holds if and only 
if ui is a constant multiple of dui/dr and 

f&B ui + (n - l)Ui = 0, i = 1,. . ., m, 

which holds if and only if u is a linear map from R” to R”. 0 

Theorem 2.4. If u is a smooth harmonic map from B c R”, n 2 2, to N of 
nonpositive curvature, then 

(n - l)E(u) I E(+B). 

PROOF. The Bochner formula [3] says that if u : M” + N” is harmonic then 

~AlVu12 = lIV’dul12 - CRN(u,e,,u*ea,u,e~,u,ea) 
a,B 

(4 + C RiCM(U*C9i, U*O,) 
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where V’ is the pullback connection from TN, el, ... , e, is an orthonormal basis for 
TM and Or, ‘.‘, 01~ is orthonormal for T*N. Hence for M = B and N nonpositively 
curved, ]Vu12 is subharmonic. Since the mean value of a subharmonic function 
on a sphere of radius r centered at the origin is monotonically nondecreasing as 
a function of r, one can deduce that 

_ 
W7l s nwn aB 

where equality follows from (2). So 

(5) /I I 
2 

E(u) < * 
i3B dr 

Then adding (3) to (5) gives the isoenergy inequality. 0 

Remark 2. In case u is a harmonic map from a ball B, of radius p into N of 
nonpositive curvature, we obviously have 

When the target manifold N is nonpositively curved we have an extension 
theorem by Eells-Sampson [4] and Hamilton [6]: given 4 E C3(B, N), there is a 
harmonic map u E C2(B, N) such that u = 4 on dB, and u is homotopic to 4. 
This theorem allows us to impose a condition on u]aB, e.g. conformality. Thus we 
can obtain a mixture of the isoenergy inequality and the isoperimetric inequality 
as follows. 

Corollary 2.5. Suppose N is nonpositively curved and let I?[ = {X E ILL : 1x1 < 
l}, 1 = 2,3. 
i) If u : B2 + N is harmonic and ul,yB is a constant speed map, then 

4xArea(u(B’)) 5 2nE(u) 5 Length(u(dB2))2. 

ii) If u : B3 -+ N is harmonic and ulaB is conformal, then 

E(u) < Area(u(8B3)). 

iii) If u : B + N is harmonic and u]a~ is conformal, then 

(nw,)3--nE(u)n-1 5 VoZume(u(dB))2. 

Proof. i) The first inequality is well known. For the second, use the constant 
speed condition and Theorem 2.4. 
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ii) A special case of iii). 
iii) Let k be the length enlargement ratio of ~13~. Then 

PI 

PI 

(31 

141 

[51 

PI 

I71 
PI 
PI 

PO1 

Pll 

PA 
P31 

1141 

[I51 
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