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ABSTRACT. In 1947, Katetov asked for necessary and sufficient conditions 
on a space X so that its Fomin extension OX and its Banaschewski-Fomin- 
Sanin extension PX are equivalent. This question was raised again by Tikoo 
in 1985 in his study of the Banaschewski-Fomin-Sanin extension. In this 
paper we present an answer to this question and look at several examples 
related to it. Prime open filters and a variant of regularly nowhere dense 
sets are used as tools in obtaining these results. 

1. INTROINJCTI~N 

A fundamental problem in H-closed extension theory is to determine the struc- 
ture of the semilattice of H-closed extensions of a space or of a space with certain 
properties. Several extensions have been studied extensively and have been given 
names. These extensions serve as sign posts within the semilattice of H-closed 
extensions. One particularly useful enterprise is to determine necessary and suf- 
ficient conditions for these named extensions to be equivalent. Applied to a 
particular space, this gives a crude understanding of the lattice. In some cases, 
this information is enough to show us that the extension lattices of two spaces 
are different. 

In 1947 Katetov [4] asked for conditions under which the extensions now known 
as the Katetov extension 6X, the Fomin extension ax, the Banaschewski-Fomin- 
Sanin extension pX, and the Stone-Tech compactification PX are pairwise equiva- 
lent. Later that same year, he answered the PX = /3X, aX = ,3X, and ICX = PX 
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questions [5]. Others, including Porter, Thomas, and Votaw, also looked at these 
equivalences and gave some alternate proofs. Flachsmeyer in 1966 [2] and Porter 
and Votaw in 1973 [9] f ound different characterizations for the (TX E ICX prob- 
lem. One question which has remained open is when the Fomin extension aX 
is equivalent to the Banaschewski-Fomin-Sanin extension PX. In 1985 Tikoo in- 
vestigated PX and gave a more general definition for this extension. He again 
inquired as to when PX E cX. The main result of this paper is an answer to this 
question. 

We begin by recalling a few definitions. For us the word “space” will mean 
“Hausdorff space.” A space is said to be H-closed if and only if it is closed in every 
Hausdorff space containing it as a subspace, thus H-closed is short for Hausdorff 
closed. Several other useful characterizations are that a space is H-closed iff every 
open cover has a finite subcollection whose union is dense iff every open filter has 
an adherent point. An extension of a space X is any space containing X as a 
dense subspace. The collection of H-closed extensions of a space will be denoted 
by H(X). The set H(X) can be given a partial order as follows. If Y and 2 are 
H-closed extensions of X, define Y > 2 if there exists a continuous surjection 
from Y to Z which keeps the points of X fixed. If Y > Z and Z > Y, we say Y 
and Z are equivalent extensions of X and denote this by Y E Z. The set H(X) 
with this partial ordering is a complete upper semilattice. For more information 
on extensions and for undefined terms see [lo]. 

Two named extensions will be of interest to us. The Fomin extension aX has 
as its point set XU{U : U is a free open ultrafilter on X} and has a base consisting 
of all sets of the form oa(U) = U U {U E aX\X : U E L!} where U is open in 
X. Recall that an open filter F is said to be free if n{cZ(U) : U E .F} = 0, 
otherwise it is said to be fixed. The Banaschewski-Fomin-Sanin extension PX 
has the same point set as ax, but with a base consisting of all sets of the form 
ofi = UU{U E pX\X : U E Us} where U is open in X and US = ({int(cl(U)) : 
U E 2.4)). The notation (A) means the open filter generated by A. This definition 
of ,DX is due to Tikoo [12] and applies to all Hausdorff spaces thus extending 
earlier definitions that were valid only for semiregular spaces (such as PX is the 
semiregularization of the Katetov extension). 

2. PRIME OPEN FILTERS 

In studying H-closed extensions one often works with open filters. Prime open 
filters offer some additional structure that can be useful when looking at exten- 
sions. Recall that an open filter is prime, if whenever the union of two open sets 
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is in the filter, one of the two sets is in the filter. For more information on prime 
open filters see the papers [l] and [7]. Proofs of the statements in this section can 
be found in [7]. 

A useful technique is borrowed from commutative ring theory [3]. An ideal in 
a commutative ring which is maximal with respect to the exclusion of a multi- 
plicative set is prime. Translating into the language of open filters we have the 
following lemma: 

Lemma 2.1. An open jilter on X which is maximal with respect to the exclusion 
of some collection of open sets of X which is closed under finite unions is prime. 

Working with open sets allows one to strengthen this lemma and provides a 
characterization of prime open filters involving dense open sets. 

Lemma 2.2. An open filter on X is prime iff it is maximal with respect to the 
exclusion of some collection of dense open sets of X which is closed under finite 
unions. 

Several useful facts follow from these lemmas. 

Proposition 2.3. [l] Every open filter on X is the intersection of the prime open 
filters containing it. 

Proposition 2.4. A prime open filter on X which contains all of the dense open 
sets of X (this is said to be saturated) is an open ultrafilter. 

Note that if a space is not discrete then it will have prime open filters which 
are not open ultrafilters. 

3. PRELIMINARIES AND TERMINOLOGY 

Porter and Woods [lo] define a nowhere dense set A to be regularly nowhere 
dense if there are open sets U and V such that A 5 cl(U) n cl(V) and U n V = 0. 
The following definition generalizes the notion of a regularly nowhere dense set 
in a natural way. 

Definition 1. A set A is said to be n-regularly nowhere dense (for n an integer 
greater than 1) if there exist open sets VI,. . , U, such that A C_ n{cZ(Ui) : i E n} 
and n{Ui : i E n} = 0. 

If X is a space, it will be convenient to let R = {X\A : A is n-regularly 
nowhere dense for some n > 1). Notice that R is an open filter. The following 
definition will simplify the discussion which follows. 
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Definition 2. Let X be a space. A set A C X is R-nowhere dense if A is n 
regularly nowhere dense for some n > 1. 

Since we will be working with complements, we point out the obvious fact that 
A is R-nowhere dense if and only if X \ A E R. This is also the motivation for 
the name “R-nowhere dense.” 

The R-nowhere dense property is related to the notion of x-sets introduced by 
Zdcev [13]. A n-set is the intersection of finitely many regular closed sets. Thus 
immediately from the definitions we have: 

Proposition 3.1. A subset of a space is R-nowhere dense if and only if it is a 
subset of a nowhere dense x-set. 

Recall the definition of Us from Section 1. The following basic facts about the 
filter Us associated with an ultrafilter U will be useful. 

Proposition 3.2. Let X be a space. If U is an open ultrafilter on X, then 
1) U is the unique open ultrafilter containing U,; 
2) U is saturated (contains all of the dense open sets of X); 
3) R C U, (is R-saturated); 
4) If US is saturated then US = U. 

PROOF. 1) and 2) are both well known and easy. See [lo] Problem 7V for details. 
3) Suppose U E R then U = X\A where A is n-regularly nowhere dense. Thus 

A is contained in a nowhere dense set which is a finite intersection of regularly 
closed sets. Thus U = X\ A > V where V is dense and V = U{Vi : i E n} with Vi 
regular open. Since U is saturated, V E U. The open filter U is prime so V, E U 
for some i. The set K is regular open so int(cl(K)) = Vi E U, thus V, E US. We 
have then that U > V, E US, so U E US. 

4) Suppose US is saturated. Proposition 2.3 states that US is the intersection 
of the prime open filters containing it. Each prime containing it must also be 
saturated and hence an ultrafilter. But U is the only ultrafilter containing US. 
Therefore US = U. 0 

Also note that: 

Proposition 3.3. If P is a prime open filter on a space X and P > R then 
P > US for some open ultrafilter U. 

PROOF. The open filter P is contained in some open ultrafilter U. Let V E US. 
Without loss of generality, assume that V = int(cl(U)) for some U E U. Then 
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v ” (X \ W)) is dense in X and is the union of regular open sets. Thus 
VU X \ cl(V) E R C P. By primeness, either V or X \ cZ(V) is in P. But V E U 
implies V E P. Therefore P contains {int(cZ(U)) : U E U} which generates 

u,. 0 

As a preliminary to the PX 3 (TX problem, Tikoo noticed: 

Lemma 3.4. PX = OX if and only if IA = Us for all free open ultrafilters. 

Using the notion of R-nowhere dense we easily have the following proposition. 

Proposition 3.5. For a space X the following are equivalent: 
1) Every closed nowhere dense set is R-nowhere dense; 
2) U = IA, for all open ultrafilters. 

PROOF. 1) + 2) If D is any dense open set, then by hypothesis, D E R. Thus 
D E U,, hence U, is saturated, and it follows from Proposition 3.2 that U = US. 
2) ===s 1) Suppose D $ R then there is a prime open filter P maximal with 
respect to containing 72 and excluding D. Hence P > US for some open ultrafilter 
U. Thus U > P > US. q  

A careful look at the proof of Proposition 3.3 reveals that only the comple- 
ments of regularly nowhere dense sets are used and not the complements of other 
R-nowhere dense sets. This might suggest that Proposition 3.5 might be strength- 
ened to use only regularly nowhere dense sets. The proof of the 2) ==+ 1) implica- 
tion, however, uses Lemma 2.1 and requires that 72 be closed under finite unions. 
Further, the example presented in Section 5 demonstrates that the concept of 
regularly nowhere dense alone is not sufficient. 

Of course this is not the PX E aX characterization which has U = US for all 
free open ultrafilters. 

4. THE THEOREM AND EXAMPLES 

Theorem 4.1. The following are equivalent for a space X: 
1) /Ix = ax; 
2) U = US for all free open ultrafilters; 
3) For every closed nowhere dense set A in X, every free open filter on X contains 
a set whose intersection with A is R-nowhere dense; 
4) For every closed nowhere dense set A in X, every open cover C of X has a 
finite subcollection whose closures cover all but an R-nowhere dense subset of A. 



694 DOUGLAS D. MOONEY 

PROOF. The equivalence of 1) and 2) is Tikoo’s result, Lemma 3.4. The equiva- 
lence of 3) and 4) is a standard conversion between filters and covers. We show 
the equivalence of 2) and 3). 
2) ==+ 3) Suppose A is closed nowhere dense. Let F be any open filter on X. If 
3 does not meet A, i.e., if there is an F E 3 with F n A = 0, then 3) follows since 
the empty set is trivially 2-regularly nowhere dense. So suppose 3 meets A, hence 
X\A $ 3. Notice that if (3,R) excludes X\A, there would be an open filter G 
maximal with respect to containing (F, R) and excluding X\A. The open filter 
G contains R and is prime, so by Proposition 3.3 for some free open ultrafilter U, 
we have U 3 S 2 U, which contra&r&s the hypothesis. Thus X\A E (3,R) so 
there is a F E 3 and a R E R such that F n R 2 X\A. Therefore F n A C X\R 
hence F n A is ‘R-nowhere dense. 
3) e 2) Let U be any free open ultrafilter on X, and let D be any dense open 
set. Then X \ D is closed nowhere dense. Since l.4, is free, there exists a U E U, 
andanRERsuchthatUnX\DCX\RorRnUnX\D=0. SinceREU,, 
D > R n u E US. Thus D E US, so US is saturated, and hence U = U,. 0 

We notice that if A is ‘R-nowhere dense, then condition 3) in Theorem 4.1 is 
satisfied. Condition 3) is also satisfied if no free open filters meet A. This latter 
condition is a property similar to, but weaker than, compactness. 

Definition 3. [6] Let X be a space. A set A is R-bounded iff every open filter 
on X which meets A is fixed. 

An equivalent characterization is that a subset A of a space X is H-bounded 
iff every open cover of X has a finite subcollection whose closures in X cover A. 
It should be noted that if a set is compact, then it is H-closed, which implies that 
it is an H-set, which implies it is H-bounded. In fact, any subset of a compact 
set, an H-closed set, or an H-set is H-bounded. Also in a regular space, a closed 
H-bounded set is compact. For detailed information on H-bounded sets, see [6] 
or [8]. 

The notions of H-bounded and R-nowhere dense play off each other to give the 
following corollary. 

Corollary 4.2. Let X be a space. If each closed nowhere dense set of X is either 
H-bounded or R-nowhere dense then pX E ax. 

This is useful for testing spaces and finding examples. In particular, notice its 
combination with the following proposition. 
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Proposition 4.3. [14] In a metric space every closed set is the intersection of 
two regularly closed sets. In particular, every closed nowhere dense set is regularly 
nowhere dense. 

Proposition 4.3 shows that PX z (TX for an important class of spaces. Also 
note that all the nowhere dense sets of an ordinal space are 2-regularly nowhere 
dense (split the isolated points into evens and odds), so PX E oX also holds for 
ordinal spaces. 

On the other side of Corollary 4.2, extremally disconnected spaces have no 
nonempty n-regularly nowhere dense sets, since the equality cl(U n V) = cl(U) IY 
cl(V) holds in extremally disconnected spaces. The next two corollaries follow 
immediately. 

Corollary 4.4. If X is extremally disconnected, then ILX - oX iff every closed 
nowhere dense set is H-bounded. 

Corollary 4.5. [12] If X is extremally disconnected and semiregular (and hence 
regular) then ,uX = aX iff every closed nowhere dense set is compact. 

5. A S-REGULARLY NOWHERE DENSE SET WHICH IS NOT REGULARLY 

NOWHERE DENSE 

A natural question, especially in light of Proposition 4.3, is whether the con- 
cept of n-regularly nowhere dense is different from regularly nowhere dense. We 
conclude by showing that these ideas are distinct. 

Example 5.1. An example of a 3-regularly nowhere dense set which is not 2- 
regularly nowhere dense. 

Partition the real line R into six disjoint dense subsets, call them PO, Pi, Pz, 
Qcl, Q12, Qzo. Let X be the topological space consisting of the points of R with 
a base for its topology consisting of all sets of the form B(a, b, i) = (a, b) n Pi 
or B(a,b,i,j) = {z :a<~<b,x~P~UPjUQij}wherea,b~Rwitha<b 
and i < j E (0, 1). Thus the set Pi has the topology inherited as a subspace 
of R. The points in Qij have neighborhoods that reach back to both Pi and Pj. 
It may be helpful to visualize this space as six spokes of a wheel with the P 
spokes alternating with Q spokes, and with Qij lying between Pi and Pj. Let 

H = Qol u Q12 u Q20. 

Proposition 5.2. The set H is 3-regularly nowhere dense, but not regularly 
nowhere dense. 



696 DOUGLAS D. MOONEY 

PROOF. Let Vo = PeUPi, Ui = PiUPs, and Us = PsUPs. Then it is easy to see 
that n{Vi : i < 3) = 0, but n{cZ(Ui) : i < 3) = H. Thus H is S-regularly nowhere 
dense. We claim that H is not regularly nowhere dense. By way of contradiction, 
suppose that H is regularly nowhere dense. Then there exist disjoint open sets 
U and V such that H C cl(U) n cl(V). Now U must meet at least one of PO, Pi, 
and Pz, say Pa. The set U meets PO in an interval. That is, there exist a, b E R 
such that (a, b) n PO C U n PO. Then [a,b] n &cl C cl(U). In order for these 
points to be in cl(V), we have that (a,b) n PI & V. Thus [a, b] n Q12 & cl(V). 
In order for these points to be in cl(U), we have that (a, b) n Pz C U. Thus 

[01 n Qzo c cl(U). 1 n order for these points to be in cl(V), (a, b) n PO C V. 
Therefore (a, b) n PO C U n V, contradicting the assumption that U and V are 
disjoint. 0 

Proposition 5.3. Every closed nowhere dense subset of the space X defined in 
Example 5.1 is R-nowhere dense. 

PROOF. Every closed nowhere dense set is either a subset of PO U PI U Pz, hence 
2-regularly nowhere dense; a subset of H, hence S-regularly nowhere dense; or a 
combination of both, hence 6-regularly nowhere dense. 0 

Finally, note that this example shows that the concept of regularly nowhere 
dense will not suffice. 

Proposition 5.4. For space X defined in Example 5.1, p(X) = o(X), but not 
every closed nowhere dense set is regularly nowhere dense. 

Notice that this construction may be generalized to larger values of n. 
We have seen that R-regularly nowhere dense sets are an important component 

in understanding the semilattice of H-closed extensions of a Hausdorff space. 
Further study of these sets is in order. The example of this section is the only 

example known to the author of an R-regularly nowhere dense set which is not 
regularly nowhere dense. Substantially different methods of constructing such 
examples would be of interest as would characterizing those spaces which have 
‘R-regularly nowhere dense sets which are not regularly nowhere dense. 
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