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ABSTRACT. It is shown that sets of sampling for the Bergman space A2 have 
the “homogeneous approximation property” (HAP) and that sets with this 
property are sampling for A 2+E. In addition, previous results concerning the 
boundary behaviour of sampling sets are improved. 

ForO<p<oo, the Bergman space AP is the set of functions f analytic in the 
unit disk D = (2 : 1.~1 < 1) with 

where dA denotes Lebesgue area measure. If p 2 1, AP is a Banach space with 
norm (1 . Ilp. If 0 < p < 1, it is a complete metric space, where the metric is given 

by d(.f,g) = Ilf - 911;. 
A2 is a Hilbert space with inner product 

1. INTRODUCTION 

(f, 4 = $ s, f(z)dz)dA(z) 

and reproducing kernel &(z) = 
(1 -lZZ)2 

at a E D. That is, (_f,&) = f(o) for 

all f E A’. It actually turns out that this holds for f E AP, 1 2 p < 00. Let now 

j&(Z) = Icao = 1 - )u/z 

Ilkall (1 - siZ)2 

be the normalized kernel at a. 
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A space closely related to AP is A-“(n > 0), which consists of functions f 
analytic in D with 

Ilf II-n = $1 - Iz12)“lf b)I < co. 

A-” is also a Banach space. It is easy to see that for any 6 > 0, A-(‘lPw6) C Af’. 
One can also check that AP & Ap2/P. 

A sequence r of distinct points in D is said to be a set of sampling for AP if 
there exist positive constants K1 and K2 such that 

(1) Klllf II: I x(1 - 142)21f(41p I Kzllf II; 
zEr 

for all f E AP. Likewise, r is a set of sampling for A-” if there is a K such that 

Ilf 11-n 5 K;i;(1- M2)“lf (z)I 

for all f E A-“. (The analogue of the upper inequality in (1) is automatically 
satisfied here.) 

Given a sequence r, let Tp be the linear operator which maps an analytic 

function f to the sequence {f (z)(l - lz12)f},,,. Then r is said to be a set of 
interpolation for AP if T,(Ap) > P. Likewise, l? is a set of interpolation for A-” 
if T2,n(A-n) > P. 

Seip [13] completely characterizes sets of sampling and interpolation for A-“, 
as well as for A2, using methods which may be extended to AP for 0 < p < co. 

Let B now be AP or A-“. We say that r is a B zero set if there is a nontrivial 
function f E B which vanishes precisely on I?. By theorems of Horowitz [4] and 
Luecking [5], it suffices for f to vanish at least on r. We say that r is a set of 
uniqueness for B if it is not a B zero set. It is clear from the definition that a B 
zero set cannot be a set of sampling for B and it is not difficult, to show that a 
set of interpolation for B must be a B zero set. One may also demonstrate that 
r is a set of uniqueness for A2 if and only if the span of {Ic,},Er is dense in A’. 

The main results of this paper will be divided into two sections. In 53 we 
determine a condition on a sequence, the homogeneous approximation property, 
which is necessary and almost sufficient for it to be a set of sampling for A2. In $4, 
we improve results in [8] about the behaviour of sampling sets near the boundary 
and we discuss some of the relationships between sampling and zero sets. 
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2. SEIP’S DESCRIPTION OF SETS OF SAMPLING AND INTERPOLATION 

In order to state Seip’s theorems, we need a few definitions. The pseudo- 
hyperbolic metric p is defined on D by p(.z, C) = I~c(z)[, where 

For T < 1, let B(C,r) = {z : p(C,z) < r}. A sequence r = {zk} is uniformly 
discrete if there is a 6 > 0 such that p(zi, zj) > 6 for all i # j. 

For 0 < s < 1, let nr(<,s) be the number of points of l? contained in B(<,s). 
Define, for l? uniformly discrete, 

Dr(r,r) = 
J; nI- cc, s)ds 

2 Jo’ a(B(0, s))ds’ 

where 

up) = s 1 

fl (1 - 1Z12)2dA(z) 

is the hyperbolic area of a measurable subset 0 of the disk. Note that 
a(B(<, s)) = a(B(0, s)) for all C E D. 

The lower and upper uniform densities are defined, respectively, to be 

and 

The following results were proved in [13] for A-” and A2 and stated for AP 
(0 < p < a) in [3]. (F or a fully detailed proof of this last case, see [9] or [lo].) 
See also [ll] for a different characterization of sets of interpolation for AP. 

Theorem 2.1 (Seip). A sequence r of distinct points in the disk is a set of 
sampling for AP if and only if it is a finite union of uniformly discrete sets and it 
contains a uniformly discrete subsequence ?L” for which D-Q?) > $. Also, I’ is a 
set of sampling for A-” if and only if it contains a uniformly discrete subsequence 
I” for which D-(P) > n. 

Theorem 2.2 (Seip). A sequence I? of distinct points in the disk is a set of 
interpolation for AP if and only if r is uniformly discrete and D+(r) < i. Also, 
r is a set of interpolation for A-” if and only if r is uniformly discrete and 
D+(r) < 71. 
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Roughly, the theorems indicate that r is a set of sampling if there are many 
points of l? per unit of hyperbolic area everywhere in the disk. r is a set of 
interpolation if there are not too many points per unit of hyberbolic area anywhere 
in the disk. 

3. THE HOMOGENEOUS APPROXIMATION PROPERTY 

In the proofs of Seip’s theorems, the concept of a weak limit, introduced by 
Beurling in [l], is used extensively. If A is a closed set in D and t > 0, then 

At = (z E D : p(z, u) 5 t for some a E A}. 

For A and B closed, the Hausdorff distance is 

[A,B] = inf{t : A C Bt and B & A,}; 

and we say that A, converges weakly to A (A, 3 A if 

[(A nK)“~K,(A”K)“~~]~+O n 

for every compact set K 2 D. We denote by W(I) the collection of sequences A 
such that &,(I’) - A for some sequence of Mobius transformations (4~~). 

In [13] it is noted that if r is uniformly discrete and W(r) consists only of sets 
of uniqueness for A-“, then r is a set of sampling for A-“. The converse also 
holds. In some sense then, a set of sampling can be viewed as a set whose Mobius 
transforms are “uniformly” far from being zero sets. We make this idea precise 
in what follows. 

Let C E D and g E A2. Define < t g by < *g(z) = g(4c(z))$;(z). 
If B is a Banach space, f E B and M is a closed subset of B, then the distance 

between f and M is defined to be 

d(f, M) = inf{]] f - hll~ : h E M}. 

Suppose now that r is a sequence of distinct points in D. We say that r has the 
homogeneous approximation property (HAP) for A2 if given E > 0 and g E A2, 
there is an R < 1 such that 

d(C * g, %3(C,R)“d < E 

for all < E D, where SA is the closed span of {ka : a E A}. This definition was 
inspired by a similar concept of the same name in [6]. By earlier remarks and an 
application of the definition to [ = 0, we see that a set with the HAP for A2 is 
a set of uniqueness for A2. We are now in a position to state the main result of 
this section. 
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Theorem 3.1. Let I? be a uniformly discrete sequence of points in D and let 
6 > 0. If r is a set of sampling for A2, then r‘ has the HAP for A2. On the other 
hand, if I? has the HAP for A2, then I? is a set of sampling for Aafe. 

This will follow from 

Lemma 3.2. Let r be a uniformly discrete sequence in D. r has the HAP for 
A2 if and only if W(r) consists only of sets of uniqueness for A2. 

PROOF OF THEOREM 3.1. The first statement follows from Lemma 3.2 and the 
fact that if P is a set of sampling for A2, then every A E W(r) is a set of uniqueness 
for A2. Consider now the second statement and suppose I’ has the HAP for A2. 
Choose S > 0 such that l/2 - S > &. Since A-(1/2-6) C A2 and by Lemma 3.2, 

W(r) contains only sets of uniqueness for A-(1/2-6). By the previously noted 
fact in [13] then, r is a set of sampling for A-(1/2-6) and so 

D-(r) > i/2 - 6 > -!- 
2+c’ 

This, in turn, implies that r is a set of sampling for A2+t. 0 

We start by listing some technical facts concerning the above definitions. By a 
change of variables argument, one sees that 

IIC * 9112 = llSll2~ 

Elementary calculations give us 

(2) 4c(4w(z)) = w4JMf$w(~)(4, 
4c (WI where e(<,w) = - 
6J(<) 

is a complex number of modulus one. By differentiating 

(2), we obtain 

4#4z))&J’(z) = @(5, “M&,(z). 

&(4c(z))4$(z) = 1 

is arrived at by differentiating the equation $+(&(z)) = z. From this follows the 
fact that 

4-*<*g=g. 

Given 0 E T = {z : Iz/ = l}, define go by go(z) = g(ez). A calculation shows 
that 

(3) (&J(r) * ss(<,w,)(z) = (w * c * g)(z)lQ(<, w). 



712 ALEXANDER P. SCHUSTER 

Using the identity 

(1 - KC&?k(~))-“4;(4#q(4 = (1 - =Y, 

we obtain 

ICudz) = lc#(w(f$w(u))I 
k(4w(a)) (w * l&)(z), 

from which it follows that 

(4) ‘W* SA = %$,(A). 

We now proceed with the proof of Lemma 3.2. We need to ensure that any 
Mobius transform of a set with the HAP also has the HAP. The constant e([, 20) 
on the righthand side of (3) presents a problem that we have to deal with first. 

Lemma 3.3. Suppose uniformly discrete r has the HAP for A2 and let g E A2. 
Consider {ge}sET, where go(z) = g(0z). If E > 0, then there exists R < 1 such 
that 

d(<*ge, SB(C,R)"d < E 

for all < E D and all B E T. 

PROOF. Let h E H”, the set of bounded analytic functions, and B,Oe E T. 
Suppose that Ih( 5 C for all z E D. 

lb(z) - hs,(412 I W@z)12 + lh(&,z)12) I 4C2 

so by the dominated convergence theorem, we see that lim~+~O (Ihe - h~,jl2 = 0. 
For every ~90 E T then, there is a neighbourhood Ns of Bo such that 

0 E No * llhe - he,112 < 46. 

Let g E A’. Since H” is dense in A’, there is an h E H” such that Ilh-gl(2 < e/6. 
Therefore, 0 E No implies that 

llge - geollz L llse - hell2 + lib - he0 II2 + llgso - he0 II2 

= 2119 - hll2 + llhe - he,112 

< E/2. 

Since No is compact, we obtain finite sets {Or,. . . , O,}, {Nl, . . , IV,} for which 
the above holds. For i = 1,. . . , s, there exists Ri such that 

(5) d(C * ge,, SB(C,R,)~~) < e/2 

for all < E D, since P has the HAP for A2. 
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Let R = max{Rl,... , R,}, 8 E T and C E D. There is an i such that 0 E Ni 
and so by (5), there is a function f E ~~~~~~~~~~ such that II< * go, - fllz < e/2. 
Therefore, 

115 * go - fllz 5 II{ * so - c * SO, II2 + IIC * go, - fllz = llso - go, II2 + IK *go, - f/l2 

< E/2 -+ E/2 = e. 

Thus, d(C * go, SB(~,R),T) < 6. cl 

Lemma 3.4. Let E > 0 and suppose r is a unijormly discrete sequence in D with 
the HAP for A2. If g E A2, then there is an R < 1 such that 

d(C * g, SB(C,R),-,~L(~)) < 6 

for all C, w E D. 

PROOF. By Lemma 3.3, there is an R < 1 such that d(&,(C)cgo, SB(dWcC),R~nr) < 
E for all C,w E D and all 8 E T. Now fix w,< E D. By (3), there is a 80 E T such 
that &,(<) * go0 = (w * C * g)/&. Then 

4C * 9, SB(C,R)~+,(~)) = 4w * c * 9, ‘u) * SB(C,R)n&(r)) 

= 4w * < * 9, SB(&(C),R)"d 

= d((w * c * !?)/eO~SB(h&),R)d 

= 4&(<) * geo,Sq+,(C),R)nr) < 6 

q  

Before we can complete the proof of the necessity part of Lemma 3.2, we need 
some results concerning the behaviour of SA when A is shifted slightly. 

Lemma 3.5. Let B be a Banach space. If f,g E B with Cl I \lf\l~, \\g\\B 5 C2, 

then I’ II_& 
-- &llB 5 Cllf - g/JB for some other constant C. 

PROOF. This follows from a straightforward application of the properties of a 
norm. q  

Lemma 3.6. Let 0 < s < 1 and suppose that a, b E B(0, s). There is a constant 
C, depending only on s, such that Ilka - kg112 < Cp(a, b). 
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tlia - idl; = ; s, / (1 _1Ez,2 - (1 _lKzJ2 1’ dA(z) 

1 =-/I (1 - 82)” - (1 - az)2 2 dA(z) 

7r D (1 -az)2(1 -b.z)2 

5 C 
s 

I(1 - 6,)’ - (1 - EZ)~~~~A(Z) 
D 

= C 
s 

D Iz(b - a)(2 - (8 + x)z)12dA(z) 

< Cla - bj2 < 4C(p(a, b))? 

An application of Lemma 3.5 yields the desired result. q  

If {~i}~& is a linearly independent set of elements of unit norm in a Hilbert space, 
then we say that {wz}zi is its orthogonalization if wr = x1 and 

i-l 

Wi = Xi - C(X.iy Wj)Wj 

j=l 

for i = 2, . , m. This process is similar to the Gram-Schmidt process except that 
we don’t normalize at each stage. 

Lemma 3.7. Let m E N. There is a constant C such that if{~i}~~ and {yi}En=, 
are two linearly independent sets of elements of unit norm in a Hilbert space and 

{Wi1Z, {Zi)Kr are their orthogonalizations, respectively, then 

llwi - ztll 5 cj=~~p, Ilxj - Yjll 3 , 
for i = 1,. . , m. 

PROOF. Because of the inequality 

i-l 

llwll 2 1 + c ll~A12 
j=l 

there is a constant C such that [Iwill, IlzJl 5 C for i = 1,. ,m. Using this fact, 
as well as the triangle and Cauchy-Schwarz inequalities several times, we obtain 

i-l 

11% - &II I (Cm - C + l)llXi - Yill + 2CC llwj - Zjll. 
j=l 

This last inequality leads directly to the desired result. 0 
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We turn now to the proof of Lemma 3.2. 

PROOF OF THE NECESSITY. We prove that every A E IV(I) has the HAP for A2. 
Let c > 0 and g E A2. Without loss of generality, we may assume that /g[[2 = 1. 
Since A E W(f), there is a sequence {AL} of images of Mobius transformations 
of r such that A, - A. By Lemma 3.4, there is an R < 1 such that 

(6) d(< * 9, %3(C,R)W,) < c/3 

for all C in D and all n. 
Let < E D and choose s < 1 such that I?([, R) C B(0, s). We note that the 

uniform discreteness of !Z implies that A is also uniformly discrete. Thus we write 
B(<, R) n A = {a~,. . , a,}. By the definition of weak convergence, there is an 
Nr such that IZ 2 Nr implies that there are precisely m points in I?((‘, R) n A,. 

{k,,}3m,l is a linearly independent set, so we let {laj}yZI be its orthogonal- 
izatlon. Let K = minj,r ,_,,, m { llZaj 112). Lemmas 3.6 and 3.7 tell us that there is 
a constant C such that if {b;“, . . , bk} is another set of distinct points, then for 
i= l,...,m, 

j)l,, - lb;112 < c +y~JP+% q7h 
I , 

where {~b;}~& is the orthogonalization of {~b~}~=r. There is a 61 such that 

+max&@j> bjn)) < 61 * iilb: 112 2 K/2 
1 > 

for i = 1, . . , m and we choose Ns such that 

12 2 NZ * [WC, R) n A,, B(C, R) n A] < min{b, 
KE 

~2(m+5)/2). 

Now, let n 2 max{Nr, Nz}. By (6), there is an f E SB(C,R)~A, such that 
I\< * g - f]ls < e/2 and llfllz < 2. Let {bj}~!r = B(C, R) n A,. We suppress 
the superscript as n is now fixed. 

Write f = x7==, &lbj. Since {&}zr is orthogonal, f = C 
m (f, Ib,)lbj There_ 

j=l \lzb,\\” . 

fore, Xj = 8 and so Bessel’s inequality implies that 
3 
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Define h = Cj”=, Xjl,,. Then h E SB(C,R)nh and 

Ilf - fdl; = II &l,i - bj)ll; 5 Y-l 5 I~jl2ll(Za, - bj)ll; 
j=l j=l 

Therefore 

IIC * 9 - hII 5 II< * 9 - flla + Ilf - hII2 < f 

and so d(C * g, SB(<,R& < E. Hence A has the HAP for A2. 

The idea for the following is based on the proof of Theorem 3 in [6]. 

0 

PROOF OF THE SUFFICIENCY. If I doesn’t have the HAP, then there is an E > 0 
and a g E A2 that defeat it. Let {&} E D and R, + 1 such that by (4), 

d(97 SB(O,R,)nr,) = d(& * 9, Skr(Cn,Rn)“r) 2 c 

for all n, where In. = &,(I’). By passing to a subsequence if necessary, we may 
assume that In - A, for some A. Let R < 1 and B(0, R) n A = {al,. . ,a,}. 
Let f E SB(O,R~A and write f = Cj”=, Xjlc+. Choose n so large that R, > R 
and the number of points in B(0, R) n rn is precisely m. By Lemma 3.6, choose 
N such that 

where {b;“, . , b;} = B(0, R) n rn. 
Let n > N and now suppress the superscript n as it is fixed. If we define 

h = cj”=, hIcb,, then h E SB(O,R)~I-, G SB(O,R,)~I-, and 
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so ]Jh - f/z < e/2. Therefore 

119 - fll2 > lb - 412 - Jlh - flla > E - E/2 = E/2 

and so 

(7) d(g, %3(O,R)"A) > d2. 
Since R < 1 was arbitrary, (7) implies that A is an A2 zero set, contradicting the 
hypotheses of the lemma. Thus I has the HAP for AZ. 0 

A natural question is whether the E > 0 is necessary in the statement of 
Theorem 3.1. In other words, is there a set with the HAP for A2 which is 
not a set of sampling for A 2? Unfortunately, the answer is yes. Before we can . 
discuss an example of such a situation, we require a technical lemma. 

Lemma 3.8. Let I? be a kformly discrete sequence in D. Suppose IT has the 
property that there is an analytic function g which vanishes precisely on I with 

(8) km1 = P(Z, r)(l - i#)--1’2 

for all z E D. Then every member of W(I) also has this property. We say that 
fi(z) M fi(z) ifthe ratio offi and f2(z) is bounded above and below by positive 
constants. 

PROOF. Because of (8) and the identity 

lg(z)l = l- IG4l” 
l-lzl2 ’ 

we have 

ig(~r(Z))(~;(Z))i/zi = P(Z, k(I))(l - ]4z)-r/2. 

If A E W(I), then there exists {&} G D such that 4<,(I) - A. If we define 

gn(z) = g(k (z))(@, (4)1’21 we see by the above that there is a constant C such 

that ]]gn]]-i,2 2 C for all n. Because of the compactness property of Ap112, there 
is a function f and a subsequence {gn,} such that gnk + f uniformly on compact 
subsets of D. It is easy to see that f vanishes precisely on A and satisfies the 
condition (8). 0 

In [12], Seip shows that if I is a uniformly discrete set in D with the above 
property, then 

o-(r) = o+(r) = f 
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and I is a set of uniqueness for A 2. Therefore, by Lemmas 3.2 and 3.8, the sets 

I’(a, b) with -?!- = 1 
bloga 2’ 

constructed in [12] and defined later in the present article 

for the reader, provide examples of sets with the HAP for A2 which are not sets 
of sampling for A’. Notice that Ii/z, as defined in 183, is also an example of this 
phenomenon. 

We remark that all of the analysis in the previous section can be applied to a 
certain class of weighted Bergman spaces, as well as the Bargmann-Fock space. 

4. BOUNDARY BEHAVIOUR OF SETS OF SAMPLING 

Sets of sampling, as can be seen from the definition, must be fairly dense near 
the boundary. 

An open set W in C will be called an N-type neighbourhood if it is inter- 
nally tangent to T at one point or if it contains an arc of T. We say that a se- 
quence of points I in D accumulates strongly if for all N-type neighbourhoods W, 
D+(r r-l W) > 0. 

In [8], it is shown that if a sequence I does not intersect every N-type neigh- 
bourhood, then D-(I) = 0. As a corollary, we see that sets of sampling intersect 
every N-type neighbourhood. The following lemma allows us to strengthen this 
result. 

Lemma 4.1. Let I? be a sequence of distinct points in D. If r does not accumu- 
late strongly, then D-(r) = 0. 

PROOF. If P doesn’t accumulate strongly, then there is an N-type neighbourhood 
W such that @(I n W) = 0. Note that D-(r \ W) = 0, since l? \ W does not 
intersect W. Lemma 1 of IS] states that 

(9) D-(A u B) < D-(A) + D+(B) 5 D+(A u B), 

if A and B are disjoint. Therefore, 

D-(r)<D+(rnw)+D-(r\w)=o. 

q  

It follows from the work in [2] and [7] on the spectrum of the multiplication 

operator acting on the invariant subspace of AP generated by a Bergman space 
zero set, that if A and B are AP zero sets whose union is a set of sampling for AP, 
then both A and B accumulate everywhere on T. (See [lo] for details.) If A and 
B are actually sets of interpolation, we can say a little bit more. We first need a 
result about the density of the part of a sequence in an N-type neighbourhood. 
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Lemma 4.2. Let r be a sequence of points in D with D-(r) = D+(r). For any 
N-type neighbourhood W, D+(r) = D+(JY n W). 

PROOF. By (9), 

D-(r) _< D-(r \ Iv) + D+(r n W) 5 D+(r). 

By the hypotheses of the lemma and since D-(r \ W) = 0, we obtain the result. 
0 

Proposition 4.3. Let r = AU B be a uniformly discrete set of sampling for AP. 
If one of A or B is a set of interpolation for A P, then the other will accumulate 

strongly. The result is sharp in the sense that if q > p and r is sampling only 
for Aq, then neither A nor B need accumulate everywhere. It is also sharp in the 
sense that if r < p and A and B are interpolating for A’, then neither A nor B 
need accumulate everywhere. 

PROOF. If A does not accumulate strongly, then D-(A) = 0. Therefore, 

D-(F) = D-(AU B) 5 D-(A) + D+(B) < l/p, 

which contradicts the fact that F is a set of sampling for Ap. To prove the 
sharpness of the result, we recall the example provided by Seip in [12]. 

Let a > 1,b > 0 and let 

A(a, b) = {a”(bn + i)}m,n~~, 

where Z is the set of integers. h(a, b) is a sequence of points in H+, the upper 
half-plane. An analytic isomorphism from D to H+ is given by 

and we define 

F(a, b) = $-i(A(a, b)), 

so I’(a, b) is a sequence of distinct points in D. In fact, I’(a, b) is uniformly discrete 
and Seip shows that 

D-(r(a, b)) = D+(r(u, b)) = &. 

In [8], we introduce a special class of subsequences of l?(a, b). 
Let N be the set of natural numbers. For u, u, k E NU (0) with u 5 v 5 k - 1, 

define 
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and 

;rk(a, b) = V(“,Ak(F b)). 

Lemma 2 in [8] states that 

D-(yk(a, b)) = D+(y&z, b)) = $ (u - ; + ‘) 
We use these subsequences to demonstrate the sharpness of our result. Choose 
a, b, k, 1 such that 

277 
<A 

2lr 1 

bloga p 
and -- >L 

blogaIc q’ 

Let A = bP1l?k(a, b)nH+ and B = I’(a, b)nH-, where H- is the lower half-plane. 
Then, by Lemma 4.2, 

27r 1 
D+(A) = -- 2 

blogak p 

and 
o+(B) ZZ AI- < : 

bloga p’ 
so both A and B are AP interpolating. Also, 

A u B = ;-$&z, b) u (f-$&, b) n H-), 

where the union is disjoint. Therefore, 

D-(Au B) 2 D-(k-‘r&b)) = $1 > ;. 

The second sharpness is proved using the same construction. This time choose 
a, b, k, 1 such that 

27r 
<I 

2?r 1 
bloga r 

and -- > 1. 
blogaIc p 

We conclude with some remarks about the relationship between Seip’s work 
and zero sets. By the observations made in the introduction, we see that for 

uniformly discrete IY, 

(10) 

and 

I’ is an AP zero set + D-(r) 5 1 
P 

(11) D+(r) < i 3 L’ is an AP zero set. 
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We show that the necessary condition (10) is far from sufficient and the sufficient 
condition (11) is far from necessary for r to be an AP zero set, even for r uniformly 
discrete. 

Proposition 4.4. Let p, M > 0. There is a uniformly discrete sequence r such 
that D-(r) = 0 but r is not an AP zero set. There is a uniformly discrete Blaschke 
sequence A such that D+(A) > M. 

PROOF. Choose a, b such that 

(12) 

and write 

2?r 
>2 

bloga p 

I’(a, b) = (I’(a, b) n H+) u (I’(a, b) n H-) = A u B. 

Note that D-(A) = D-(B) = 0. If A and B were both AP zero sets, then their 
union would be an As zero set, contradicting (12). 

Consider now the second statement of the proposition. Choose any uniformly 
discrete set r with D-(r) = D+(r) > M and let W be an open disk tangent to 
T at 1. Let A = rn W. By Lemma 4.2, D+(A) = D+(r) > M. Since D+(A) < f 
for some q, it is an A4 zero set. A well known-result states that an A4 zero set 
contained in a circle tangent to T is a Blaschke sequence. This completes the 
proof of the proposition. 0 
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