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SOME LIPSCHITZ REGULARITY FOR INTEGRAL KERNELS 
ON SUBVARIETIES OF PSEUDOCONVEX DOMAINS IN C2 

HONGRAECHO 
COMMUNICATED BY GILES AUCHMUTY 

ABSTRACT. Let D be a smoothly bounded pseudoconvex domain in c2. Let 
M be a one-dimensional subvariety of D which has no singularities on bM 

and intersects bD transversally. If bA4 consists of the points of finite type, 
then we can construct an integral kernel CM (C, z) for iM which satisfies the 
reproducing property of holomorphic functions f E O(A4) nC(a) from their 
boundary values. Furthermore, we get a Lipschitz estimate of the operator 
induced by the integral kernel, which depends on the type of the boundary 
bM. 

1. INTR~DUOTI~N 

The Cauchy kernel C(C, 2) (see [7], [lo], [12]) for a strongly pseudoconvex 
domain D in @” satisfies the reproducing property of holomorphic functions from 
their boundary values, that is, for all f E A(D) = O(D) n C(D) one has 

(1.1) f(t) = 6, f(<)c(rY z)dS(<) for z E D, 

where &S(c) is the surface measure on bD. If Cf(z) denotes the holomorphic 
function obtained by plugging in an arbitrary function f E L’(bD) in the integral 
in (l.l), then for 0 < cy < 1, the operator C : R,(bD) + O(D)nA,(D) is bounded 

(see [2], [% 1% 1121). In [Ill, R an g e introduced a new method for constructing 
integral kernels on bounded pseudoconvex domains in C”. By using the integral 
kernel, he obtained Holder estimates for a on pseudoconvex domains of finite 
type in UJ2. In this paper, we consider an integral kernel for a one-dimensional 
subvariety M of a smoothly bounded pseudoconvex domain D in C2. With the 
finite type condition only on bM we construct an integral kernel C”(C,z) for 
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M that represents holomorphic functions on M in terms of its boundary values 
along the boundary bM. Furthermore, we get a Lipschitz estimate of the operator 
induced by the integral kernel, that depends on the type of the boundary bM. 
For the case of a convex domain D c UZ" and a subvariety M of dimension one, 
without any assumption of finite type, we can obtain Lipschitz estimates of the 
operator induced by the integral kernel CM [l]. 

Let D be a bounded pseudoconvex domain in d with a smooth defining func- 
tion r. Let G be a subvariety of dimension one in a neighborhood 5 of D which 
has no singularities on bM and intersects bD transversally. Suppose that G is 
written in the following form z = { z E 5 ; h(z) = 0 }, where h is a holomor- 
phic function in 5 which satisfies dh A dr # 0 on G n bD. Let M = E II D and 
bM = zn bD. We can state our main result. 

Theorem 1.1. If bM consists of the points of finite type m, then we can construct 
an integral kernel C”([, z) for M such that for all f E A(M) one has 

(1.2) 
n 

f (2) = J,, f (W”(C> z)da(<) for 25 E M. 

Moreover, for f E L’(bD) if we define 

(C”f )(z) = 4, f (C)C”(C, z)do(C) for z E M, 

then the operator CM : A,(bM) t (3(M) n h+,(M) is bounded for 0 < a < 1 
and 7 > 0. 

Remark. In [3], Catlin proved that the boundary of a pseudoconvex domain can 
be pushed out essentially as far as possible near a boundary point of finite type. 
In [ll], to get Holder estimates for 8 on pseudoconvex domains of finite type 
in C2 Range constructed a holomorphic generating form with good estimates. 
First, Range obtained pointwise estimates for holomorphic L2 functions on the 
pushed-out domain. However, the pushed-out domain is only defined locally in 
a fixed neighborhood of the boundary point of finite type. To extend the locally 
defined pushed-out domain to the globally defined pseudoconvex domain he used 
the fact that a pseudoconvex domain D c c2 of finite type is regular in the sense 
of Diederich and Fornaess [5]. If we assume that every boundary point of the 

boundary bD is finite type, then we can quote Range’s result directly. However, 
in our case, we stress the point that we assume the finite type condition only on 
bM. For the construction of the globally defined pseudoconvex domain we use 
Catlin’s bumping theorem instead of the theorem of Diederich and Fornaess. 
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2. CONSTRUCTION OF AN INTEGRAL KERNEL FORM 

Let po E bM be a point of finite type m. For each p E Uo n bD, where 
Us is sufficiently small neighborhood of PO, we introduce a special holomorphic 
coordinate system C(z) = <,( z as in Catlin 131, Proposition 1.1. < is defined ) 
by a holomorphic map q$, : C2 + C2, z = &(C), with (p,(O) = p. The defining 
function p = r o & for the domain 0, = #;r(D) has the form 

P(C) = Re CZ + c aj,dp)C:<! + WCII”+~ + ICZIICI). 
j+k<m 

j,k>O 

The function q$ and the coefficients Uj,k(p) depend smoothly on p E lJ0 n bD. For 
1 = 2, . . . , m, and 6 > 0, set 

A(P) = max { bj,k(P)i ; j + k = l ) 

and 

r(p, 6) = min 

For 6 > 0 we define 

and for a > 0, we define the nonisotropic polydisc P6(a)(C’) centered at <’ by 

$)(C’) = t< E C22; I<2 - CSI < aJsb,C'), ICI - GI < +,aJ6(p,C))). 
We set J(p, <) = Jo(p, C) and P(“)(<‘) = Pd”‘(<‘). 

We will now push out the boundary of R, near the origin maintaining pseudo- 
convexity. We fix c > 0. For all small s and 6 > 0 define 

J%~(P) = {C E c22; ICI < c ana IP( < sJd~,C)l. 

Let HP,& be the smooth real function on Ws,6(p) given by Proposition 4.1 in [3]. 

Set P;,6(<) = P(C) + c&,6(C)> with E < 0. Catlin proved ([3], p.449-453) that 
c, E, s and SO can be chosen so that for all 0 < 6 5 60 the set 

z5 = (5 E W?,dP);P;,dc) = 01 

is a smooth pseudoconvex hypersurfaces (from the side PE,~ < 0), and that the 
constants can be chosen independently of p E UO n bD. Thus we fix e = ee and 
we let pp,b(C) = P;,~(<). It follows that 

R p,6 = Nl < GP(C) < 0) u {C E ~s,dP)+dC) < 01 
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is a pseudoconvex domain. Catlin ([3], L emma 3) proved that there exists a 
constant a > 0 (independent of p, <‘, and S) so that if <’ E nr, and I<‘] < a, then 

P,(“)(<‘) c 0 P> 6. 

In [3], Catlin proved a bumping theorem near a boundary point of finite type. 

Theorem 2.1. Let po be a point of finite type in the boundary of a pseudoconvex 
domain D in C2, defined by D = {z;r(z) < 0). Then for any suficiently small 
neighborhood V of PO, there exists a smooth l-parameter family of pseudoconvex 
domain Dt,O 5 t < (~0, each defined by Dt = {z; r(z,t) < 0}, where r(z, t) has 
the following properties: 

(i) r(z, t) is smooth in z for z near bD, and in t for 0 5 t < ~0, 
(ii) r(z, t) = r(z), for z $ V, 

(iii) $$(z, t) < 0, 
(iv) r(z,O) = r(z), and 
(v) for z in V, $$ < 0. 

Remark. From the construction of 4p and pP,6, for po E bM we can choose c 
and a neighborhood Uo G V of po (independent of p) so that pp,a is defined in 

{C; ICI > d t’ f-i < c an sa is es all the properties in this section for all p E Uo I- bD. 

Definition 1. Suppose D,po E bD, and V be as in Theorem 2.1. Then we say 

P’t)o<t<ao a bumping family of D at pa with front V. 

Let 4p be the map associated with p and set 

fit = I< E c2; MC) E Dtl, 

where Dt is the family of domains given in Theorem 2.1. If we choose sufficiently 
small neighborhood Uu of pa, then there is a constant cl > 0 and sufficiently small 
to with 0 < to < a0 so that if p E Uo n bD, then 

and 

d(c, bflp,a) > cl if & < ICI < c 

(see p.456 in [3]). 

d(<, bRto) < 2 if i < I<] < c 

Now, we will extend the locally defined pushed-out domain flp,b to the globally 
defined pseudoconvex domain which contains R, and which is bumped out near 

&VW 
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Let pr E bM\V c bDt,. There exists a bumping family {Dtot}~<tCal of Dt, at 
pi with front B(pi, 61) for small ~1 > 0. Choose ti with 0 < ti < (~1. Since bM\V 
is compact, by induction, we can choose PI, . . . ,pN E bA4 \ V, ~1, . . , eN > 0, and 
tr,. . . ,tN__l > 0 such that 

(i) bM \ V c Uz,B(pi, ei), 
(ii) pi $ B(pj,cj) for i # j, and 

(iii) (Dtotl...t,_~t)~~t<a, is a bumping family of Dt,, ,.ti _ 1 at pi with front B (pi, Q) 
for i = 1,. . , N. 

we choose tN with 0 < tw < oN and set Dt_ = Dto...trj. If to,. . . ,tN are 
sufficiently small, then Dt* fl z c 2 and z intersects bDt* transversally. We 
define a,+ by Rt* = {< E UZ2; q$(<) E Dt*}, and a domain fir,,6 by 

Q?,b = {< E fit*; ICI 2 c) u {Q,* fl ql,6). 

Since pseudoconvexity is a local condition, QP,6 is a pseudoconvex domain. By 
combing the properties of fir,b, &, , and Rt*, we obtain the following results as 
in ([3], Lemma 2.8). 

Lemma 2.2. For all p E Uo n bD and all 6,O < S < 60, the domain f&,6 has the 
following properties: 

(4 fiP,S is a bounded pseudoconvez domain that contains R,, 

(ii) &l(g) c 4;‘(E) n f&s, and 
(iii) there is a constant al > 0 so that for all <’ E i=&, with I[‘] < c, 

Pp)(C’) c i-&J. 

Now we define 

0; = Int n F&J . 
[ I 0<6<60 

Proposition 2.3. fi2;, is a bounded pseudoconvex domain such that 

(i) 0 E bR* 
(ii) 0, C 6:, 

(iii) q5;‘(?@ \ (0) c 4;‘(G) n n;, ifp E bM and 4;‘(Q) C 4;‘(G) II 

fl;, if p E bD \ bi’kf, and 

(iv) P(“l)(C’) C 0211 for <’ E 0, and ]<‘I < c. 

Let b*(C) = dist(C, bRG) for [ E 0;. Suppose h E C?(RG) satisfies 

J lw12~*2”K) 
ICI2 

dV(C) = (T,(h))2 < 00 for some n > 0 
0; 



728 

By Proposition 2.3 and Cauchy 
with [<I < c it follows that 

(2.1) Ih( 5 

(2.2) 

(2.3) 
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estimates on P’“‘)(c) C fl2;, as in [ll], for C E flp 

T,(h) 
(IP( + lC2l + IClm)l+~’ 

I I g(c) 5 T,(h) 
IrlMc)l + ICZI + IP)l+v’ and 

I I g)o 5 T,(h) 
(IP( + ICZI + lw)2+~’ 

We now must transport these estimates back to the domain D. Define the 
domain D, by D, = q$,(fi;). 

Proposition 2.4. D, is a bounded pseudoconvex domain such that 

(9 P E bD,, 
(ii) D c D,, and 

(iii) z\{p}CMnD,, LfpEbM and McMnD,, ifpEbD\bM. 

For p E Uo n bD we set 6,(z) = dist(z, bD,), and given q > 0, we define the 
weighted L2 norm Ip,17 on D, by 

[i 1 
112 

IP,,(h) = Ir201”cS27’(z)dV(z) . 
D, Iz-Pi2 ’ 

Furthermore, let g(p, .) denote the second component of the inverse of the 
biholomorphic map 4p : C2 -+ C2. After perhaps shrinking Uo, we may choose a 
fixed orthonormal frame { L1, Lz} for T”?l on a neighborhood of go which satisfies 
LIT = 0. 

Proposition 2.5. There are positive constants c and C, such that for all p E 
UO II bD the following holds. If h E 0(D,) and Ip,ll(h) < cm for some 77 > 0, then 

(9 

Ih( + Id,h(z)I 5 CI,,,(h) for z E M with Iz -PI L c, 

and if z E D with Iz - pl < c, then 

(ii) 

Ih( I C I,,,(h) 

[Idz)l + lS(P, z)I + Iz - Pl”ll+V ’ 
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6) hl’)(C, z)h - CZ) + ht)(C, ~)(a - CZ) = 1 and 
(ii) h’T)(< .) E c3(D ) 3 ’ t for < E Ue n bD. 

However, in this case we cannot obtain the pointwise estimates for hy) and 
their derivatives. By Theorem 2.6 and (i), ( ii a ) b ove, for any point po E bD and 

(e) a sufficiently small neighborhood Uo of po we can construct the functions hj on 

(Ue n bD) x D, which satisfy the properties (i) and (ii) above. By compactness 
of bD we can use a partition of unity in < to patch together the locally defined 
functions h(l” to obtain smooth functions w:” on bD x D,, j = 1, . , n which are 
holomorphic in z and satisfy 

~p)(C,z)(zr - [I) + w~)(<,z)(zz - CZ) = 1 for (C,z) E bD x D,. 

Furthermore, at the boundary point [ E b&f, wi’) satisfy the pointwise estimates 
stated in Theorem 2.6. By the theorem of Hatziafratis [6], for f E A(M) = 
O(M) n C(M), and z E A&, it follows that 

(24 f(z) = 4, f(We(C, z)WC) 

where C,(C, z) = Cy=, wi’)(C, z)cpj(C, z) and cpj(C, z) are C” functions in D x D 
depending holomorphically on z. 

Lemma 2.7. For C E b&l we can choose a subsequence Ck(C, .) of C,(C, .) which 
converges uniformly on each compact subset of D. 

PROOF. Let {Q} b e a decreasing sequence of positive numbers, with ej + 0 as j + 

CO. Let Cj (C, z) = CEj (C, z) and D, = DE3. For 5 E bhil, z E DI,, and j > k + 1, 
it follows that dist(z, bDj) > 0 and ]< - z] 2 ek. Thus for 77 > 0, 

C 
52 

m(l+ll) 
'k 

Thus {C& .); j > k + 1) is uniformly bounded in Dk. Therefore we can choose 

a subsequence Cj, (C, .) of Cj (<, .) which converges uniformly in Dk-1. Denote 

k := kk. Then for C E bM, Ck(<, .) converges uniformly on each compact subset 

of D. Cl 
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Define C”(<, z) = 1’ rmk+w Ck(<, z) for (C,z) E bM x D. Then C”([, z) 
depends holomorphically on z and, by (2.4), 

f(z) = lM f(C)C% z)W<) 

for f E A(M) and z E M. Thus we proved (1.2) in Theorem 1.1. For f E L’(bM), 
define 

CiLf(z) = 
s 

bM f(S)C~((, z)WO for z E Mk 

and 

@f(z) = J bM .f(C)C”(C, zW(C) for z E M. 
Then 

(2.5) lim ckf(z) = C”f(z) for z E M 
k-m 

and the convergence is uniform on each compact subset of M. 

3. LIPSCHITZ ESTIMATES FOR THE INTEGRAL KERNEL 

By (2.5), it is enough to show that for sufficiently small E, 

C, : A,(bM) + 0(M,) n Rg_,(Mc) is bounded. 

Thus we shall prove that there is a constant C, < oo such that 

I J & bM f(W,(C, z)WC) 5 C,IfI*~~bM~dist(z,bM,)-“(~;-~) for z E M,. 
Applying (2.4) to the function f E 1 gives d, J,, C,(C, z)do([) E 0. For z E Me 
fixed, we choose z’ E bM with Iz - z’l = dist(z,bM), so that I< - z’l < 21< - zI 
for C E bM. Since JbM f(z’)d,C,(C,z)dc(<) E 0, it follows that 

1, f(W=G(C, z)WC) = l/K) - f(z’))W& z)WC), 

and hence 

(3.1) II bM f(5PzG(C~z)WC) 5 MA, 1, IC - 4alWe(C,zWdC)~ 

Because of (iii) in Theorem 2.6, the nontrivial case occurs for z E Me and [C-z1 < 
c. Since M meets bD transversally, if E is sufficiently small, then M, also meets 
bD, transversally. Thus dist(z,bME) M dist(z, bD,) for z E M,. Also, note 

that dist(z,bME) ,$ I< - zI f or z E M, and < E bM, and hence it follows that 
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re(Z,z) 5 \r- I f z or z E M, and 5 E bM. Thus, it follows from I’,(<, z) >, I[ -zlm 
that the integral in (3.1) over {< E bM; I( - .zI < c} is bounded uniformly by 

Let tl + it2 = h(C), t3 = r(C), and t4 = Im g((,z). In [ll], Range proved that 
dr(po) A d<Im g(po,po) # 0. Thus for z E b&l fixed, if 0 < y 5 c is sufficiently 
small, tl, tar t3, and t4 form a local coordinate system on B(z, y) in such a way 
that t4 = Im g(C, z) is the local coordinate of bMnB(z, y). Of course, for this we 
need the transversal assumption on the intersections of %? and bD. Given that 
t4 = Im g(C, z) is a local coordinate on bM n B(z, y), it follows that the integral 
on the right in (3.2) is estimated by dist(z, bME)-l. Thus, altogether, one obtains 
the required result. 

Remark. Regularity properties of the integral kernel C”(c, z) for A4 on the Hardy 
classes HP were studied in [4] by the author. 
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