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SOME LIPSCHITZ REGULARITY FOR INTEGRAL KERNELS
ON SUBVARIETIES OF PSEUDOCONVEX DOMAINS IN C?
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ABSTRACT. Let D be a smoothly bounded pseudoconvex domain in C2. Let
M be a one-dimensional subvariety of D which has no singularities on bM
and intersects bD transversally. If bM consists of the points of finite type,
then we can construct an integral kernel CM (¢, z) for M which satisfies the
reproducing property of holomorphic functions f € O(M)NC(M) from their
boundary values. Furthermore, we get a Lipschitz estimate of the operator
induced by the integral kernel, which depends on the type of the boundary
bM.

1. INTRODUCTION

The Cauchy kernel C((,z) (see [7], [10], [12]) for a strongly pseudoconvex
domain D in C" satisfies the reproducing property of holomorphic functions from
their boundary values, that is, for all f € A(D) = O(D) N C(D) one has

(L1) f(2) = /b HOC(2)S(Q) for zeD,

where dS{() is the surface measure on bD. If Cf(z) denotes the holomorphic
function obtained by plugging in an arbitrary function f € L'(bD) in the integral
in (1.1), then for 0 < a < 1, the operator C : A, (bD) — O(D)NA,(D) is bounded
(see (2], [8], (9], [12]). In [11], Range introduced a new method for constructing
integral kernels on bounded pseudoconvex domains in C". By using the integral
kernel, he obtained Holder estimates for 0 on pseudoconvex domains of finite
type in C2. In this paper, we consider an integral kernel for a one-dimensional
subvariety M of a smoothly bounded pseudoconvex domain D in C?. With the
finite type condition only on bM we construct an integral kernel CM((,z) for
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M that represents holomorphic functions on M in terms of its boundary values
along the boundary bM. Furthermore, we get a Lipschitz estimate of the operator
induced by the integral kernel, that depends on the type of the boundary bM.
For the case of a convex domain D C C™ and a subvariety M of dimension one,
without any assumption of finite type, we can obtain Lipschitz estimates of the
operator induced by the integral kernel C™ [1].

Let D be a bounded pseudoconvex domain in C? with a smooth defining func-
tion 7. Let M be a subvariety of dimension one in a neighborhood D of D which
has no singularities on bM and intersects bD transversally. Suppose that M is
written in the following form M= {z¢€ D ; h(z ) =0}, where h is a holomor-
phic function in D which satisfies 8h A Or # 0 on M NbD. Let M = M N D and
bM = M N bD. We can state our main result.

Theorem 1.1. IfbM consists of the points of finite type m, then we can construct
an integral kernel CM((,2) for M such that for all f € A(M) one has

(1.2) / JF(¢ ,2)do(¢)  for ze M.
Moreover, for f € L'(bD) if we define

(CM f)(z / FQOCM (¢, 2)do(¢)  for z€ M,

then the operator CM : A, (bM) = O(M) N Aa _,(M) is bounded for 0 < a < 1
and > 0.

Remark. In [3], Catlin proved that the boundary of a pseudoconvex domain can
be pushed out essentially as far as possible near a boundary point of finite type.
In [11], to get Holder estimates for & on pseudoconvex domains of finite type
in C? Range constructed a holomorphic generating form with good estimates.
First, Range obtained pointwise estimates for holomorphic L? functions on the
pushed-out domain. However, the pushed-out domain is only defined locally in
a fixed neighborhood of the boundary point of finite type. To extend the locally
defined pushed-out domain to the globally defined pseudoconvex domain he used
the fact that a pseudoconvex domain D C C? of finite type is regular in the sense
of Diederich and Fornaess [5]. If we assume that every boundary point of the
boundary bD is finite type, then we can quote Range’s result directly. However,
in our case, we stress the point that we assume the finite type condition only on
bM. For the construction of the globally defined pseudoconvex domain we use
Catlin’s bumping theorem instead of the theorem of Diederich and Fornaess.
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2. CONSTRUCTION OF AN INTEGRAL KERNEL FOR M

Let po € bM be a point of finite type m. For each p € Uy N bD, where
Up is sufficiently small neighborhood of py, we introduce a special holomorphic
coordinate system ((z) = (,(z) as in Catlin {3}, Proposition 1.1. ( is defined
by a holomorphic map ¢, : C2 — C?,z = ¢,(¢), with ¢,(0) = p. The defining
function p = r o ¢, for the domain Q, = ¢; (D) has the form

PO =Re Gt S au®C + O™ +IClICl).
j+k<m
§,k>0

The function ¢, and the coeflicients a; (p) depend smoothly on p € UyNbdD. For
l=2,...,m,and é > 0, set

Ai(p) = max { |a;k(p)|; j+E=1}

T(p,5)=min{(;1%5)m; 2 glgm}.

For & > 0 we define

and

1/2
Js(p:¢) = [52 + G + ZAk |C1|2k} ;

k=2

and for a > 0, we define the nonisotropic polydisc Pé(a)(C') centered at ¢’ by

P = {C € €% )¢ - Gl < ads(p, &), 16 — G| < 7(p,as(p, ')}
We set J(p, () = Jo(p, ) and P@(¢') = P§®((").

We will now push out the boundary of €, near the origin maintaining pseudo-
convexity. We fix ¢ > 0. For all small s and § > 0 define
Wes(p) ={¢eC%l¢l <c and |p(O)) < sJ5(p, ()}

Let H, s be the smooth real function on W, s5(p) given by Proposition 4.1 in [3].
Set p;, 5(C) = p(¢) + €Hy5(¢), with € < 0. Catlin proved ([3], p.449-453) that
¢, €,s and §y can be chosen so that for all 0 < § < dg the set

= {¢ € Wes(p)i pp,5(¢) = 0}
is a smooth pseudoconvex hypersurfaces (from the side Pp.s < 0), and that the

constants can be chosen independently of p € Uy N bD. Thus we fix € = ¢; and
we let p, 5(C) = pj, 5(C). 1t follows that

Qps = {I¢] < 5 p(¢) <0} U{¢ € Wi s(p); pp,s(¢) <O}
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is a pseudoconvex domain. Catlin ([3], Lemma 3) proved that there exists a
constant a > 0 (independent of p,{’, and §) so that if (' € O, and |¢| < @, then

F{Y(') € Q.
In (3], Catlin proved a bumping theorem near a boundary point of finite type.

Theorem 2.1. Let py be a point of finite type in the boundary of a pseudoconver
domain D in C?, defined by D = {z;7(z) < 0}. Then for any sufficiently small
neighborhood V' of po, there exists a smooth 1-parameter family of pseudoconvex
domain D, 0 <t < ag, each defined by D, = {z;r(z,t) < 0}, where r(z,t) has
the following properties:

(i) r(z,t) is smooth in z for z near bD, and int for 0 <t < ag,

(i) 7(2,) = 7(2), for 2 ¢ V,

(it) Z(z,t) <0,

(iv) r(2,0) = r(z), and

(v) for z in V, % < 0.

Remark. From the construction of ¢, and pp s, for pg € bM we can choose ¢
and a neighborhood Uy € V of py (independent of p) so that pp s is defined in
{¢;1¢] < ¢} and satisfies all the properties in this section for all p € Uy N bD.

Definition 1. Suppose D,pg € bD, and V be as in Theorem 2.1. Then we say
{D:t}o<t<ca, a bumping family of D at py with front V.

Let ¢, be the map associated with p and set

Q= {¢ € C*59,(¢) € D1},

where D, is the family of domains given in Theorem 2.1. If we choose sufficiently
small neighborhood Uy of pg, then there is a constant ¢; > 0 and sufficiently small
to with 0 < tg < ag so that if p € Uy NbD, then

d(¢,b05) > ¢ if % <l <e

and

d¢,b,) < 5 i 5 <lc<e

(see p.456 in [3]).
Now, we will extend the locally defined pushed-out domain 2, 5 to the globally
defined pseudoconvex domain which contains €2, and which is bumped out near

¢, 1 (bM).
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Let p; € bM\V C bDy,. There exists a bumping family {D¢,;}o<t<a, of Dy, at
p1 with front B(pi, €1) for small €; > 0. Choose ¢; with 0 < t; < ay. Since bM\V
is compact, by induction, we can choose p1,...,pny € bM\V, €;,...,ey > 0, and
t1,...,ty—1 > 0 such that

(i) bM\V C UL, B(p; &),

(ii) p; ¢ B(pj,ej) for i3, and
(iii) {Dtotl.i.ti_lt}0<t<ai is a bumping family of D, ¢, , at p; with front B(p;, €;)
fori=1,. Kf

We choose ty with 0 < tN < an and set Dy, = Dy, 4y If to,...,tn are
sufficiently small, then D; N M € M and M intersects th‘ transversally We
define ©,, by Q;, = {¢ € C%;¢,(¢) € D,.}, and a domain €, 5 by

Qs = {0 € QuilC) 2 } U{ Ny}
Since pseudoconvexity is a local condition, Qp,(; is a pseudoconvex domain. By
combing the properties of £, 5, {2;;, and €2, , we obtain the following results as
in ([3], Lemma 2.8).

Lemma 2.2. For all p € UyNbD and all §,0 < § < &, the domain Q, 5 has the
following properties:

(i) ﬁp s 15 a bounded pseudocom)ez domain that contains 1y,
(ii) ¢, (M) C ¢y (M )ﬂﬂp,g, and B
(i) there is a constant a1 > 0 so that for all (' € Qp with || < c,

P € Q.

Now we define
Int[ m Qp 5:]
0<6<dg

Proposition 2.3. )}, is a bounded pseudoconver domain such that

(i) 0€ b2,

(ii) Q, C Q,

(iii) ¢, (M )\{0} C ;M (M)NQ, ifp € M and ¢; (M) C ¢; (M) N

Q, if pebD\bM, and
(v) P(‘“)(Q’) cQy for ('€Qy and || <ec

Let 0*(¢) = dist(¢, bS2y) for { € Q. Suppose h € O(Q2;) satisfies
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By Proposition 2.3 and Cauchy estimates on P(%1)({) C Oy as in [11], for ¢ € Q,
with [¢| < c it follows that

Ty(h)

ok T, (h) )

(2.2) laa (4)‘ S 0O+ el + Gy 2
oh T, (h)

23) e (O~ S TN+ Gl + [P

We now must transport these estimates back to the domain D. Define the
domain D, by D, = ¢,(£;).
Proposition 2.4. D, is a bounded pseudoconver domain such that
(i) p € bDy,
(i) D C Dy, and
(i) M\ {p} CMND,, ifpebM and M CMND,, ifpebD\bM.
For p € Uy N bD we set §,(z) = dist(z,bD,), and given n > 0, we define the
weighted L? norm I,,, on D, by

1/2

2 2
I o(h) = { A R sn(yav (2)

L, lz—pl2 "

Furthermore, let g(p,-) denote the second component of the inverse of the
biholomorphic map ¢, : C2 — C2. After perhaps shrinking Uy, we may choose a
fixed orthonormal frame {L;, Ly} for T%! on a neighborhood of U, which satisfies
Ll’l‘ = 0.

Proposition 2.5. There are positive constants ¢ and C, such that for all p €
Uy NbD the following holds. If h € O(D,) and I, ,(h) < oo for some n > 0, then
{®)
|h(2)| + |d,h(2)] < CI, o(h) for ze M with |z—p|>c,
and if z € D with |z — p| < ¢, then
(it)

Ip,n(h)
PN < T ot o)1 + T2 = e
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(iii)

Ipy(h) a
N S O e+ ot T+ = gl ™

(iv)

Lpn(R)
R O e ES P

PROOF. Since Dy, N{|z—p| > ¢} = Dyn{|z—p| > ¢}, M intersects bD,, transver-
sally on {|z —p| > c}, and hence dist(M \ {|z—p| < c}, Mn bD,) = dist(M \ {|z —
p| < ¢},bD,). From (iii) in Proposition 2.4 it follows that dist(M \ {|z — p| <
ch, Mn bD,) > 0. Hence we get 6,(z) > 0 for 2 € M with |z — p| > c and (i) is
an immediate consequence of Cauchy estimates.

For (ii), (iii), and (iv), one pulls back the estimates given by (2.1), (2.2), and
(2.3) via the map ¢, 1. using the fact that the Jacobian determinants of ¢, and
¢;1 are bounded by constants which are independent of p. ]

Let D. = {z € D;7(z) < —€} and M, = M N D, for € > 0. Let us introduce
[c(¢,2) = dist(z,bD,)+9(¢, 2)|+|¢ — z|™. By Skoda’s theorem ([13], Theorem 1)
and a partition of unity, we can obtain the following results as in ([11], p.70-71).

Theorem 2.6. Let pg € bM be a point of finite type m and let Uy be a sufficiently
small neighborhood of py. Let n > 0. If € > 0 is sufficiently small, then there
are ¢ > 0,Cy < oo and C functions B\ on (Ug NbD) x D., j = 1,2, with the
following properties:
(i) B2 D)z = G) + h (G D) (2~ ) = 1
(i) h{7(¢,) € O(D.)  for (€ UpnbD;
(ii)) [A)7(C, )|+ [d:h{) (G2 < Cp for z€Me with |z=~(2c

. € C
(iv) 1057(¢,2)] < ey

c
(v) lehf’(C,Z)l < oareae  and

. € C,
(vi) |L2h§~ (¢, 2)| < T C a7
for z € D with |z — (| < c.
The functions h;e) depend also on 1, but the constants C, are independent of
e>0.

For pg € bD\ bM also, we can apply Skoda’s theorem to the domain D. In this
case, there are C* functions h§-€) on (UyNbD) x D, j = 1,2, with the following
properties:
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(1) B¢ )z — ) + 57 2)(z2 — ) =1 and
(i) h{9(¢,) e O(D.) for (€UynbD.

However, in this case we cannot obtain the pointwise estimates for h;e) and
their derivatives. By Theorem 2.6 and (i), (ii) above, for any point po € bD and
a sufficiently small neighborhood Uy of pg we can construct the functions h;e) on
(Up NbD) x D, which satisfy the properties (i) and (ii) above. By compactness
of bD we can use a partition of unity in ¢ to patch together the locally defined
functions h;e) to obtain smooth functions wj(-e) onbD x D,.,j=1,...,n which are
holomorphic in 2z and satisfy

wi(¢, )z — )+ uf) (G 2)(z—G) =1 for  (¢,2) €bD x D,
Furthermore, at the boundary point { € bM, w](e) satisfy the pointwise estimates
stated in Theorem 2.6. By the theorem of Hatziafratis [6], for f € A(M) =
O(M)YNC(M), and z € M., it follows that

(2.4) f(2) = /b Q¢ 2)do(0)

where Cc((,2) = Z§:1 wg«e)((,z)goj (¢, 2) and ;(¢, 2) are C™ functions in D x D
depending holomorphically on z.

Lemma 2.7. For { € bM we can choose a subsequence Cy((,-) of Cc(C,-) which
converges uniformly on each compact subset of D.

PROOF. Let {¢;} be a decreasing sequence of positive numbers, withe; — 0 as j —
oo. Let C;(¢,2) = C¢;(¢,2) and D; = D,. For ( € bM, z € Dy, and j > k+1,
it follows that dist(z,bD;) > 0 and | — 2| 2 €. Thus for n > 0,

Gy
[Te, (¢, 21147
Gy

< —_—
= m(l+n)’
€

Thus {C;(¢,*);j > k + 1} is uniformly bounded in Dj. Therefore we can choose
a subsequence Cj, (C,-) of C;(¢,-) which converges uniformly in Dy_;. Denote

k := k. Then for ¢ € bM, Cx((,-) converges uniformly on each compact subset
of D. O
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Define CM (¢, 2) = limg_oo Ci(¢,2) for (¢,z) € bBM x D. Then CM((,2)
depends holomorphically on z and, by (2.4),

f(2) = /b _HOCH (¢ 2o )

for f € A(M) and z € M. Thus we proved (1.2) in Theorem 1.1. For f € L}(bM),
define

Cif(z) = /b HQCUC e (0) for z €,

and
CHi@) = [ FOCM(G o) for 2 M
bM
Then
(2.5) Jim Cif(2)=CMf(z) for zeM

and the convergence is uniform on each compact subset of M.

3. LIPSCHITZ ESTIMATES FOR THE INTEGRAL KERNEL
By (2.5), it is enough to show that for sufficiently small e,
Ce: Au(BM) > O(M)NAa _n(Mc)  is bounded.

Thus we shall prove that there is a constant C; < oo such that

d, / f(C)Ce(c,z)da(o‘sOn|f|Aa<bM)dist(z,bMe)*“%—") for z¢€ M.
bM

Applying (2.4) to the function f =1 gives d, [,,, Cc(¢, 2)do(¢) = 0. For z € M,
fixed, we choose 2’ € bM with |z — 2’| = dist(z,bM), so that |( — 2’| < 2|( — 2|
for ¢ € bM. Since f,,, f(2)d.Ce(¢, 2)do(¢) = 0, it follows that

/ HOLCA¢o(0) = [ (10) = 1)Ll 2)do(0)
bM b

M
and hence

(3.1)

[ 10d:C.(c.2d0(0)| $ 111, [l #ic.6, 210 0)
bM bM

Because of (iii) in Theorem 2.6, the nontrivial case occurs for z € M, and |(—z| <
¢. Since M meets bD transversally, if ¢ is sufficiently small, then M, also meets
bD,. transversally. Thus dist(z,bM.) =~ dist(z,bD,) for z € M.. Also, note
that dist(z,bM,) < |¢ — z| for z € M, and ¢ € bM, and hence it follows that
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Fe(¢,2) S1¢—2| for 2 € M, and ¢ € bM. Thus, it follows from ['.((,2) 2 }¢ —z|™
that the integral in (3.1) over {¢ € bM;|{ — z| < ¢} is bounded uniformly by

TN L.

2+n-3
(32) Mn{l{—zl<ec} Fe(Cvz)

< Cnlf|Aa(bM)diSt(z,bME)%_n/ —d;‘(-o—2
sMn{l¢—z|<c} Te((, 2)

Let t1 + ite = h(({),t3 = r({), and t4 = Im g({, 2). In [11], Range proved that
dr(po) A deIm g{po,po) # 0. Thus for z € bM fixed, if 0 < v < ¢ is sufficiently
small, t1,12,t3, and t4 form a local coordinate system on B(z,7) in such a way
that t4 = Im g((, 2) is the local coordinate of bM N B(z,7). Of course, for this we

need the transversal assumption on the intersections of M and bD. Given that
tqs = Im ¢(¢, 2) is a local coordinate on bM N B(z,~), it follows that the integral

on the right in (3.2) is estimated by dist(z, bM,)~!. Thus, altogether, one obtains
the required result.

Remark. Regularity properties of the integral kernel CM((, z) for M on the Hardy
classes HP were studied in [4] by the author.
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