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ABSOLUTELY SUMMING OPERATORS ON NON
COMMUTATIVE C∗-ALGEBRAS AND APPLICATIONS

NARCISSE RANDRIANANTOANINA

Communicated by Vern I. Paulsen

Abstract. Let E be a Banach space that does not contain any copy of `1

and A be a non commutative C∗-algebra. We prove that every absolutely

summing operator from A into E∗ is compact, thus answering a question of

Pe lczyński.

As application, we show that if G is a compact metrizable abelian group

and Λ is a Riesz subset of its dual then every countably additive A∗-valued

measure with bounded variation and whose Fourier transform is supported

by Λ has relatively compact range. Extensions of the same result to sym-

metric spaces of measurable operators are also presented.

1. Introduction

It is a well known result that every absolutely summing operator from a C(K)-
space into a separable dual space is compact. More generally if F is a Banach
space with the complete continuity property (CCP) then every absolutely sum-
ming operator from any C(K)-spaces into F is compact (see [10]).

It is the intention of the present note to study extensions of the above results
in the setting of C∗-algebras, i.e., replacing the C(K)-spaces above by a general
non commutative C∗- algebra. Typical examples of Banach spaces with the CCP
are dual spaces whose preduals do not contain `1. Our main result is that if E is
a Banach space that does not contain any copy of `1 and A is a C∗-algebra then
every absolutely summing operator from A into E∗ is compact. This answered
positively the following question raised by Pe lczynski (see [17] Problem 3. p. 20):
Is every absolutely summing operator from a non commutative C∗-algebra into
a Hilbert space compact? This result is also used to study relative compactness
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of range of countably additive vector measures with values in duals of non com-
mutative C∗-algebras. In [9], Edgar introduced new types of Radon-Nikodym
properties associated with Riesz subsets of countable discrete group (see the defi-
nition below) as generalization of the usual Radon-Nikodym property (RNP) and
the Analytic Radon-Nikodym property (ARNP). These properties were exten-
sively studied in [7] and [8]. In [7], it was shown that if Λ is a Riesz subset of a
countable discrete group then L1[0, 1] has the type II-Λ-RNP. In the other hand,
Haagerup and Pisier showed in [14] that non commutative L1-spaces have the
ARNP so it is a natural question to ask if non commutative L1-spaces have the
type II-Λ-RNP for any given Riesz subset Λ. In this direction, we obtain (as a
consequence of our main result) that if a countably additive vector measure of
bounded variation is defined on the σ-field of Borel subsets of a compact metriz-
able abelian group and takes its values in a dual of a C∗-algebra then its range
is relatively compact provided that its Fourier transform is supported by a Riesz
subset of the dual group.

Our terminology and notation are standard. We refer to [3] and [4] for defini-
tions from Banach space theory and [11], [16] and [21] for basic properties from
the theory of operator algebras and non-commutative integrations.

2. Preliminary Facts and Notations

We recall some definitions and well known facts which we use in the sequel.
Let A be a C∗-algebra, we denote by Ah the set of Hermitian (self adjoint)

elements of A.

Definition 1. Let E and F be Banach spaces and 0 < p < ∞. An operator
T : E → F is said to be absolutely p-summing (or simply p-summing) if there
exists C such that for any finite sequence (e1, e2, . . . , en) of E, one has

( n
∑

i=1

‖Tei‖p
)1/p

≤ C max
{

n
∑

i=1

|〈ei, e∗〉|p, ‖e∗‖ ≤ 1
}1/p

The following class of operators was introduced by Pisier in [18] as extension
of the p-summing operators in the setting of C∗-algebras.

Definition 2. Let A be a C∗-algebra and F be a Banach space, 0 < p <∞. An
operator T : A → F is said to be p-C∗-summing if there exists a constant C such
that for any finite sequence (A1, . . . , An) of Hermitian elements of A, one has

( n
∑

i=1

‖T (Ai)‖p
)1/p

≤ C
∥

∥

∥

(
n
∑

i=1

|Ai|p
)1/p∥

∥

∥

A
.
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The smallest constant C for which the above inequality holds is denoted by
Cp(T ).

It is clear that every p-summing operator is p-C∗-summing but the converse is
false in general (we refer to [18] for a conterexample). It should be noted that if
the C∗-algebra A is commutative then every p-C∗-summing operator from A into
any Banach space is p-summing. The following extension of the classical Pietsch’s
factorization theorem ([3]) was obtained by Pisier (see Proposition 1.1 of [18]).

Proposition 2.1. If T : A → F is a p-C∗-summing operator then there exists a
positive linear form f of norm less than 1 such that

‖Tx‖ ≤ Cp(T ){f(|x|p)}1/p , for every x ∈ Ah.

Let M be a von-Neumann algebra and M∗ be its predual. We recall that a
functional f onM is called normal if it belongs toM∗. In [19], it was shown that
for the case of von-Neumann algebra and the operator T being weak* to weakly
continuous then the positive linear form on the above proposition can be chosen
to be normal; namely we have the following lemma (see Lemma 4.1 of [19]).

Lemma 2.2. Let T : M → F be a 1-C∗-summing operator. If T is weak* to
weakly continuous then there exists a linear form f ∈M∗ with ‖f‖ ≤ 1 such that

‖Tx‖ ≤ C1(T )f(|x|) , for every x ∈Mh.(1)

For the next lemma, we recall that for x ∈ M and f ∈ M∗, xf (resp. fx)
denotes the element of M∗ defined by xf(y) = f(yx) (resp. fx(y) = f(xy)) for
all y ∈M.

Lemma 2.3. Let f be a positive linear form on M. For every x ∈M,

f (|Re(x)|+ | Im(x)|) ≤ 2‖xf + fx‖M∗ .(2)

Proof. Assume first that x ∈ Mh. The operator x can be decomposed as
x = x+ − x−, where x+, x− ∈ M+ and x+x− = 0. There exists a projection
p ∈M such that px− = x−p = x− and (1− p)x+ = x+(1− p) = x+. This yields
the following estimates:

f(|x|) = f(x+ + x−) = f(x+) + f(x−)

=
1
2

(xf + fx)(1− p) +
1
2

(xf + fx)(p)

≤ 1
2

(‖xf + fx‖‖1− p‖+ ‖xf + fx‖‖p‖)

≤ ‖xf + fx‖.
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For the general case, fix x ∈ M. Let a = Re(x) = (x + x∗)/2 and b = Im(x) =
(x− x∗)/2i. Clearly x = a+ ib. Using the Hermitian case, we get:

f(|a|+ |b|) ≤ ‖af + fa‖+ ‖bf + fb‖
≤ ‖xf + fx‖+ ‖x∗f + fx∗‖;

but since f ≥ 0,

‖x∗f + fx∗‖ = sup{|f(sx∗ + x∗s)|; s ∈M, ‖s‖ ≤ 1}
= sup{|f∗(xs∗ + s∗x)|; s ∈M, ‖s‖ ≤ 1}
= sup{|f(xs∗ + s∗x)|; s ∈M, ‖s‖ ≤ 1}
= ‖xf + fx‖,

which completes the proof of the lemma.

3. Main Theorem

Theorem 3.1. Let A be a C∗-algebra, E be a Banach space that does not contain
any copy of `1 and T : A → E∗ = F be a 1-summing operator then T is compact.

We will divide the proof into two steps. First we will assume that the C∗-
Algebra A is a σ-finite von-Neumann algebra and the operator T is weak* to
weakly continuous; then we will show that the general case can be reduced to
this case. We refer to [21] p. 78 for the definition and properties of σ-finite von-
Neumann algebras.

Proposition 3.2. Let M be a σ-finite von-Neumann algebra. Let T :M→ E∗

be a weak* to weakly continuous 1-summing operator then T is compact.

Proof. The operator T being weak* to weakly continuous and 1-summing, there
exist a constant C = C1(T ) and a normal positive functional f on M such that

‖Tx‖ ≤ Cf(|x|) for every x ∈Mh.

Since the von-Neumann algebraM is σ-finite, there exists a faithful normal state
f0 in M∗ (see [21] Proposition II-3.19). Replacing f by f + f0, we can assume
that the functional f on the inequality above is a faithful normal state and using
Lemma 2.3, we get

‖Tx‖ ≤ 2C‖xf + fx‖M∗ for every x ∈M.(3)

We may equip M with the scalar product by setting for every x, y ∈M,

〈x, y〉 = f

(

xy∗ + y∗x

2

)

.
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Since f is faithful,M with 〈., .〉 is a pre-Hilbertian. We denote the completion of
this space by L2(M, f) (or simply L2(f)).

By construction, the inclusion map J : M → L2(M, f) is bounded and is
one to one (f is faithful). On the dense subspace J(M) of L2(f), we define a
map θ : J(M) → L2(f)∗ by θ(Jx) = 〈., J(x∗)〉. The map θ is clearly linear
and is an isometry; indeed for every x ∈ M, ‖θ(Jx)‖2 = sup

‖u‖≤1

〈u, J(x∗)〉2 =

〈J(x∗), J(x∗)〉 = f(x∗x+xx∗) = ‖Jx‖2. So it can be extended to a bounded map
(that we will denote also by θ) from L2(f) onto L2(f)∗.

Let S = J∗ ◦ θ ◦ J . The operator is defined from M into M∗ and we claim
that for every x ∈M, Sx = xf + fx. In fact for every x, y ∈M, we have:

Sx(y) = J∗ ◦ θ ◦ Jx(y)

= θ ◦ Jx(Jy)

= 〈J(y), J(x∗)〉
= f(xy + yx) = (xf + fx)(y).

Notice also that since f is normal, the functionals xf and fx are both normal for
every x ∈ M; therefore S(M) ⊂ M∗. Also since J is one to one, J∗ has weak*
dense range. The latter with the facts that both J and θ have dense ranges imply
that S(M) is weak* dense in M∗ so S(M) is (norm) dense in M∗.

Let us now define a map L : S(M) → E∗ by L(xf + fx) = Tx for every
x ∈M. The map L is clearly linear and one can deduce from inequality (3) above
that L is bounded so it can be extended as a bounded operator (that we will
denote also by L) fromM∗ into E∗. The above means that T can be factored as
follows

M T−→ E∗

S ↘ ↗ L

M∗
Taking the adjoints we get

E
T∗−→ M∗

L∗ ↘ ↗ S∗

M

To conclude the proof of the proposition, let (en)n be a bounded sequence in E.
Since E 6←↩ `1, we will assume (by taking a subsequence if necessary) that (en)n
is weakly Cauchy. We will show that (T ∗(en))n is norm-convergent. For that it
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is enough to prove that if (en)n is a weakly null sequence in E then (‖T ∗en‖)n
converges to zero.

Let (en)n be a weakly null sequence in E, (L∗(en))n is a weakly null sequence
in M. This implies that ((L∗(en))∗)n≥1 (the sequence of the adjoints of the
L∗(en)’s) is weakly null in M.

Since T is 1-summing, it is a Dunford-Pettis operator (i.e takes weakly conver-
gent sequence into norm-convergent sequence). Hence

lim
n→∞

‖T ((L∗en)∗)‖E∗ = 0 .

In particular, since (en)n is a bounded sequence in E, we have

lim
n→∞

〈T ((L∗en)∗), en〉 = 0.

But

〈T ((L∗en)∗), en〉 = 〈LS((L∗en)∗), en〉
= 〈S((L∗en)∗), L∗en〉
= 〈θ ◦ J((L∗en)∗), J(L∗en)〉
= 〈J(L∗en), J(L∗en)〉L2(f)

= ‖J(L∗en)‖2L2(f).

So ‖J(L∗en)‖L2(f) → 0 as n→∞ and therefore since T ∗ = S∗◦L∗ = J∗◦θ◦J◦L∗,
we get that limn→∞ ‖T ∗en‖ = 0.

This shows that T ∗(BE) is compact and since BE is weak* dense in BE∗∗ and
T ∗ is weak* to weakly continuous, T ∗(BE∗∗) ⊆ T ∗(BE) so T ∗ (and hence T ) is
compact. The proposition is proved.

To complete the proof of the theorem, let A be a C∗-algebra and T : A → E∗

be a 1-summing operator. The double dual A∗∗ of A is a von-Neumann algebra
and T ∗∗ : A∗∗ → E∗ is 1-summing. Let (an)n be a bounded sequence in A∗∗. If
we denote by M the von-Neumann algebra generated by (an)n then the predual
M∗ of M is separable and therefore the von-Neumann algebra M is σ-finite.
Moreover, if we set I : M → A∗∗ the inclusion map then I is weak* to weak*
continuous. Hence M and T ∗∗ ◦ I satisfy the conditions of Proposition 3.2 so
T ∗∗ ◦ I is compact and since the sequence (an)n is arbitrary, the operator T ∗∗

(and hence T ) is compact.
Remark. It should be noted that for the proof of Proposition 3.2, we only
require the operator T to be C∗-summing and Dunford-Pettis so the conclusion of
Proposition 3.2 is still valid for C∗-summing operators that are Dunford-Pettis.
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4. Applications to vector measures

In this section we will provide some applications of the main theorem to study
range of countably additive vector measures with values in duals of C∗-Algebras.

The letter G will denote a compact metrizable abelian group, ̂G its dual, B(G)
is the σ-algebra of the Borel subsets of G, and λ the normalized Haar measure on
G.

Let X be a Banach space and 1 ≤ p ≤ ∞, we will denote by Lp(G,X) the
usual Bochner spaces for the measure space (G,B(G), λ); M(G,X) the space of
X-valued countably additive Borel measures of bounded variation; C(G,X) the
space of X-valued continuous functions and M∞(G,X) = {µ ∈ M(G,X), |µ| ≤
Cλ for some C > 0}.

If µ ∈ M(G,X), we recall that the Fourier transform of µ is a map µ̂ from ̂G

into X defined by µ̂(γ) =
∫

G
γ̄ dµ for γ ∈ ̂G.

For Λ ⊂ ̂G, we will use the following notation:

LpΛ(G,X) = {f ∈ Lp(G,X), f̂(γ) = 0 for all γ /∈ Λ}

CΛ(G,X) = {f ∈ C(G,X), f̂(γ) = 0 for all γ /∈ Λ}
MΛ(G,X) = {µ ∈M(G,X), µ̂(γ) = 0 for all γ /∈ Λ}
M∞Λ (G,X) = {µ ∈M∞(G,X), µ̂(γ) = 0 for all γ /∈ Λ}.

We also recall that Λ ⊂ ̂G is called a Riesz subset if MΛ(G) = L1
Λ(G). We refer

to [20] and [13] for detailed discussions and examples of Riesz subsets of dual
groups.

The following Banach space properties were introduced by Edgar in [9], and
Dowling in [7].

Definition 3. Let Λ be a Riesz subset of ̂G. A Banach space X is said to have the
type I-Λ-Radon Nikodym Property (resp. type II-Λ-Radon Nikodym property) if
M∞Λ (G,X) = L∞Λ (G,X) (resp. MΛ(G,X) = L1

Λ(G,X)).

Our next result deals with property of dual of C∗-algebras related to the types
of Radon-Nikodym properties defined above.

Theorem 4.1. Let Λ be a Riesz subset of ̂G and A be a C∗-Algebra. If F :
B(G)→ A∗ is a countably additive measure with bounded variation that satisfies
̂F (γ) = 0 for γ /∈ Λ then the range of F is a relatively compact subset of A∗.

Proof. Let F : B(G)→ A∗ be a measure with bounded variation and ̂F (γ) = 0
for γ /∈ Λ. Let S : C(G) → A∗ be the operator defined by Sf =

∫

f dF . Since
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F is of bounded variation, the operator S is integral (see [4] Theorem IV-3.3 and
Theorem IV-3.12) and therefore S∗ : A∗∗ → (C(G))∗ is also integral. Now since
̂F (γ) = 0 for γ /∈ Λ, if we denote by Λ′ = {γ ∈ ̂G, γ̄ /∈ Λ} then S(γ) = 0 for all
γ ∈ Λ′ and therefore we have the following factorization:

C(G) S−→ A∗
Q


y ↗L

C(G)/CΛ′(G)

where Q is the natural quotient map. Taking the adjoints, we get

A∗∗ S∗−→ (C(G))∗

L∗ ↘ ↗ Q∗

MΛ(G)

Since Q∗ is the formal inclusion and S∗ is 1-summing, the operator L∗ is 1-
summing. The assumption Λ being a Riesz subset implies that MΛ(G) = L1

Λ(G)
is a separable dual (in particular its predual does not contain `1). So by Theo-
rem 3.1, L∗ (and hence S) is compact. This proves that the range of the repre-
senting measure F of S is relatively compact (see [4] Theorem II-2.18).

Our next result is a generalization of Theorem 4.1 for the case of symmetric
spaces of measurable operators.

LetM be a semifinite von-Neumann algebra acting on a Hilbert space H. Let
τ be a distinguished faithful normal semifinite trace on M.

Let M be the space of all measurable operators with respect to (M, τ) in the
sense of [16]; for a ∈ M and t > 0, the tth-s-number (singular number) of a is
defined by

µt(a) = inf{‖ae‖ : e ∈M projection with τ(I − e) ≤ t} .

The function t 7→ µt(a) defined on (0, τ(I)) will be denoted by µ(a). This is a
positive non-increasing function on (0, τ(I)). We refer to [11] for complete detailed
study of µ(a).

Let E be a rearrangement invariant Banach function space on (0, τ(I)) (in the
sense of [15]). We define the symmetric space E(M, τ) of measurable operators
by setting

E(M, τ) = {a ∈ M; µ(a) ∈ E}
and ‖a‖E(M,τ) = ‖µ(a)‖E .

It is well known that E(M, τ) is a Banach space and if E = Lp(0, τ(I)) (1 ≤ p ≤
∞) then E(M, τ) coincides with the usual non-commutative Lp-space associated
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with the von-Neumann algebraM. The space E(M, τ) is often referred to as the
non-commutative version of the function space E. Some Banach space properties
of these spaces can be found in [2], [6] and [22].

For the case where the trace τ is finite, we obtain the following generalization
of Theorem 4.1 for symmetric spaces of measurable operators.

Corollary 4.2. Assume that τ is finite. Let E be a rearrangement invariant
function space on (0, τ(I)) that does not contain c0 and Λ be a Riesz subset of ̂G.
Let F : B(G)→ E(M, τ) be a countably additive measure with bounded variation
such that ̂F (γ) = 0 for every γ /∈ Λ then the range of F is relatively compact.

Proof. We will begin by reducing the general case to the case where E(M, τ) is
separable. Since B(G) is countably generated, the range of F is separable. Choose
(An)n ⊂ B(G) so that {F (An), n ≥ 1} is dense in {F (A), A ∈ B(G)}. Let ˜M be
the von-Neumann algebra generated I and F (An) (n ≥ 1) and τ̃ the restriction of
τ in ˜M. Clearly E(˜M, τ̃) is a closed subspace of E(M, τ) and F (A) ∈ E(˜M, τ̃) for
all A ∈ B(G). Moreover the space E(˜M, τ̃) is separable (see Lemma 5.6 of [22]).
So without loss of generalities, we will assume that E(M, τ) is separable. It is a
well known fact that E(M, τ) is contained in L1(M, τ) +M and since τ is finite,
E(M, τ) ⊂ L1(M, τ). Let J : E(M, τ)→ L1(M, τ) be the formal inclusion. The
measure J ◦ F is of bounded variation and Ĵ ◦ F (γ) = J( ̂F (γ)) for every γ ∈ ̂G.
One can conclude from Theorem 4.1 that the range of J ◦F is relatively compact
in L1(M, τ).

To show that the range of F is relatively compact, fix h : G → E(M, τ)∗∗ a
weak*-density of F with respect to the Haar measure λ (see [5]). We have for
each A ∈ B(G),

F (A) = weak*−
∫

A

h(t) dλ(t)

and
|F |(A) =

∫

A

‖h(t)‖ dλ(t).

For each N ∈ N, let AN = {t ∈ G, ‖h(t)‖ ≤ N} and FN the measure defined by
FN (A) = F (A ∩AN ) for all A ∈ B(G). Clearly |FN | ≤ Nλ for every N ∈ N.

Define TN : L1(G)→ E(M, τ) by TN (f) =
∫

f(t) dFN (t) for every f ∈ L1(G).
The operator TN is bounded and we claim that TN is Dunford-Pettis; for that
notice that since the range of J ◦ F is relatively compact so is the range of
J ◦FN and therefore the operator J ◦TN is a Dunford-Pettis operator. The space
E(M, τ) is separable and J is a semi-embedding (see Lemma 5.7 of [22]) so J is
a Gδ-embedding (see [1] Proposition 1.8) and one can deduce from Theorem II.6



754 NARCISSE RANDRIANANTOANINA

of [12], that TN is a Dunford-Pettis operator. Hence the range of FN is relatively
compact. Now since

lim
N→∞

‖F − FN‖ = lim
N→∞

∫

G\AN
‖h(t)‖ dλ(t) = 0,

the range of F is relatively compact.

Let us finish by asking the following question:

Question: Do non-commutative L1-spaces have type II-Λ-RNP for any Riesz set
Λ?

In light of Theorem 4.1, the result of Haagerup and Pisier ([14]) and so many
properties that have been generalized from classical L1-spaces to non-commutative
L1-spaces, one tends to conjecture that the answer of the above question is affir-
mative.

Acknowledgements: I would like to thank Professor G. Pisier for many valuable
suggestions concerning this work.
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