ABSOLUTELY SUMMING OPERATORS ON NON COMMUTATIVE C^*-ALGEBRAS AND APPLICATIONS

NARCISSE RANDRIANANTOANINA
Communicated by Vern I. Paulsen

Abstract. Let E be a Banach space that does not contain any copy of ℓ^1 and A be a non commutative C^*-algebra. We prove that every absolutely summing operator from A into E^* is compact, thus answering a question of Pełczyński.

As application, we show that if G is a compact metrizable abelian group and Λ is a Riesz subset of its dual then every countably additive A^*-valued measure with bounded variation and whose Fourier transform is supported by Λ has relatively compact range. Extensions of the same result to symmetric spaces of measurable operators are also presented.

1. Introduction

It is a well known result that every absolutely summing operator from a $C(K)$-space into a separable dual space is compact. More generally if F is a Banach space with the complete continuity property (CCP) then every absolutely summing operator from any $C(K)$-spaces into F is compact (see [10]).

It is the intention of the present note to study extensions of the above results in the setting of C^*-algebras, i.e., replacing the $C(K)$-spaces above by a general non commutative C^*- algebra. Typical examples of Banach spaces with the CCP are dual spaces whose preduals do not contain ℓ^1. Our main result is that if E is a Banach space that does not contain any copy of ℓ^1 and A is a C^*-algebra then every absolutely summing operator from A into E^* is compact. This answered positively the following question raised by Pełczyński (see [17] Problem 3. p. 20): Is every absolutely summing operator from a non commutative C^*-algebra into a Hilbert space compact? This result is also used to study relative compactness

1991 Mathematics Subject Classification. 46E40; Secondary 47D15, 28B05.
Key words and phrases. C^*-algebras, vector measures, Riesz sets.
of range of countably additive vector measures with values in duals of non commutative C^*-algebras. In [9], Edgar introduced new types of Radon-Nikodym properties associated with Riesz subsets of countable discrete group (see the definition below) as generalization of the usual Radon-Nikodym property (RNP) and the Analytic Radon-Nikodym property (ARNP). These properties were extensively studied in [7] and [8]. In [7], it was shown that if Λ is a Riesz subset of a countable discrete group then $L^1[0,1]$ has the type II-Λ-RNP. In the other hand, Haagerup and Pisier showed in [14] that non commutative L^1-spaces have the ARNP so it is a natural question to ask if non commutative L^1-spaces have the type II-Λ-RNP for any given Riesz subset Λ. In this direction, we obtain (as a consequence of our main result) that if a countably additive vector measure of bounded variation is defined on the σ-field of Borel subsets of a compact metrizable abelian group and takes its values in a dual of a C^*-algebra then its range is relatively compact provided that its Fourier transform is supported by a Riesz subset of the dual group.

Our terminology and notation are standard. We refer to [3] and [4] for definitions from Banach space theory and [11], [16] and [21] for basic properties from the theory of operator algebras and non-commutative integrations.

2. Preliminary Facts and Notations

We recall some definitions and well known facts which we use in the sequel.

Let \mathcal{A} be a C^*-algebra, we denote by \mathcal{A}_h the set of Hermitian (self adjoint) elements of \mathcal{A}.

Definition 1. Let E and F be Banach spaces and $0 < p < \infty$. An operator $T : E \to F$ is said to be absolutely p-summing (or simply p-summing) if there exists C such that for any finite sequence (e_1, e_2, \ldots, e_n) of E, one has

$$\left(\sum_{i=1}^{n} \|T e_i\|^p \right)^{1/p} \leq C \max \left\{ \sum_{i=1}^{n} |\langle e_i, e^* \rangle|^p, \|e^*\| \leq 1 \right\}^{1/p}.$$

The following class of operators was introduced by Pisier in [18] as extension of the p-summing operators in the setting of C^*-algebras.

Definition 2. Let \mathcal{A} be a C^*-algebra and F be a Banach space, $0 < p < \infty$. An operator $T : \mathcal{A} \to F$ is said to be p-C^*-summing if there exists a constant C such that for any finite sequence (A_1, \ldots, A_n) of Hermitian elements of \mathcal{A}, one has

$$\left(\sum_{i=1}^{n} \|T(A_i)\|^p \right)^{1/p} \leq C \left(\sum_{i=1}^{n} |A_i|^p \right)^{1/p} \|\mathcal{A}\|.$$
The smallest constant C for which the above inequality holds is denoted by $C_p(T)$.

It is clear that every p-summing operator is p-C^*-summing but the converse is false in general (we refer to [18] for a counterexample). It should be noted that if the C^*-algebra A is commutative then every p-C^*-summing operator from A into any Banach space is p-summing. The following extension of the classical Pietsch’s factorization theorem ([3]) was obtained by Pisier (see Proposition 1.1 of [18]).

Proposition 2.1. If $T : A \to F$ is a p-C^*-summing operator then there exists a positive linear form f of norm less than 1 such that

$$\|Tx\| \leq C_p(T)\{f(|x|^p)\}^{1/p}, \text{ for every } x \in A_h.$$

Let \mathcal{M} be a von-Neumann algebra and \mathcal{M}_* be its predual. We recall that a functional f on \mathcal{M} is called normal if it belongs to \mathcal{M}_*. In [19], it was shown that for the case of von-Neumann algebra and the operator T being weak* to weakly continuous then the positive linear form on the above proposition can be chosen to be normal; namely we have the following lemma (see Lemma 4.1 of [19]).

Lemma 2.2. Let $T : \mathcal{M} \to F$ be a 1-C^*-summing operator. If T is weak* to weakly continuous then there exists a linear form $f \in \mathcal{M}_*$ with $\|f\| \leq 1$ such that

$$\|Tx\| \leq C_1(T)f(|x|), \text{ for every } x \in \mathcal{M}_h.$$

For the next lemma, we recall that for $x \in \mathcal{M}$ and $f \in \mathcal{M}_*$, xf (resp. fx) denotes the element of \mathcal{M}_* defined by $xf(y) = f(yx)$ (resp. $fx(y) = f(xy)$) for all $y \in \mathcal{M}$.

Lemma 2.3. Let f be a positive linear form on \mathcal{M}. For every $x \in \mathcal{M},$

$$f(|\text{Re}(x)| + |\text{Im}(x)|) \leq 2\|xf + fx\|_{\mathcal{M}^*}.\ (2)$$

Proof. Assume first that $x \in \mathcal{M}_h$. The operator x can be decomposed as $x = x_+ - x_-$, where $x_+, x_- \in \mathcal{M}^+$ and $x_+x_- = 0$. There exists a projection $p \in \mathcal{M}$ such that $px_- = x_-p = x_-$ and $(1-p)x_+ = x_+(1-p) = x_+$. This yields the following estimates:

$$f(|x|) = f(x_+ + x_-) = f(x_+) + f(x_-)$$

$$= \frac{1}{2}(xf + fx)(1-p) + \frac{1}{2}(xf + fx)(p)$$

$$\leq \frac{1}{2}(\|xf + fx\||1-p\| + \|xf + fx\||p|)$$

$$\leq \|xf + fx\|.\]
For the general case, fix \(x \in \mathcal{M} \). Let \(a = \text{Re}(x) = (x + x^*)/2 \) and \(b = \text{Im}(x) = (x - x^*)/2i \). Clearly \(x = a + ib \). Using the Hermitian case, we get:

\[
 f(|a| + |b|) \leq \|af + fa\| + \|bf + fb\|
\]

\[
 \leq \|xf + fx\| + \|x^*f + fx^*\|
\]

but since \(f \geq 0 \),

\[
\|x^*f + fx^*\| = \sup\{|f(sz^* + z^*s)|; \ s \in \mathcal{M}, \|s\| \leq 1\}
\]

\[
= \sup\{|f^*(zs^* + s^*z)|; \ s \in \mathcal{M}, \|s\| \leq 1\}
\]

\[
= \sup\{|f(xs^* + s^*x)|; \ s \in \mathcal{M}, \|s\| \leq 1\}
\]

\[
= \|xf + fx\|
\]

which completes the proof of the lemma.

\[
\square
\]

3. Main Theorem

Theorem 3.1. Let \(A \) be a \(C^* \)-algebra, \(E \) be a Banach space that does not contain any copy of \(\ell^1 \) and \(T : A \to E^* = F \) be a 1-summing operator then \(T \) is compact.

We will divide the proof into two steps. First we will assume that the \(C^* \)-Algebra \(A \) is a \(\sigma \)-finite von-Neumann algebra and the operator \(T \) is weak* to weakly continuous; then we will show that the general case can be reduced to this case. We refer to [21] p. 78 for the definition and properties of \(\sigma \)-finite von-Neumann algebras.

Proposition 3.2. Let \(\mathcal{M} \) be a \(\sigma \)-finite von-Neumann algebra. Let \(T : \mathcal{M} \to E^* \) be a weak* to weakly continuous 1-summing operator then \(T \) is compact.

Proof. The operator \(T \) being weak* to weakly continuous and 1-summing, there exist a constant \(C = C_1(T) \) and a normal positive functional \(f \) on \(\mathcal{M} \) such that

\[
\|Tx\| \leq Cf(|x|) \text{ for every } x \in \mathcal{M}_h.
\]

Since the von-Neumann algebra \(\mathcal{M} \) is \(\sigma \)-finite, there exists a faithful normal state \(f_0 \) in \(\mathcal{M}_* \) (see [21] Proposition II-3.19). Replacing \(f \) by \(f + f_0 \), we can assume that the functional \(f \) on the inequality above is a faithful normal state and using Lemma 2.3, we get

\[
(3) \quad \|Tx\| \leq 2C\|xf + fx\|_{\mathcal{M}^*} \text{ for every } x \in \mathcal{M}.
\]

We may equip \(\mathcal{M} \) with the scalar product by setting for every \(x, y \in \mathcal{M} \),

\[
\langle x, y \rangle = f \left(\frac{xy^* + y^*x}{2} \right).
\]
Since f is faithful, \mathcal{M} with $\langle \cdot, \cdot \rangle$ is a pre-Hilbertian. We denote the completion of this space by $L^2(\mathcal{M}, f)$ (or simply $L^2(f)$).

By construction, the inclusion map $J : \mathcal{M} \to L^2(\mathcal{M}, f)$ is bounded and is one to one (f is faithful). On the dense subspace $J(\mathcal{M})$ of $L^2(f)$, we define a map $\theta : J(\mathcal{M}) \to L^2(f)^*$ by $\theta(Jx) = \langle \cdot, J(x^*) \rangle$. The map θ is clearly linear and is an isometry; indeed for every $x \in \mathcal{M}$, $\|\theta(Jx)\|^2 = \sup_{\|u\| \leq 1} \langle u, J(x^*) \rangle^2 = f(x^*x + xx^*) = \|Jx\|^2$. So it can be extended to a bounded map (that we will denote also by θ) from $L^2(f)$ onto $L^2(f)^*$.

Let $S = J^* \circ \theta \circ J$. The operator is defined from \mathcal{M} into \mathcal{M}^* and we claim that for every $x \in \mathcal{M}$, $Sx = xf + fx$. In fact for every $x, y \in \mathcal{M}$, we have:

$$\begin{align*}
xS(y) &= J^* \circ \theta \circ Jx(y) \\
&= Jx(Jy) \\
&= \langle J(y), J(x^*) \rangle \\
&= f(xy + yx) = (xf + fx)(y).
\end{align*}$$

Notice also that since f is normal, the functionals xf and fx are both normal for every $x \in \mathcal{M}$; therefore $S(\mathcal{M}) \subset \mathcal{M}_*$. Also since J is one to one, J^* has weak* dense range. The latter with the facts that both J and θ have dense ranges imply that $S(\mathcal{M})$ is weak* dense in \mathcal{M}^* so $S(\mathcal{M})$ is (norm) dense in \mathcal{M}_*.

Let us now define a map $L : S(\mathcal{M}) \to E^*$ by $L(xf + fx) = Tx$ for every $x \in \mathcal{M}$. The map L is clearly linear and one can deduce from inequality (3) above that L is bounded so it can be extended as a bounded operator (that we will denote also by L) from \mathcal{M}_* into E^*. The above means that T can be factored as follows

$$\begin{array}{ccc}
\mathcal{M} & \xrightarrow{S} & \mathcal{M}_* \\
\downarrow & & \uparrow L \\
E^* & \xrightarrow{T} & \mathcal{M}_*
\end{array}$$

Taking the adjoints we get

$$\begin{array}{ccc}
E & \xrightarrow{T^*} & \mathcal{M}^* \\
\downarrow & & \uparrow S^* \\
L^* & \xrightarrow{L} & \mathcal{M}
\end{array}$$

To conclude the proof of the proposition, let $(e_n)_n$ be a bounded sequence in E. Since $E \not\hookrightarrow \ell^1$, we will assume (by taking a subsequence if necessary) that $(e_n)_n$ is weakly Cauchy. We will show that $(T^*(e_n))_n$ is norm-convergent. For that it
is enough to prove that if \((e_n)_n\) is a weakly null sequence in \(E\) then \(\|T^*e_n\|\) converges to zero.

Let \((e_n)_n\) be a weakly null sequence in \(E\), \((L^*(e_n))_n\) is a weakly null sequence in \(\mathcal{M}\). This implies that \(((L^*(e_n))^*)_n\) (the sequence of the adjoints of the \(L^*(e_n)\)’s) is weakly null in \(\mathcal{M}\).

Since \(T\) is 1-summing, it is a Dunford-Pettis operator (i.e takes weakly convergent sequence into norm-convergent sequence). Hence

\[
\lim_{n \to \infty} \|T((L^*e_n)^*)_n\|_{E^*} = 0.
\]

In particular, since \((e_n)_n\) is a bounded sequence in \(E\), we have

\[
\lim_{n \to \infty} \langle T((L^*e_n)^*)_n, e_n \rangle = 0.
\]

But

\[
\langle T((L^*e_n)^*)_n, e_n \rangle = \langle LS((L^*e_n)^*)_n, e_n \rangle = \langle S((L^*e_n)^*)_n, L^*e_n \rangle = \langle \theta \circ J((L^*e_n)^*)_n, J(L^*e_n) \rangle = \langle J(L^*e_n), J(L^*e_n) \rangle_{L^2(f)} = \|J(L^*e_n)\|_{L^2(f)}^2.
\]

So \(\|J(L^*e_n)\|_{L^2(f)} \to 0\) as \(n \to \infty\) and therefore since \(T^* = S^* \circ L^* = J^* \circ \theta \circ J \circ L^*\), we get that \(\lim_{n \to \infty} \|T^*e_n\| = 0\).

This shows that \(\overline{T^*(B_E)}\) is compact and since \(B_E\) is weak* dense in \(B_{E^{**}}\) and \(T^*\) is weak* to weakly continuous, \(T^*(B_{E^{**}}) \subseteq \overline{T^*(B_E)}\) so \(T^*\) (and hence \(T\)) is compact. The proposition is proved.

\[\square\]

To complete the proof of the theorem, let \(\mathcal{A}\) be a \(C^*\)-algebra and \(T: \mathcal{A} \to E^*\) be a 1-summing operator. The double dual \(\mathcal{A}^{**}\) of \(\mathcal{A}\) is a von-Neumann algebra and \(T^{**}: \mathcal{A}^{**} \to E^*\) is 1-summing. Let \((a_n)_n\) be a bounded sequence in \(\mathcal{A}^{**}\). If we denote by \(\mathcal{M}\) the von-Neumann algebra generated by \((a_n)_n\) then the predual \(\mathcal{M}^*\) of \(\mathcal{M}\) is separable and therefore the von-Neumann algebra \(\mathcal{M}\) is \(\sigma\)-finite. Moreover, if we set \(I: \mathcal{M} \to \mathcal{A}^{**}\) the inclusion map then \(I\) is weak* to weak* continuous. Hence \(\mathcal{M}\) and \(T^{**} \circ I\) satisfy the conditions of Proposition 3.2 so \(T^{**} \circ I\) is compact and since the sequence \((a_n)_n\) is arbitrary, the operator \(T^{**}\) (and hence \(T\)) is compact.

\[\square\]

Remark. It should be noted that for the proof of Proposition 3.2, we only require the operator \(T\) to be \(C^*\)-summing and Dunford-Pettis so the conclusion of Proposition 3.2 is still valid for \(C^*\)-summing operators that are Dunford-Pettis.
4. Applications to vector measures

In this section we will provide some applications of the main theorem to study range of countably additive vector measures with values in duals of \(C^* \)-Algebras.

The letter \(G \) will denote a compact metrizable abelian group, \(\hat{G} \) its dual, \(\mathcal{B}(G) \) is the \(\sigma \)-algebra of the Borel subsets of \(G \), and \(\lambda \) the normalized Haar measure on \(G \).

Let \(X \) be a Banach space and \(1 \leq p \leq \infty \), we will denote by \(L^p(G, X) \) the usual Bochner spaces for the measure space \((G, \mathcal{B}(G), \lambda); \ M(G, X) \) the space of \(X \)-valued countably additive Borel measures of bounded variation; \(C(G, X) \) the space of \(X \)-valued continuous functions and \(M^\infty(G, X) = \{ \mu \in M(G, X), |\mu| \leq C\lambda \text{ for some } C > 0 \} \).

If \(\mu \in M(G, X) \), we recall that the Fourier transform of \(\mu \) is a map \(\hat{\mu} \) from \(\hat{G} \) into \(X \) defined by \(\hat{\mu}(\gamma) = \int_G \bar{\gamma} \, d\mu \) for \(\gamma \in \hat{G} \).

For \(\Lambda \subset \hat{G} \), we will use the following notation:

\[
L^p_\Lambda(G, X) = \{ f \in L^p(G, X), \ \hat{f}(\gamma) = 0 \text{ for all } \gamma \notin \Lambda \} \\
C_\Lambda(G, X) = \{ f \in C(G, X), \ \hat{f}(\gamma) = 0 \text{ for all } \gamma \notin \Lambda \} \\
M_\Lambda(G, X) = \{ \mu \in M(G, X), \ \hat{\mu}(\gamma) = 0 \text{ for all } \gamma \notin \Lambda \} \\
M^\infty_\Lambda(G, X) = \{ \mu \in M^\infty(G, X), \ \hat{\mu}(\gamma) = 0 \text{ for all } \gamma \notin \Lambda \}.
\]

We also recall that \(\Lambda \subset \hat{G} \) is called a Riesz subset if \(M_\Lambda(G) = L^1_\Lambda(G) \). We refer to [20] and [13] for detailed discussions and examples of Riesz subsets of dual groups.

The following Banach space properties were introduced by Edgar in [9], and Dowling in [7].

Definition 3. Let \(\Lambda \) be a Riesz subset of \(\hat{G} \). A Banach space \(X \) is said to have the type I-\(\Lambda \)-Radon Nikodym Property (resp. type II-\(\Lambda \)-Radon Nikodym property) if \(M^\infty_\Lambda(G, X) = L^\infty_\Lambda(G, X) \) (resp. \(M_\Lambda(G, X) = L^1_\Lambda(G, X) \)).

Our next result deals with property of dual of \(C^* \)-algebras related to the types of Radon-Nikodym properties defined above.

Theorem 4.1. Let \(\Lambda \) be a Riesz subset of \(\hat{G} \) and \(A \) be a \(C^* \)-Algebra. If \(F : \mathcal{B}(G) \to A^* \) is a countably additive measure with bounded variation that satisfies \(\hat{F}(\gamma) = 0 \) for \(\gamma \notin \Lambda \) then the range of \(F \) is a relatively compact subset of \(A^* \).

Proof. Let \(F : \mathcal{B}(G) \to A^* \) be a measure with bounded variation and \(\hat{F}(\gamma) = 0 \) for \(\gamma \notin \Lambda \). Let \(S : C(G) \to A^* \) be the operator defined by \(Sf = \int f \, dF \). Since
Let F be of bounded variation, the operator S is integral (see [4] Theorem IV-3.3 and Theorem IV-3.12) and therefore $S^*:\mathcal{A}^{**}\to (C(G))^*$ is also integral. Now since $\hat{F}(\gamma) = 0$ for $\gamma \notin \Lambda$, if we denote by $\Lambda' = \{ \gamma \in \hat{G}, \bar{\gamma} \notin \Lambda \}$ then $S(\gamma) = 0$ for all $\gamma \in \Lambda'$ and therefore we have the following factorization:

\[
\begin{array}{c}
C(G) \\ \downarrow q \\
C(G)/C_{\Lambda'}(G) \\ \downarrow L
\end{array} \xrightarrow{S^*} \begin{array}{c}
\mathcal{A}^{**} \\ \downarrow L^{**} \\
(C(G))^* \\ \downarrow Q^*
\end{array}
\]

where Q is the natural quotient map. Taking the adjoints, we get

\[
\begin{array}{c}
\mathcal{A}^{**} \\ \downarrow L^{**} \\
(C(G))^* \\ \downarrow Q^*
\end{array} \xrightarrow{S} \begin{array}{c}
M_{\Lambda}(G) \\
M_{\Lambda}(G)
\end{array}
\]

Since Q^* is the formal inclusion and S^* is 1-summing, the operator L^* is 1-summing. The assumption Λ being a Riesz subset implies that $M_{\Lambda}(G) = L_{\Lambda}^1(G)$ is a separable dual (in particular its predual does not contain ℓ^1). So by Theorem 3.1, L^* (and hence S) is compact. This proves that the range of the representing measure F of S is relatively compact (see [4] Theorem II-2.18).

Our next result is a generalization of Theorem 4.1 for the case of symmetric spaces of measurable operators.

Let \mathcal{M} be a semifinite von-Neumann algebra acting on a Hilbert space H. Let τ be a distinguished faithful normal semifinite trace on \mathcal{M}.

Let \mathcal{M} be the space of all measurable operators with respect to (\mathcal{M}, τ) in the sense of [16]; for $a \in \mathcal{M}$ and $t > 0$, the t^{th}-s-number (singular number) of a is defined by

\[
\mu_t(a) = \inf\{ \|ae\| : e \in \mathcal{M} \text{ projection with } \tau(I - e) \leq t \}.
\]

The function $t \mapsto \mu_t(a)$ defined on $(0, \tau(I))$ will be denoted by $\mu(a)$. This is a positive non-increasing function on $(0, \tau(I))$. We refer to [11] for complete detailed study of $\mu(a)$.

Let E be a rearrangement invariant Banach function space on $(0, \tau(I))$ (in the sense of [15]). We define the symmetric space $E(\mathcal{M}, \tau)$ of measurable operators by setting

\[
E(\mathcal{M}, \tau) = \{ a \in \mathcal{M} : \mu(a) \in E \}
\]

and $\|a\|_{E(\mathcal{M}, \tau)} = \|\mu(a)\|_E$.

It is well known that $E(\mathcal{M}, \tau)$ is a Banach space and if $E = L^p(0, \tau(I))$ ($1 \leq p \leq \infty$) then $E(\mathcal{M}, \tau)$ coincides with the usual non-commutative L^p-space associated
with the von-Neumann algebra \mathcal{M}. The space $E(\mathcal{M}, \tau)$ is often referred to as the non-commutative version of the function space E. Some Banach space properties of these spaces can be found in [2], [6] and [22].

For the case where the trace τ is finite, we obtain the following generalization of Theorem 4.1 for symmetric spaces of measurable operators.

Corollary 4.2. Assume that τ is finite. Let E be a rearrangement invariant function space on $(0, \tau(I))$ that does not contain c_0 and Λ be a Riesz subset of \hat{G}. Let $F : \mathcal{B}(G) \to E(\mathcal{M}, \tau)$ be a countably additive measure with bounded variation such that $\hat{F}(\gamma) = 0$ for every $\gamma \notin \Lambda$ then the range of F is relatively compact.

Proof. We will begin by reducing the general case to the case where $E(\mathcal{M}, \tau)$ is separable. Since $\mathcal{B}(G)$ is countably generated, the range of F is separable. Choose $(A_n)_n \subset \mathcal{B}(G)$ so that $\{F(A_n), n \geq 1\}$ is dense in $\{F(A), A \in \mathcal{B}(G)\}$. Let $\hat{\mathcal{M}}$ be the von-Neumann algebra generated I and $F(A_n) \,(n \geq 1)$ and $\hat{\tau}$ the restriction of τ in $\hat{\mathcal{M}}$. Clearly $E(\mathcal{M}, \hat{\tau})$ is a closed subspace of $E(\mathcal{M}, \tau)$ and $F(A) \in E(\hat{\mathcal{M}}, \hat{\tau})$ for all $A \in \mathcal{B}(G)$. Moreover the space $E(\hat{\mathcal{M}}, \hat{\tau})$ is separable (see Lemma 5.6 of [22]). So without loss of generalities, we will assume that $E(\mathcal{M}, \tau)$ is separable. It is a well known fact that $E(\mathcal{M}, \tau)$ is contained in $L^1(\mathcal{M}, \tau) + \mathcal{M}$ and since τ is finite, $E(\mathcal{M}, \tau) \subset L^1(\mathcal{M}, \tau)$. Let $J : E(\mathcal{M}, \tau) \to L^1(\mathcal{M}, \tau)$ be the formal inclusion. The measure $J \circ F$ is of bounded variation and $J \circ F(\gamma) = J(\hat{F}(\gamma))$ for every $\gamma \in \hat{G}$. One can conclude from Theorem 4.1 that the range of $J \circ F$ is relatively compact in $L^1(\mathcal{M}, \tau)$.

To show that the range of F is relatively compact, fix $h : G \to E(\mathcal{M}, \tau)^{**}$ a weak*-density of F with respect to the Haar measure λ (see [5]). We have for each $A \in \mathcal{B}(G)$,

$$F(A) = \text{weak}^* - \int_A h(t) \, d\lambda(t)$$

and

$$|F|(A) = \int_A \|h(t)\| \, d\lambda(t).$$

For each $N \in \mathbb{N}$, let $A_N = \{t \in G, \|h(t)\| \leq N\}$ and F_N the measure defined by $F_N(A) = F(A \cap A_N)$ for all $A \in \mathcal{B}(G)$. Clearly $|F_N| \leq N\lambda$ for every $N \in \mathbb{N}$.

Define $T_N : L^1(G) \to E(\mathcal{M}, \tau)$ by $T_N(f) = \int f(t) \, dF_N(t)$ for every $f \in L^1(G)$. The operator T_N is bounded and we claim that T_N is Dunford-Pettis; for that notice that since the range of $J \circ F$ is relatively compact so is the range of $J \circ F_N$ and therefore the operator $J \circ T_N$ is a Dunford-Pettis operator. The space $E(\mathcal{M}, \tau)$ is separable and J is a semi-embedding (see Lemma 5.7 of [22]) so J is a G-embedding (see [1] Proposition 1.8) and one can deduce from Theorem II.6.
of \cite{12}, that T_N is a Dunford-Pettis operator. Hence the range of F_N is relatively compact. Now since
\[\lim_{N \to \infty} \|F - F_N\| = \lim_{N \to \infty} \int_{G \setminus A_N} \|h(t)\| \, d\lambda(t) = 0, \]
the range of F is relatively compact. \qed

Let us finish by asking the following question:

Question: Do non-commutative L^1-spaces have type II-Λ-RNP for any Riesz set Λ?

In light of Theorem 4.1, the result of Haagerup and Pisier (\cite{14}) and so many properties that have been generalized from classical L^1-spaces to non-commutative L^1-spaces, one tends to conjecture that the answer of the above question is affirmative.

Acknowledgements: I would like to thank Professor G. Pisier for many valuable suggestions concerning this work.

REFERENCES

Received September 20, 1995
Revised version received June 18, 1996
Final version for publication received August 24, 1999

Department of Mathematics, The University of Texas at Austin, Austin, TX 78712-1082

E-mail address: randrin@muohio.edu
Current address: Department of Mathematics and Statistics, Miami University, Oxford, OH 45056