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Abstract. The definition of Chern’s orthonormal frame bundle OF (M) of

a real strongly convex Finsler space (M,F ) and of non-linear connections

on OF (M) is given. It is proved that OF (M) admits a unique torsion-free

non-linear connection and that this connection coincides with the non-linear

Finsler connection introduced by S. S. Chern. This fact brings to a new

interpretation of Chern’s connection and to a simplified proof of the following

Chern’s theorem: the group of isometries IsoF (M) of a Finsler space is a

Lie group of dimension less or equal to n+ 1
2
n(n− 1) (n = dimM).

1. Introduction

Let M be a smooth manifold of dimension n, endowed with a strongly convex
real Finsler metric F on TM \ {0}. The (local) equivalence problem for (M,F )
consists in characterizing which pairs of points p, q ∈M admit a (local) isometry
f : M → M such that f(p) = q. The solution to this problem has been given by
S. S. Chern in [3] (see also [4], [2]). Let us briefly recall it.

Let U ⊂M be a neighborhood which admits a system of coordinates. At any
point p ∈ U , Chern uses the Finsler metric F in order to select a special family of
coframes, which are mapped into the corresponding family of coframes at the point
f(p) by a local isometry f : U → U . The collection OF (U) of all these special
coframes constitutes a trivial bundle over U of dimension no = n + 1

2n(n − 1),
it is invariant under the induced actions of local isometries and it admits a set
of no 1-forms P = {ω1, . . . , ωno}, which are linearly independent at all points
and which verify the following fundamental property: a local diffeomorphism g of
OF (U) leaves invariant the field of coframes P = {ω1, . . . , ωno} if and only if it
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is the diffeomorphism induced by a local isometry of U ⊂ M . We call it Chern’s
absolute parallelism on OF (U).

It is well known (see [9]) that if Q is a given field of coframes on a manifold N ,
there exists a finite family FQ of real valued functions, whose level sets (with the
exception of a set of measure zero) coincide almost everywhere with the orbits of
the local diffeomorphisms which preserve Q. Moreover, by a celebrated theorem
by Kobayashi (see [6]), the group of global diffeomorphisms of N which leave Q
invariant is a Lie group acting freely and effectively on N , it has closed orbits and
its dimension is less or equal to dimN .

Since the local isometries of (U,F ) are in one to one correspondence with the
local diffeomorphisms which leave invariant the field of frames P on OF (M), we
conclude that the corresponding functions in FP plus Kobayashi’s theorem can be
used to obtain a complete solution to the (local) equivalence problem of (M,F ).

Note that the functions in FP are components of the curvature tensor of
Chern’s non-linear connection and of its covariant derivatives.

The main purposes of this paper consist in the following two points:

a) to give the definitions of Chern’s orthonormal frames and of Chern’s
absolute parallelism in a ’coordinate-free’ language, based on the ter-
minology used in standard reference texts like e.g. [7] or [9];

b) to characterize Chern’s absolute parallelism as the absolute paral-
lelism, which is associated to the unique ’torsion-free’ horizontal dis-
tribution of the bundle of Chern’s orthonormal frames.

From the definitions and from the characterization described in b), it follows im-
mediately that whenever F is the Finsler metric determined by a Riemannian
metric g, the bundle OF (M) coincides with the usual orthonormal frame bundle
Og(M) of (M, g) and Chern’s absolute parallelism reduces to the absolute par-
allelism determined by the Levi-Civita connection on Og(M). Furthermore, the
interpretation of Chern’s absolute parallelism P as absolute parallelism associated
to an horizontal distribution on OF (M) gives a new geometric interpretation of
the components of the curvature tensor of Chern’s non-linear covariant derivation.

Finally, we believe that the approach to Chern’s orthonormal frames and
Chern’s absolute parallelism we offer here, can be used to give simple explana-
tions for the deep analogies and for the main differences between Finslerian and
Riemannian geometries.

We now give a description of the contents of the paper.
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In §2 we recall some basic facts of real Finsler metrics. In §3 we introduce the
concept of R-sphere bundles, which is a class of objects which slightly generalizes
the family of strongly convex Finsler metrics. They are defined as follows.

Let {x1, . . . , xn} be a system of coordinates on an open set U ⊂ M and let
{x1, . . . , xn, y1, . . . , yn} the corresponding system of coordinates on TM . For any
p ∈ U , let h be the covariant 2-tensor on TpM given by

hv =
∂2F

∂yi∂yj

∣

∣

∣

∣

(p,v)

dxidxj

for any 0 6= v ∈ TpM . A Chern’s orthonormal frame at p is a frame {e0, e1, . . . ,
en−1} on TpM such that:

i) F (e0) = 1;

ii) h(e0, ei) = 0 for i = 1, . . . , n− 1;

iii) h(ei, ej) = δij .

By the properties of a non-degenerate Finsler metric, we may restate ii) and iii)
using a ’coordinate-free’ language as follows:

ii’) the vectors ei, i = 1, . . . n−1, are tangents at e0 to the ’Finsler sphere’
Sp = {v ∈ Tp : F (v) = 1} ⊂ TpM ;

iii’) the vectors ei, i = 1, . . . n−1 are orthonormal w.r.t. to the symmetric
bilinear form he0 on Te0Sp, which is induced by the Hessian h of F .

At this point it is clear that, in order to define Chern’s orthonormal frames, one
does not actually need a Finsler metric, but only the bundle SM ⊂ TM , given
by the ’Finsler spheres’ Sp = {v ∈ Tp : F (v) = 1}, and the symmetric bilinear
forms hv, v ∈ SM , induced by h on the tangent spaces of the spheres. Note that
the ’Finsler spheres’ are diffeomorphic to spheres whenever F is strongly convex.
For simplicity, we limit our discussion only to strongly convex Finsler metrics,
but the general case can be treated analogously and with very few modifications.
Note that if F is strongly convex, the family of bilinear forms hv determines a
Riemannian metric on each Finsler sphere Sp.

A sphere bundle SM ⊂ TM , endowed with a smooth family of Riemannian
metrics on the spheres, is called R-sphere bundle. It is clear that the concepts of
Chern’s orthonormal frames and of Chern’s orthonormal frame bundles are easily
defined for any R-sphere bundle SM over a manifold M .
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In section §3, we also introduce the concept of non-linear connection on a
Chern’s orthonormal frame bundle O(SM). It is defined as an horizontal distri-
bution which is invariant by the right action of the maximal subgroup of GLn(R)
acting freely on the fibers of O(SM).

We stress that O(SM) is almost never a principal subbundle; this is the case
only when the sphere bundle SM coincides with the family of unit vectors in TM
w.r.t. to a Riemannian metric g and when the Riemannian metrics on the spheres
Sp ∈ TpM are the Riemannian metrics induced by g.

Nonetheless, the torsion and curvature forms are naturally defined for any
non-linear connection on O(SM).

In §4, we consider the R-sphere bundle SFM associated to a strongly convex
Finsler metric F and we consider the associated Chern’s orthonormal frame bun-
dle OF (M). We prove that OF (M) admits exactly one torsion-free non-linear
connection and that such a non-linear connection is invariant under any local
isometry of (M,F ) (Theorem 4.2). By Kobayashi’s theorem (see Proposition 3.3),
this implies immediately the following: the group Iso(M,F ) of isometries of a
Finsler space (M,F ) of dimension n is a Lie group of dimension less or equal to
no = n + 1

2n(n − 1). However this result is not new and it should be considered
as first proved by S. S. Chern, being a trivial consequence also of his solution to
the local equivalence problem (see [3], p. 102).

Any non-linear connection on OF (M) determines an absolute parallelism {ωA}
on OF (M). In §5 we show that the structural equations of the coframes {ωA} as-
sociated to the torsion-free non-linear connection of OF (M) coincide with those of
Chern’s absolute parallelism. Since Chern proved the uniqueness of any absolute
parallelism which verifies those structural equations, this implies that Chern’s
and our parallelism coincide.

We conclude observing that if one uses the horizontal spaces of a non-linear con-
nection on OF (M) to define a parallel transport, a non-linear covariant derivation
on M is automatically given (see formula (3.4)). The identity between Chern’s
and our absolute parallelism on OF (M) implies that Chern’s Finslerian covariant
derivation introduced in [2] coincides with the covariant derivation associated to
our torsion-free connection H. For this reason, any discussion of the main prop-
erties of our non-linear covariant derivation (like metric compatibility, affine rela-
tions between tangent spaces given by parallel transport, comparison with other
kinds of Finslerian connections, etc.) is automatically reduced to the analysis of
the properties of Chern’s non-linear covariant derivation. To avoid redundancy,
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we refer the interested reader to the literature on this topic (in particular to [2]).

Remark. For what concerns a complex Finsler metric F ([1], [5], [8]), one may
introduce the concepts of bundle of Finslerian unitary frames and of holomor-
phic non-linear connection, which are the exact analogue of Chern’s orthonormal
frames and of Chern’s non-linear connection. These two objects reduce to the
usual unitary frame bundle and to Chern’s connection of an hermitian manifold,
in case F is associated to an hermitian metric. We will discuss them in a forth-
coming paper.

2. First definitions and preliminaries

Let M be a smooth manifold of dimension n. We denote by o : M → TM the
zero section of TM and we set T̃Mdef=TM \ o(M).

For any x ∈ M and v ∈ TxM , the tangent space Tv(TxM) is naturally identi-
fiable with TxM itself, being TxM a vector space. We will use the symbol

ıv : TxM −→ Tv(TxM)

for the identification map. Also, we will use the symbol D for the so called
dilatation vector field , i.e. the vector field in T (TxM) which is equal to

Dv = ıv(v) . (2.1)

Following D. Bao and S. S. Chern, we assume the following definition for a real
Finsler metric ([2], p. 135):

Definition 1. A (real) Finsler metric on a manifold M is a continuous function

F : TM −→ R+

satisfying the following properties:

1) F is smooth on T̃M ;

2) F (v) > 0, for all v ∈ T̃M ;

3) F (λv) = |λ|F (u) for any u ∈ T̃M and any λ ∈ R.

The indicatrix at a point x ∈ M is the set of vectors I(x) = {v ∈ TxM :
F (v) < 1}. The boundary

Sx = ∂I(x) = {v ∈ TxM : F (v) = 1}
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is called Finsler (pseudo)-sphere at the point x and it is a smooth hypersurface of
TxM .

A (local) diffeomorphism f : M → N between two Finsler spaces (M,F ) and
(N,F ′) is called isometry if F ′(f∗v) = F (v), for any v ∈ TM .

We call the function G = F 2 the squared norm of F ; F is said to be associated
to a Riemannian metric g if the squared norm of F coincides with the squared
norm of g, i.e. for any v ∈ TM

G(v) = F 2(v) = g(v, v) .

It is quite simple to check that property (3) of Definition 1 implies that on any
tangent space TxM

D(G)|v ≡ 2Gv . (2.2)

Other useful properties of a Finsler metric can be expressed by considering the
following symmetric forms on the tangent spaces TSx, x ∈M . Fix a vector v ∈ Sx
and let X1, X2, X3 be three vector fields in T (TxM) ' TxM , which are tangent
to Sx in a neighborhood of v. Then let

hv(X1, X2)def= X1(X2(G))|v , (2.3)

Hv(X1, X2, X3)def= X1(X2(X3(G)))|v . (2.4)

Lemma 2.1. The functions hv and Hv depend only on the values of the vector
fields Xi at the point v and they are a quadratic and a cubic form on TvSx,
respectively.

Proof. Since X1 and X2 are tangent to the level set Sx = {G(v) = 1}, we have
that

hv(X1, X2) = [X1, X2](G)|v + X2(X1(G))|v = hv(X2, X1) .

Since hv(X1, X2) depends linearly on X1|v and it is symmetric, the claim is trivial
for hv. For what concerns Hv, observe that

Hv(X1, X2, X3) = X1 [h(X2, X3)]|v
and hence it is symmetric in the second and third argument. Moreover

Hv(X1, X2, X3) = X3 [h(X1, X2)]|v − hv([X3, X1], X2)− hv(X1, [X3, X2])

and therefore it is symmetric w.r.t. to the first and second argument. Being
totally symmetric and being linear with respect to X1|v the claim is proved also
for Hv.
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Note that the quadratic form hv coincides with the Hessian of the squared norm
G; the cubic form Hv coincides with the restriction of the Minkowsky potential
to the tangent space TvSx (for the definition of the Minkowsky potential, see [2]
p. 144). Note that H vanishes everywhere if and only if F is associated to a
Riemannian metric g: for the proof of this fact, see [3], [2], [1] or just consider
the structural equations in §5 of this paper.

F is called strongly convex (resp. non-degenerate) if for any x ∈M , h defines
a Riemannian (resp. pseudo-Riemannian) metric on Sx = ∂I(x). Note that F is
strongly convex if and only if any Finsler (pseudo)-sphere Sx = ∂I(x) is strongly
convex and hence diffeomorphic to a sphere.

In all the following, with the terms ’Finsler metric’ we will always mean a
strongly convex Finsler metric. However, note that with little additional effort it
is possible to generalize everything to the case of a non-degenerate Finsler metric.

We conclude this preliminary section recalling some basic facts on linear con-
nections and linear frame bundles (see e. g. [7]). In the following, V = Rn

and {ε0, ε1, . . . , εn−1} is the standard basis of V . <,> is the Euclidean inner
product of V . We will also denote by W = Rn−1 the subspace W = spanR <

ε1, . . . , εn−1 >.
Recall that a linear frame at a point x ∈ M is a linear isomorphism u : V →

TxM into a tangent space of M . We will always identify a linear frame u at a
point x ∈ M with the corresponding basis ei = u(εi) ∈ TxM ; furthermore, for
any frame u on TxM , we set π(u) = x.

The linear frame bundle L(M) is the principal GLn(R)-bundle

π : L(M) −→M

of all linear frames on M .
A global section σ : M → L(M) is called absolute parallelism on M .
The tautological 1-form of L(M) is the V -valued 1-form θ defined as

θu(X) = u−1(π∗(X)) =
n−1
∑

i=0

θiu(π∗(X))εi ,

where the θiu are the R-valued 1-forms on TxM which associate to any vector
v ∈ TxM its components in the frame u = {e0, e1, . . . , en−1}. For any subbundle
P ⊆ L(M), the restriction of θ on P is called tautological 1-form of P and it will
be denoted by the same symbol θ.
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For any A ∈ gln(R) = Lie(GLn(R)), the associated fundamental vector field is
the vector field A∗ on L(M), whose flow is

ΦA
∗

t (u) = u ◦ exp(tA) .

A (linear) connection on a principal subbundle P ⊆ L(M) is a distribution C,
which is complementary to the vertical distribution and which is invariant under
the right action of the structural group of P . If G is the structural group of P and
g = Lie(G), the connection form associated to H is the unique g-valued 1-form
ω which vanishes on the vectors of C and such that ω(A∗) ≡ A, for any A ∈ g.

A connection C defines a natural absolute parallelism on P as follows. Let us
fix a basis {E1, . . . EN} for the Lie algebra g. The g-valued connection form ω is
determined by the real valued forms $a such that

ωu =
N
∑

i=1

$a
uEa .

From definitions, it follows that the 1-forms {θi, $a} constitute a coframe at any
tangent space TuP , u ∈ P . The frames, which are dual to the coframes {θi, $a},
determine a global section σC : P → L(P ), which is called absolute parallelism
associated to the connection C.

3. R-sphere bundles and Chern’s orthonormal frame bundles

We call R-sphere bundle over M a pair (SM, g), formed by a subbundle SM ⊂
TM , with fibers diffeomorphic to the standard sphere Sn−1, together with a
smooth family of Riemannian metrics gx, defined on each sphere Sx = SxM ⊂
TxM and depending smoothly on the point x ∈M .

The main example of an R-sphere bundle is given by the family of Finsler
spheres SM = {Sx = ∂Ix} associated to a Finsler metric F and endowed with
the Riemannian metrics gx = h|TSx , where h is the Hessian of the squared norm
G = F 2.

Two R-sphere bundles (SM, g) and (SM ′, g′) over M and M ′, respectively,
are called isometric if there exists a diffeomorphism f : M → M ′, such that
for any x ∈ M the differential f̂x

def=dfx : TxM → TxM induces an isometry
f̂x : SxM → Sf(x)M

′.

In the following, any isometry ψ : Sx → Sx′ between two spheres of SM will
be called linearly induced if there exists a linear map L : TxM → Tx′M , so that
L|Sx = ψ.
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A frame u = {e0, . . . , en−1} ∈ L(M) at a point x = π(u) will be called Chern’s
orthonormal frame adapted to (SM, g) if

a) e0 ∈ Sx ; b) {e1, . . . , en−1} is an orthonormal basis for Te0Sx

(to be precise, here we identified the vectors ei, 1 ≤ i ≤ n − 1, with the corre-
sponding vectors ıe0(ei) ∈ Te0(TxM)). The set of Chern’s frames is denoted by
Og(SM) and it is called Chern’s orthonormal frame bundle of (SM, g).

Note that π : Og(SM)→M is a subbundle of L(M), but in general it is not a
principal subbundle, i.e. there is no subgroup of GLn(R) which acts transitively
on the fibers of Og(SM) over M . Nonetheless, it follows from the definitions that
the group On−1(R) = O(W ) acts freely on each fiber Vx = π−1(x).

The fundamental vector fields A∗ on L(M), associated with the elements A ∈
gln(R), span the subbundle of TL(M) of the vectors which are vertical w.r.t. the
fibering π : L(M)→M . Hence we may identify any subspace Vu

def=T vert
u Og(SM)

with the subspace

gu = { A ∈ gln(R) , A∗u ∈ Vu} . (3.1)

For the previous remarks, gu contains son−1(R) for any frame u ∈ Og(SM);
moreover, we may claim it is a Lie algebra independent on u if and only if Og(SM)
is a principal subbundle.

Note that any fiber Vx of the bundle π : Og(SM) → M coincides with the
orthonormal frame bundle Ogx(Sx) of the sphere (Sx, gx). Hence, for any connec-
tion Cx of Vx = Ogx(Sx), the associated absolute parallelism σC determines an
isomorphism at any u ∈ Vx

σCu : W ⊕ son−1(R) −→ Vu ' TuVx = Tu(Ogx(Sx)) .

In the following, by C = {Cx} we mean a family of connections on the fibers
Vx = Ogx(Sx), which is invariant under linearly induced isometries between the
spheres. We call such family of connections linearly invariant .

An immediate example of linearly invariant family is given by the family given
by the Levi-Civita connections of the fibers Vx, since the Levi-Civita connec-
tion is invariant under any isometry; however other linearly invariant families of
connections do exist.

For a fixed linearly invariant family of connections C, any vector X ∈ W ⊕
son−1(R) defines a vertical vector field X̃ on Og(SM) by

X̃u = σCu(X) .
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The field X̃ is called generalized fundamental vector field associated with X w.r.t.
C.

Note that, independently on the choice of C, the vector fields X̃ associated
with some element X ∈ son−1(R) coincide always with the restriction to Og(SM)
of the fundamental vector field X∗ of L(M).

For any u ∈ Og(SM), we may combine the isomorphism σCu : W ⊕ son−1(R)→
Vu with the natural identification map

τu : gu ⊂ gln(R)→ Vu , τ(A)def=A∗u ,

and we get the isomorphism

ϕu : W ⊕ son−1(R)→ gu ⊂ gln(R) ,

ϕu(A) = τ−1
u (Ãu) , (3.2)

which clearly coincides with the identity map on son−1(R).

The following Proposition 3.1 can be proved by a simple modification of the
arguments used for Prop. VI. 3.1 in [7]. In our statement, for any a (local)
diffeomorphism f : M →M , we use the symbol f̂ for the associated lifted diffeo-
morphism of L(M). If furthermore f̂(Og(SM)) ⊂ Og(SM), we use the symbol
f̂ ′ for the induced map

f̂ ′ : SM = Og(SM)/On−1(R) −→ SM = Og(SM)/On−1(R) .

Moreover, we denote by

π̂ : Og(SM)→ SM = Og(SM)/On−1(R) , πo : SM →M

the natural projection maps.

Proposition 3.1. Let f : M → M be a (local) isometry for (SM, g) and θ the
restriction to Og(SM) of the tautological form of L(M). Furthermore, for any
X ∈ W ⊕ son−1(R) let X̃ be the associated generalized fundamental vector field
w.r.t. a linearly invariant family of connections C on the fibers Vx. Then

a) f̂(Og(SM)) ⊂ Og(SM);

b) for any generalized fundamental vector field X̃, f̂∗(X̃) = X̃;

c) f̂∗(θ) = θ.

Vice versa, if ϕ : Og(SM) → Og(SM) is a local diffeomorphism, which verifies
b) and c), then there exist two (local) maps f : M → M and f̃ : SM → SM so
that:
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d) f ◦ π = π ◦ ϕ and f̃ ◦ π̂ = π̂ ◦ ϕ;

e) ϕ = f̂ , f is a (local) isometry of (SM, g) and f̃ = f̂ ′.

We now introduce the concept of non-linear connection.

Definition 2. A non-linear connection on Og(SM) is a distribution H, which
verifies the following two properties:

1) H is complementary to the vertical distribution at all points;

2) for any h ∈ On−1(R) and any u ∈ Og(SM), Hu·h = (Rh)∗Hu.

The attribute non-linear is due to the following fact. If H is a non-linear
connection, for any curve γ : [0, 1] → SM and any frame u ∈ π̂−1(γ(0)) ⊂
Ogx(Sx), we may consider the unique lifted curve γ̂ : [0, 1] → Og(SM), which
projects onto γ, it is always tangent to H and so that γ̂(0) = u. Since H is
On−1(R)-invariant, if u = {e0, . . . , en−1} = γ̂(0) and u′ = {e′0, . . . , e′n−1} = γ̂(1),
the linear map

Tγ : TxM → Tx′M ,

X = Xiei
Tγ7→ Xie′i (3.3)

depends only on the curve γ : [0, 1]→ SM and we call it parallel transport along
γ.

In case Og(SM) is a principal subbundle of L(M) and H is a connection in
the usual sense, the parallel transport (3.3) depends only on the projected curve
γo = πo(γ) : [0, 1] → M . In this case, (3.3) coincides with the parallel transport
determined by the (linear) covariant derivation associated to the connection H
(for the definition, see [9]).

In the generic case, (3.3) is the parallel transport associated to the non-linear
covariant derivation ∇ of vector fields on M along tangent vectors of SM , which
is defined as follows.

Let Y be a local vector field on M defined on a neighborhood of a point x and
let X̂ ∈ TvSM , for some v ∈ Sx ⊂ TxM . Then we define

∇X̂Y |v
def=u [X (θ(Y))|u − ωu(X ) · θu(Y)] , (3.4)

where u is any Chern’s frame belonging to the fiber π̂−1(v) over v and X and Y are
two vector fields on Og(SM) such that π̂∗(X )v = X̂ and π∗(Y) = Y . It is simple
to check that (3.4) does not depend on the choices of u, X and Y. Furthermore,
for any Y ∈ TxM and any curve γ on SM , the parallel transport Tγ(Y ) defined
in (3.3) coincides with the value Yγo(1) of the unique vector field defined along the
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curve γo = πo(γ), with vanishing covariant derivative along Xt = γ̇(t), for any
t ∈ [0, 1].

In analogy with the connections on principal subbundles of L(M), any non-
linear connection H on (SM, g) is defined by a gu-valued form ω on Og(SM),
which vanishes on H and satisfies the condition ω(A∗u) = A for any A ∈ gu. Using
the identification map (3.2), for any fixed choice of the family of connections C,
we may associate to H the W ⊕ son−1(R)-valued connection form $

$u = ϕ−1
u ◦ ωu . (3.5)

The connection form $ is useful to associate H with an absolute parallelism.

In fact, if {Ei} is a basis for W ⊕ son−1(R) and if we consider the components
$a, i.e. the real valued forms such that:

$ =
N
∑

a=1

$aEa , N = dimW ⊕ son−1(R) ,

then the forms {θiu, $a
u} constitute a coframe at any tangent space TuOg(SM).

The absolute parallelism given by the frames which are dual to the coframes
{θiu, $a

u} is called absolute parallelism on Og(SM) associated with H and C. We
will denote it by σH,C .

The following Proposition is a direct consequence of Proposition 3.1.

Proposition 3.2. Let C be a linearly invariant family of connections on the fibers
Vx of Og(SM).

A local diffeomorphism ϕ : Og(SM) → Og(SM) coincides with the lift ϕ = f̂

of some isometry f of (SM, g) if and only if it transforms the absolute parallelism
σH,C of some non-linear connection into the absolute parallelism σH

′,C of some
other non-linear connection.

Definition 3. A non-linear connection H on Og(SM) is called isometrically in-
variant if the absolute parallelism associated with H and a linearly invariant
family of connections C on the fibers Vx, is invariant under all lifts f̂ of the local
isometries f of (SM, g).

Remark. Note that if C and C′ are two linearly invariant families of connections
on the fibers Vx, then the absolute parallelism σH,C is invariant under isometries
of (SM, g) if and only if σH,C

′
is.
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This implies that the definition of isometrically invariant non-linear connection
H is independent on the choice of C.

It should also to be observed that the choice of C is necessary only to construct
an absolute parallelism on Og(SM). The definition of the non-linear covariant
derivation ∇ associated to a non-linear connection H is independent on the choice
of C.

The importance of the concept of isometrically invariant connection is seen in
the so called equivalence problem. In fact, by Proposition 3.2 and Kobayashi’s
Theorem (Theorem I.3.2 in [6]) we may state the following basic proposition.

Proposition 3.3. If Og(SM) admits a isometrically invariant non-linear con-
nection H, then the local isometries of (SM, g) are in one to one correspondence
with the local diffeomorphisms of Og(SM) which preserve the absolute parallelism
σH,C.

In particular, the group Isog(SM) of all the isometries of (SM, g) is a Lie
group of dimension less or equal to

dimOg(SM) = dimV + dimW + dim son−1(R) = n+
1
2
n(n− 1) .

In the next section, we will show that in case (SM, g) is the R-sphere bundle
determined by a Finsler metric on M , then there exists an isometrically invariant
connection with vanishing torsion (see the definition below). This will immedi-
ately imply the isomorphism between the group of isometries of a Finsler space
and the group of automorphisms of an absolute parallelism on Chern’s orthonor-
mal frame bundle.

We conclude this section by defining the torsion of a non-linear connection and
stating some basic properties. In analogy with the torsion of a (linear) connection
(see [9], [6]), we call torsion at the frame u ∈ Og(SM) of the non-linear connection
H the linear map

cu : Λ2V −→ V ,

cu(v1, v2)def=dθu(vH1 , v
H
2 ) , (3.6)

where vHi is the unique vector in Hu which projects onto u(vi) ∈ Tπ(u)M .
Note that in case Og(SM) is a principal subbundle of L(M) and H is invariant

under the right action of the full structural group, then cu depends only on the
point x = π(u) ∈M , as it should be. In the generic case, cu depends on the point
v = π̂(u) ∈ Sx ⊂ TxM .
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If ω and ω′ are the gln(R)-valued connection forms of two non-linear connec-
tions H and H′, it is quite simple to check that, for any u ∈ Og(SM), there exists
a unique linear map Du ∈ Hom(V, gu) such that

ω′u = ωu +Du ◦ θu . (3.7)

The same arguments used in [9], p. 316 (see also [6], §I.5) bring to the following
useful lemma.

Lemma 3.4. Let u ∈ Og(SM) and cu, c
′
u the torsions at u of the non-linear

connections H and H′, respectively. If Du is the linear map defined in (3.7) then
for any v, w ∈ V

c′u(v, w)− cu(v, w) = ∂Du(v, w)
def
=Du(v) · w −Du(w) · v . (3.8)

4. Chern’s orthonormal frame bundle and the torsion-free

connection of a Finsler space

Let (M,F ) be a Finsler space and Sx = SxM ⊂ TxM the corresponding Finsler
spheres. We will always denote by SFM =

⋃

x∈M Sx and by h the restriction on
the Finsler spheres of the Hessian of the squared norm G = F 2 (see (2.3)). By
the results in §2, we have:

Proposition 4.1. If (M,F ) is a Finsler space, the pair (SFM,h) is an R-sphere
bundle.

We call (SFM,h) the R-sphere bundle of the Finsler space (M,F ). The corre-
sponding Chern’s orthonormal frame bundle OF (M)def=Oh(SFM) is called Chern’s
orthonormal frame bundle of (M,F ) . It is clear that if (M,F ) and (N,F ′) are

two Finsler manifolds, a (local) diffeomorphism f : M → N is an isometry if and
only if it is an isometry for the two associated R-sphere bundles. Therefore, by
Propositions 3.1 and 3.2, if we can show the existence of an isometrically invari-
ant connection on any Chern’s orthonormal frame bundle, the local equivalence
problem between M and N is reduced to the equivalence problem between two
associated isometrically invariant parallelisms on OF (M) and OF ′(N).

Theorem 4.2. Any Chern’s orthonormal frame bundle OF (M) admits a unique
torsion-free non-linear connection.

This torsion-free non-linear connection is isometrically invariant.
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Proof. By definition of torsion, a torsion-free non-linear connection is mapped
into another torsion-free non-linear connection by the lift of any isometry of
(M,F ). Therefore if there exists a unique torsion-free non-linear connection, this
connection is isometrically invariant.

The proof of existence and uniqueness of a torsion-free non-linear connection
is merely a modification of the proof given in [9] for the existence and uniqueness
of a torsion-free connection on the orthonormal frame bundle of a Riemannian
manifold (Theorem 3.1 in [9]). The main point consists in showing that, for any
Chern’s frame u ∈ OF (M), the operator ∂ defined in (3.8) determines a linear
map

∂ : Hom(V, gu) −→ Hom(Λ2V, V ) (4.1)

which is injective. In fact, since dim Hom(V, gu) = dim Hom(Λ2V, V ), we would
then conclude that ∂ induces an isomorphism. By Lemma 3.4, this would imply
that for any non-linear connection on OF (M) with connection form ω, there exists
a unique homomorphism Du at any frame u so that the new connection form
ω′u = ωu + Du ◦ θu corresponds to a torsion-free connection. Since standard
arguments guarantee that OF (M) admits at least one non-linear connection, the
previous remarks would give a proof of the existence and uniqueness of the torsion-
free connection.

Let us first compute the subspace gu at a fixed frame u. It amounts to evalu-
ate the elements in gln(R), whose associated fundamental vector fields span the
vertical tangent space Vu ⊂ TuOF (M).

Let α : (−1, 1) → OF (M) be a curve such that α0 = u = {e0, . . . , en−1} and
αt = {e0(t), . . . , en−1(t)} is a frame at TxM for any t. Let us also use the notation
Ei(t) = ıe0(t) (ei(t)) ∈ Te0(t)(TxM). Finally, let us denote by Aij ∈ gln(R) the
element such that

α̇0(εj) = u(Aijεi) = Aijei .

Since αt ∈ OF (M) for all t, the following equations are identically verified (1 ≤
a, b ≤ n− 1):

G(e0(t)) ≡ 1 , Ea(t) (G)|e0(t) ≡ 0 , (4.2)

Ea(t) [Eb(t) (G)]|e0(t) = he0(t)(Ea(t), Eb(t)) ≡ δab . (4.3)

Now, set Ei
def=Ei(0). If we differentiate the identities (4.2) and (4.3) at t = 0, we

easily obtain

Ai0Ei (G)
∣

∣

e0
= A0

0E0(G)
∣

∣

e0
= A0

0D(G)
∣

∣

e0
= 2A0

0 = 0 , (4.2′)

AiaEi (G)
∣

∣

e0
+ Ai0Ea [Ei (G)]

∣

∣

e0
=
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= A0
aE0 (G)

∣

∣

e0
+ AbaEb (G)

∣

∣

e0
+ A0

0Ea [E0 (G)]
∣

∣

e0
+ Ab0Ea [Eb (G)]

∣

∣

e0
=

= A0
a +Aa0 = 0 , (4.2′′)

AiaEi [Eb (G)]
∣

∣

e0
+ AibEa [Ei (G)]]

∣

∣

e0
+ Ai0Ea {Eb [Ei (G)]}

∣

∣

e0
=

= Acaδcb +Acbδca +Ac0Habc +A0
0δab =

= Aba +Aab +Ac0Habc , (4.3′)

where Habc
def=He0(Ea, Eb, Ec) = Ea {Eb [Ec (G)]}|e0 .

From (4.2’), (4.2”) and (4.3’), we may characterize gu as follows. For any u let
Hu be the trilinear totally symmetric form on V :

Ĥu(εi, εj , εk)def=
{

He0(Ei, Ej , Ek) i 6= 0, j 6= 0, k 6= 0
0 otherwise

(4.4)

(we recall that e0 = u(ε0) and Ea = ıe0(u(εa))). Then gu is the subspace of all
elements A which verify

< A · v, w > + < v,A · w > +Ĥu(v, w,A · ε0) = 0 (4.5)

Now, in order to conclude, we just have to show that if D ∈ Hom(V, gu) and
∂D = 0, then D ≡ 0.

Using (4.5), by the vanishing of Ĥu whenever one of its arguments equals ε0,
and by the condition ∂D(v, w) = D(v) · w − D(w) · v = 0, we have that the
following equalities hold:

< D(ε0) · ε0, εj >= − < D(ε0) · εj , ε0 >= − < D(εj) · ε0, ε0 >= 0 .

This implies that D(ε0) · ε0 ≡ 0 and hence

< D(ε0)·εj , εk >= − < D(ε0)·εk, εj >= − < D(εk)·ε0, εj >=< D(εk)·εj , ε0 >=

=< D(εj) · εk, ε0 >= − < D(εj) · ε0, εk >= − < D(ε0) · εj , εk >= 0 .

From this we get that D(v) · ε0 = D(ε0) · v = 0 for any v ∈ V .
Therefore, by (4.5) and the symmetry D(v) · w = D(w) · v, we have for any

v, w, z, < D(v) · w, z > + < D(z) · v, w >= 0. This fact brings to the conclusion
by the classical argument of Cartan’s lemma:

< D(v) · w, z >= − < D(z) · v, w >=< D(w) · z, v >= − < D(v) · w, z >= 0

that is D ≡ 0.
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5. The structural equations of the torsion-free non-linear

connection on OF (M)

In all the following,H denotes the torsion-free non-linear connection onOF (M).
We take the Levi-Civita connections as linearly invariant family C of connections
on the fibers Vx = Ohx(Sx). ω and $ are the associated gln(R)-valued and
W⊕son−1(R)-valued connection forms, respectively, and σ = σH,C is the absolute
parallelism on OF (M) determined by H and C.

Consider now the components θi and ωij of θ and ω, i.e. the real valued 1-forms
such that

θ = θiεi , ω =







ω0
0 ω1

0 . . . ωn−1
0

...
...

. . .
...

ω0
n−1 ω1

n−1 . . . ωn−1
n−1





 .

Clearly, the exterior derivatives dθi and dωij can be expressed in terms of the
forms θi and ωij . In order to find those expressions, we need to find explicitly the
generalized fundamental vector fields of OF (M).

Let us denote by Eij the matrix in gln(R) which has a non-trivial entry equal
to 1 only in the j-th row and i-th column; let us also assume the convention that
indices like a, b, c run just between 1 and n− 1.

In this way, a basis for son−1(R) is {Êab
def=Eab −Eba}; the associated generalized

fundamental vector fields correspond to the usual L(M) fundamental vector fields
{(Eab − Eba)∗} restricted on the subbundle OF (M).

Using (4.5), we can easily see that the vertical subspace Vu of a tangent space
TuOF (M) is spanned by the vectors (Eab − Eba)∗u and by

ε̃a|u
def=(Ea0 − E0

a)∗u −
1
2
Ĥu(εa, εb, εc)(Ebc + Ecb)

∗
u . (5.1)

Note that the distribution Cu = span < ε̃a|u > is always complementary in Vu to
the subspace which is vertical w.r.t. π̂; it is also invariant under the right action
of On−1(R) and we have that

π̂∗([ε̃a, ε̃b]) ≡ 0 (5.2)

for any pair of the vector fields ε̃a, ε̃b (note: the checking of (5.2) is quite long,
but straightforward). This shows that C represents the Levi-Civita connection
on each fiber Vx = π−1(x) of OF (M). Furthermore, by checking the action of
On−1(R) on the fields ε̃a, it can be realized that at any point u they are mapped
by the tautological form of Vx into the same vectors in W ; hence they are the
generalized fundamental vector fields associated to a basis {εa} for W .
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Evaluating θi, ωij , dθ
i and dωij on the generalized fundamental vector fields

and on the horizontal vector fields eHi
def=σ(εi), εi ∈ V , the following identities are

determined:

ωij + ωji +
1
2
Ĥu(εi, εj , εk)(ωk0 − ω0

k) = ωij + ωji − Ĥu(εi, εj , εk)ω0
k = 0 , (5.3)

dθi = −ωij ∧ θj , (5.4)

dωij = −ωik ∧ ωkj + Ωij + Πi
j + Ψi

j , (5.5)

where Ωij , Πi
j and Ψi

j are 2-forms which we may call respectively horizontal, mixed
and vertical parts of the curvature of H. They are of the form

Ωij = Rijkmθ
k ∧ θm , Πi

j = P ijamω
a
0 ∧ θm , Ψi

j = V ijabω
a
0 ∧ ωb0

for some suitable functions Rijkm, P ijam and V ijab.
Indeed, observe that from 0 = d2θi = −dωij ∧ θj + ωik ∧ ωkj ∧ θj it follows that

Rijkmθ
k ∧ θm ∧ θj + P ijamω

a
0 ∧ θm ∧ θj + V ijabω

a
0 ∧ ωb0 ∧ θj ≡ 0 .

This implies some symmetry properties on Rijkm and P ijam and moreover that

Ψi
j = V ijabω

a
0 ∧ ωb0 ≡ 0 . (5.6)

In case F is associated to a Riemannian metric g, the functions Rijkm coincide
with the components of the classical Riemann curvature tensor in an orthonormal
basis. The functions P ijam vanish identically when the cubic form H vanishes.
We call the identities (5.3) - (5.5) the structural equations of the torsion-free
non-linear connection.

Observe that the Pfaffian system {θi, ωij} on OF (M) verifies the same struc-
tural equations given in [3] and this amounts to state that it is one of Chern’s
Pfaffian systems. In particular, the explicit expression of the functions P ijam can
be obtained by formula (58) in [3].

Furthermore, since different Chern’s Pfaffian systems correspond to different
definitions of the forms ωij , it is very likely that each of them may be interpreted
as a Pfaffian system corresponding to an absolute parallelism, which is still asso-
ciated to the torsion-free non-linear connection H, but determined via a different
choice of the linearly invariant family C of connections on the fibers Vx.

We conclude noticing that the previous remarks imply also that the non-
linear covariant derivation defined in (3.4) coincides with the non-linear covariant
derivation of D. Bao and S. S. Chern given in [2]. The interested reader is re-
ferred to that paper also for an excellent discussion of the concept of parallel
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transport, the associated non-linear covariant derivation and how this is related
to the equations of a geodesic in a Finsler space.
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