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Abstract. A natural strengthening of the completeness hypothesis, called

B-completeness, allows us to extend to ωµ-metric spaces some properties of

complete metric spaces which fail to hold if only the completeness condi-

tion is assumed. In this way we achieve some results on hyperspace theory,

dealing with supercompleteness and with selections of multivalued functions.

The notion of B-completeness is investigated and it is proved that quite

important classes of ωµ-metric spaces have this property.

Introduction

Some properties of complete metric spaces cannot be extended to complete
ωµ-metric spaces. For instance, the classical Michael’s theorem on selections [9,
Th. 2] does not hold when the range is replaced by a complete ωµ-metric space (see
Ex. 3.1). Moreover, the Hausdorff uniformity on the hyperspace of closed sets of a
complete ωµ-metric space is not necessarily complete [1]. These restraints are due
to the fact that, in a complete ωµ-metric space, a short sequence of nested balls
may have empty intersection. A strengthening of the completeness condition,
called B-completeness, allows us to obtain results analogous to the metric ones.

In Th. 2.1 we show that the hyperspace of the B-complete subsets of a complete
ωµ-metric space is complete. In this way we obtain an adjustment of an incorrect
statement on supercompleteness [13, Th. 4.4].

In Th. 3.2, we prove the existence of continuous selections for lower semicon-
tinuous multivalued functions with B-complete values. We use some ideas of
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Michael’s theorem; however, transfinite induction works via specific devices which
are proper of ωµ-additive spaces.

A classical example shows that a closed subspace of a B-complete space is
not necessarily B-complete (Prop. 1.5). On the other hand, Rem. 1 shows that
every closed subset is arbitrarily near to a subset which satisfies a condition of
B-completeness.

Important classes of ωµ-metric spaces, as ωµ-box product spaces (Ex. 1.4) or
function spaces (Section 4), are B-complete. A previous result shows that B-
complete subspaces are retracts [2]; as a consequence, the role of these sub-
spaces in ωµ-metric spaces is analogous to that of closed subsets in strongly
zero-dimensional metric spaces (Rem. 3).

In Section 4 we prove that any ωµ-metric space can be isometrically embedded
in a B-complete ωµ-metric function space. In this way, the completion of a ωµ-
metric space can be obtained without using generalized Baire spaces [10].

1. Telescopic bases

For the sake of simplicity (e.g., to avoid symbols as ωµ2), the notation ωµ is
replaced by κ. Throughout this paper, we identify every ordinal α with the set
of ordinals less than α. Cardinal numbers are identified with initial ordinals;
κ always denotes a regular uncountable cardinal.
κ-metric spaces have been introduced in [11] and investigated by several au-

thors. These spaces can be viewed in two ways. The former one uses κ-metrics,
taking their values in totally ordered groups of punctual character κ. In the latter
one, a κ-metric space is defined as a uniform space which admits a base of uniform
coverings B = {Uα}α<κ which is well ordered (by star-refinement) by κ. These
two approaches are uniformly equivalent. We adopt the latter definition, which
is more convenient in handling uniform properties.

It is not restrictive to assume that the base B consists of clopen partitions [8,
p. 133]. Therefore, if α < β, for every U ∈ Uα and V ∈ Uβ , then either U ∩ V = ∅
or V ⊆ U . A well ordered base of clopen partitions is called a telescopic base.

Obviously, κ-metric spaces are κ-additive uniform spaces, that is, given less
than κ-many uniform coverings, they admit a common uniform refinement. As a
consequence, κ-metric spaces are topologically κ-additive, that is the intersection
of less than κ-many open sets is open. Moreover, they are also ultraparacompact,
that is every open covering is refined by a clopen partition [3].
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Let U , V be coverings of a set X. We write U ≺ V to mean that U refines V.
For every A ⊆ X, we denote by U(A) the star of A in U , that is the union of all
elements of U which meet A.

Let B be a fixed telescopic base for the κ-metric space X. For every Uα ∈ B

and x ∈ X, the set Uα(x), which consists of the unique element of Uα containing x,
is called the α-ball about x (hence balls are members of some Uα). Observe that,
if two balls have a common point, then one of them must be contained in the
other one. For a subset A, Uα(A) is called the α-neighborhood of A.

Example 1.1. A very standard useful κ-metric space can be obtained by equipping
κ+ 1 with the following base of uniform coverings:

Vα =
{

{0}, {1}, {2}, . . . , {α}, [α+ 1, κ]
}

This space, which is denoted by Cκ, is κ-compact, that is every open covering has
a subcovering of power less than κ.

Let γ ≤ κ be a limit ordinal. A nest of balls of length γ is a sequence {Ujα}α<γ ,
where the map j : γ 7→ κ is strictly increasing, Ujα ∈ Ujα for every α < γ and
Ujα ∩ Ujβ 6= ∅ for every α and β. Therefore the family {Ujα}α<γ is monotone,
that is α < β implies Ujα ⊇ Ujβ .

Definition 1. Let Y be a subspace of X. A telescopic base B of X is said to
have the intersection property on Y provided that, if {Uj(α)} is a nest of balls
which meet Y , then the intersection

⋂

α Uj(α) contains a point of Y . We simply
say that B has the intersection property if it has the intersection property on X.

It is worth noting that uniform completeness in κ-metric spaces is not relevant
with regard to nests of balls of length less than κ. Indeed, it is easy to verify
that a κ-metric space is complete iff every nest of balls of length κ has non-
empty intersection. The following definition is a uniform variant of the notion of
d-completeness introduced in [2].

Definition 2. Let B be a telescopic base for the κ-metric space X and let Y be a
subspace of X. We say that Y is B-complete provided that B has the intersection
property on Y .

It is easy to prove that, if X is B-complete, then every ball is B-complete.
Notice that the space Cκ of Ex. 1.1 is B-complete.

The proof of the next claim is straightforward.

Proposition 1.2. A complete κ-metric space is B-complete if and only if every
maximal nest of balls has length κ.
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The next proposition shows that B-completeness is somewhat independent
from the choice of the base B.

Proposition 1.3. Assume that the base B has the intersection property and let
D = {Vα}α<κ be another telescopic base (which induces the same uniformity).
Then there exists a strictly increasing map ι from κ to κ such that the base
{Vι(α)}α<κ has the intersection property.

Proof. By transfinite induction, it is easy to construct increasing maps ι and λ
from κ to κ such that, for every α < κ:

Vι(α+1) ≺ Uλ(α) ≺ Vι(α)

Thus, α < β implies Vι(β) ≺ Uλ(α).
Let

{

Vι(jα)

}

α<γ
be a nest of balls selected in {Vι(α)}. Take the unique element

Uλ(jα) ∈ Uλ(jα) such that Vι(jα+1) ⊆ Uλ(jα). The sequence {Uλ(jα)} is a nest of
balls of B. Since the base B has the intersection property, the conclusion follows
because Uλ(jα) ⊆ Vι(jα).

Example 1.4. Let {Xγ}γ<κ be a κ-sequence of κ-metric spaces and, for every γ,
let Bγ = {Uγα : α < κ} be a telescopic base of Xγ . The κ-product uniformity on
∏

Xγ is the coarsest κ-additive uniformity for which all projections are uniformly
continuous. This uniformity is κ-metric. A telescopic base B consists of the
partitions induced by the equivalence relations Rα defined as follows:

xRαy iff yγ ∈ Uγα(xγ), ∀γ < α.

It is straightforward to prove that
∏

Xγ is B-complete provided that every Xγ

is B-complete.

A space is said to be κ-metrizable if its topology is induced by a κ-metric
uniformity. A κ-metrizable space X is said to be b-complete provided that it is B-
complete for some telescopic base B which induces the topology of X. Complete-
ness is not equivalent to b-completeness. Indeed, there exists a closed subspace
of a B-complete space which fails to be b-complete. Let κ2 be the set of all κ-
sequences whose elements are the numbers 0 and 1, equipped with the κ-product
uniformity. Let B be the base of κ2 whose elements are the partitions Uα, where
Uα is the set of equivalence classes of the relation coinciding on all the coordinates
less than α. As in Ex. 1.4,, κ2 is B-complete. Let Fκ be the closed subspace of
κ2 consisting of those κ-sequences x for which suppx = {α : x(α) = 1} is finite.
The following proposition ensures that Fκ is not b-complete.
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Proposition 1.5. Let D = {Wα}α<κ be a telescopic family of partitions of
clopen subsets of Fκ which induces the topology. Then there exists a countable
nest of balls of D which has empty intersection.

Proof. We still denote by Uα the covering induced on Fκ by the whole cov-
ering Uα of the standard base B of κ2. We argue by finite induction. Take
β1 < κ, Wβ1 ∈ Wβ1 and x1 ∈ Wβ1 . Choose α1 > max(suppx1) such that
Uα1 = Uα1(x1) ⊆Wβ1 . Let x2 ∈ Uα1 such that x2(α1) = 1. Now, take β2 > β1

such that Wβ2 =Wβ2(x2) is contained in Uα1 . By proceeding in this way, we get
by induction increasing sequences of ordinals βj , αj , sequences of balls Wβj ∈ Wβj ,
Uαj ∈ Uαj , and a sequence of points xj such that:

xj ∈ Uαj , xj+1(αj) = 1 , Wβj+1 ⊆ Uαj ⊆Wβj .

Since the elements of Uαj+1 take value 1 at αj , the intersection of these sets cannot
contain elements with finite support. Therefore, the intersection of the Wαj ’s is
empty.

2. Spaces of B-complete subsets

Let X be a uniform space and let H(X) be the hyperspace of all non-empty
closed subsets of X equipped with the Hausdorff uniformity. If X is κ-metric,
then H(X) is κ-metric [13]. A net of non-empty closed subsets of X is said to
be hyperconvergent if it converges as a net of points in H(X). A filter F of non-
empty closed subsets of X may be regarded as a net in H(X), where the indices
are the elements of F ordered by reverse inclusion. F is said to be stable if it is
a Cauchy net in H(X). X is said to be supercomplete if H(X) is complete. In
[8, p. 29] it is proved that X is supercomplete if and only if every stable filter is
hyperconvergent.

In contrast with the metric case, a complete κ-metric space is not necessarily
supercomplete [1]. However, if we restrict our attention to the subspace HB(X),
consisting of all non-empty B-complete subsets of X, we get a result which is
analogous to the metric one (B = {Uα} is an assigned telescopic base).

Theorem 2.1. Let X be a complete κ-metric space. Then HB(X) is complete.

Proof. By [8, p. 29], it is enough to prove that every stable filter F consist-
ing of B-complete subsets of X converges in the hyperspace HB(X). For ev-
ery α < κ, there exists Fα ∈ F such that Uα(F ) ⊇ Fα for every F ∈ F (hence
Uα(F ) ⊇ Uα(Fα)). Thus, if α < β we have Uα(Fα) ⊇ Uβ(Fα) ⊇ Fβ .
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As a consequence, α < β implies:

Uα(Fα) ⊇ Uβ(Fβ)(1)

Uα(Fα) = Uα(Fβ)(2)

By (1), the net of neighborhoods {Uα(Fα)} is nested.
We shall prove that D =

⋂

α<κ Uα(Fα) is a non-empty B-complete subset of X
and that the filter F hyperconverges to D.

Let {Uα}α<γ be a nest of balls of length less than κ, such that Uα meets Fα,
that is Uα ⊆ Uα(Fα) (along this proof, every nest of balls will be chosen in this
way). By (2), the set Uα(Fγ) is equal to Uα(Fα), so that every Uα meets Fγ . By
B-completeness of Fγ , there exists a point p of Fγ which belongs to every Uα.
Therefore the given nest of balls can be extended by adding the ball Uγ(p). Thus,
every maximal nest of balls {Uα}, with Uα ⊆ Uα(Fα), must have length κ; com-
pleteness ensures that its intersection is a point of X. Therefore D is non-empty
and it is easy to prove that it consists exactly of the points obtained in this way.

Notice that an α-ball U meets Fα if and only if it meets D, since there exists a
maximal nest of balls which contains U as an element. This implies that Uα(D)
coincides with Uα(Fα) for every α. Therefore, we conclude that the filter F hyper-
converges to D, because for every F ∈ F , F ⊆ Fα, we have Uα(D) = Uα(Fα) ⊇ F
and moreover Uα(F ) ⊇ Uα(Fα) ⊇ D.

Finally, since Uα(D) = Uα(Fα), every nest of balls which meet D can be en-
larged as above to a maximal nest which converges to a point of D. Thus D is
B-complete.

Remark 1. Suppose that X is B-complete with respect to the telescopic base
B = {Uα}. For every α, consider the base Bα = {Uβ : β ≥ α}.
If we define Hα(X) = HBα(X), we obtain an increasing κ-sequence of complete
subspaces of H(X).

It is easy to prove that every δ-neighborhood Uδ(Z) belongs to Hδ(X). Since,
for every non-empty closed subset Z, the net Uδ(Z) hyperconverges to Z, we have
that the union of the κ-sequence of complete subspaces Hδ(X) is dense in H(X).
Observe that if X = Cκ, this union coincides with the whole hyperspace; on the
contrary, if X = κ2 the closed subset Fκ does not belong to any Hδ(X).

3. Selections

Let X and Y be topological spaces. A function Φ from X to the subsets of Y
is said to be lower semicontinuous if {x ∈ X : Φ(x) ∩ U 6= ∅} is open in X for
every open U ⊆ Y .
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In [9], Michael proved that, if Y is a complete metric space and X is ultrapara-
compact, then every lower semicontinuous map from X to H(Y ) has a continuous
selection. One may ask if a similar statement holds when Y is a complete κ-metric
space and X is a ultraparacompact κ-additive space. The following example
supplies a negative answer.

Example 3.1. Let X = Y = Cκ. Consider the map Φ : Cκ 7→ H(Cκ) so defined:

Φ(α) =

{

{α} if α = 0 or α = κ,

[0, α) otherwise.

It is easy to prove that the map Φ is lower semicontinuous. Let f be a selection
of Φ. Then, for 0 < α < κ, we have f(α) < α. By Fodor’s lemma [5], there exists
an unbounded subset S of κ such that f assumes a constant value β < κ on S.
As a consequence, f cannot be continuous on the point κ.

Notice that every set Φ(α), defined in Ex. 3.1, is Bα-complete, where Bα de-
notes the telescopic base consisting of the covering Vβ of Ex. 1.1, with β ≥ α.
Nevertheless, it does not exist a suitable base D such that all sets Φ(α) are D-
complete. In the following theorem we prove that B-completeness for an assigned
telescopic base B = {Uα} of the range Y ensures the existence of a continuous
selection.

Theorem 3.2. Let X be a ultraparacompact κ-additive space and let Y be a com-
plete κ-metric space. Then every lower semicontinuous function Φ from X to
HB(Y ) admits a continuous selection.

The proof of Th. 3.2 requires two technical lemmas. To prove the former one,
argue as in [9, Lemma 2].

Lemma 3.3. If X is ultraparacompact, Y a topological space, Φ a lower semicon-
tinuous function from X to the non-empty subsets of Y and U an open covering
of Y , then there exists a continuous function f such that f(x) ∈ U

(

Φ(x)
)

for
every x ∈ X.

Lemma 3.4. Suppose that X and Y satisfy the hypotheses of Th. 3.2. Let {fα}
be a γ-sequence of continuous functions from X to Y , with γ < κ, such that the set
⋂

α<γ Uα
(

fα(x)
)

is non-empty for every x ∈ X. Put Ψγ(x) =
⋂

α<γ Uα
(

fα(x)
)

and let V be a ball of Y and x0 a point of X. Then there exists a neighborhood W
of x0 such that one of the following cases occurs:

a) Ψγ(x) ⊆ V ∀x ∈W ;
b) Ψγ(x) ⊇ V ∀x ∈W ;
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c) Ψγ(x) ∩ V = ∅ ∀x ∈W .

Proof. Observe that
{

Uα
(

fα(x)
)}

α<γ
is a nest of balls, for every x ∈ X. Let

V ∈ Uδ and suppose that V ∩ Uα
(

fα(x0)
)

6= ∅ for every α < γ.

a) Suppose δ < γ. Since Uδ
(

fδ(x0)
)

and V are elements of the same partition
meeting each other, they coincide. Let W be a neighborhood of x0 such
that fδ(x) ∈ V for every x ∈W . Then Uδ

(

fδ(x)
)

= V , so that Ψγ(x) ⊆ V
for every x ∈W .

b) Suppose δ ≥ γ. Since Uδ is a refinement of each Uα, for α < γ, the set V
must be contained in every Uα

(

fα(x0)
)

. Then fα(x0) ∈ Uα(V ). Let Wα

be a neighborhood of x0 such that fα(x) ∈ Uα(V ) for every x ∈Wα. By
κ-additivity, the set W = ∩α<γWα is a neighborhood of x0 and, for every
x ∈W , we have fα(x) ∈ Uα(V ). Consequently, Uα

(

fα(x)
)

⊇ V for every
α < γ and x ∈W .

The last case occurs when V ∩ Uβ
(

fβ(x0)
)

= ∅ for some β < γ.

c) There exists a neighborhood W of x0 such that fβ(x) ∈ Uβ
(

fβ(x0)
)

for
every x ∈W . Then Uβ

(

fβ(x)
)

is equal to Uβ
(

fβ(x0)
)

, for every x ∈W , and
consequently it is disjoint from V .

Proof of Th. 3.2. We shall construct a κ-sequence of continuous functions fα
such that, for every x ∈ X:

i) fα(x) ∈ Uα
(

Φ(x)
)

for every α < κ;
ii) fα(x) ∈ Uβ

(

fβ(x)
)

for every β < α < κ.

From ii), it follows that the κ-sequence (fα)α<κ is uniformly Cauchy. Therefore
the κ-sequence fα converges uniformly to a continuous function f . By taking
the limit in ii) as α tends to κ, we have f(x) ∈ Uβ

(

fβ(x)
)

for every β < κ. Fur-
thermore, from i) we have that Uβ

(

fβ(x)
)

⊆ Uβ
(

Φ(x)
)

. As a consequence, f(x)
belongs to

⋂

β<κ Uβ
(

Φ(x)
)

= Φ(x), for every x ∈ X. In this way we have obtained
a continuous selection of Φ.

The construction of the required κ-sequence of functions is performed by trans-
finite induction. The Lemma 3.3 provides a function f0 satisfying i) for α = 0.
Suppose we have defined the functions fα satisfying i) and ii), for every α < γ.
Then Uα

(

fα(x)
)

is a nest of balls meeting Φ(x). By B-completeness, the closed
subset Ψγ(x) =

⋂

α<γ Uα
(

fα(x)
)

meets Φ(x). Let Φγ(x) = Φ(x) ∩Ψγ(x).
To prove that Φγ is lower semicontinuous at x0, take a ball V in Y , meeting

Φγ(x0). Since V meets Ψγ(x0), by Lemma 3.4 there exists a neighborhood W
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of x0 such that either Ψγ(x) ⊆ V or Ψγ(x) ⊇ V for every x ∈W . Let W1 ⊆W be
a neighborhood of x0 such that Φ(x) ∩ V 6= ∅ for every x ∈W1. Then, for every
x ∈W1, we have that either Φγ(x) ⊆ V or Φγ(x) ∩ V = Φ(x) ∩ (Ψγ(x) ∩ V ) =
Φ(x) ∩ V . The lower semicontinuity follows since, in both cases, Φγ(x) ∩ V is
non-empty for every x ∈W1.

By using again the Lemma 3.3, we obtain a continuous function fγ such that
fγ(x) ∈ Uγ

(

Φγ(x)
)

.
Thus, being Φγ(x) ⊆ Φ(x), we have:

i) fγ(x) ∈ Uγ
(

Φ(x)
)

.

Since Ψγ(x) ⊆ Uα
(

fα(x)
)

, for every α < γ, we have:
ii) fγ(x) ∈ Uγ

(

Uα
(

fα(x)
))

= Uα
(

fα(x)
)

, ∀α < γ.

The required construction is so completed.

Remark 2. The hypotheses of Th. 3.2 can be weakened by requiring that, for
every point p ∈ X there exist a neighborhood U of p and a (uniformly admissible)
telescopic base BU such that Φ(x) is BU -complete, for every x ∈ U . One may
easily get the conclusion by refining the covering {U} with a clopen partition.

4. Embeddings

The completion of a κ-metric space can be obtained by using a sort of Baire κ-
metric space (the κ-product of suitable discrete spaces of big power, see e.g. [10]).
In this section we construct a quite natural isometric embedding from a κ-metric
space X to the complete κ-metric space consisting of all continuous functions
from X to Cκ. The idea is similar to the one used to embed a metric space X in
C(X,R) [7, p. 271].

Let X be a set and Y be a κ-metric space. Given a partition U of Y , define the
partition Û of Y X by the following equivalence relation: f ∼ g iff f(x) ∈ U(g(x))
for every x ∈ X. The function space uniformity on the set Y X [8, p. 49] is
generated by all Û ’s, where U ranges on a base B of uniform partitions of Y : we
denote by B̂ this base of Y X . In this way, Y X becomes a κ-metric space.

If X is a topological or uniform space, we denote by C(X,Y ) or U(X,Y )
the closed subspaces of Y X consisting of all continuous or uniformly continuous
functions, respectively. The following proposition ensures that B-completeness is
inherited by these function spaces.

Proposition 4.1. If Y is B-complete, then Y X is B̂-complete. In this case, the
subspaces C(X,Y ) and U(X,Y ) are B̂-complete provided that X is a κ-additive
topological or uniform space, respectively.
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Proof. We prove that C(X,Y ) is B̂-complete (the proof for Y X is obtained
by assuming X to be discrete). Obviously, every nest of balls of length κ has
non-empty intersection, because this space is complete. Let {Ûα(fα)} be a nest
of balls of length γ < κ. Let Vα be the preimage of the covering Uα by the
continuous function fα; the covering Vα is a clopen partition. By κ-additivity,
there exists a clopen partition V refining all Vα’s. Therefore, for every V ∈ V
and for every α < γ, there exists Uα,V ∈ Uα such that Uα(fα(x)) = Uα,V , for
every x ∈ V . For every V , the family {Uα,V }α<γ if a nest of balls on Y . By
choosing yV ∈

⋂

α<γ{Uα,V }, the function which takes constant value yV on V is
continuous. The conclusion follows in a similar way for the uniform case.

Let X and Y be κ-metric spaces with telescopic bases A = {Uα} and B = {Vα}
respectively. A function f : X 7→ Y is said to be an isometry if f←(Vα) = Uα for
every α. Moreover, f is said to be Lypschitz-continuous if f←(Vα) is refined by Uα
for every α. Obviously, a Lypschitz-continuous function is uniformly continuous.

An interesting space is U(X,Cκ), where Cκ is defined in Ex. 1.1.

Theorem 4.2. Every κ-metric space can be isometrically embedded in the func-
tion space U(X,Cκ).

Proof. Let A = {Uα} be a telescopic base of X and let B = {Vα} be the base
of Cκ given in Ex. 1.1. For every x ∈ X, let x? be the function from X to Cκ
defined by:

x?(z) = min{α < κ : z 6∈ Uα(x)}

where min ∅ = κ. Obviously, x?(z) = z?(x).
Let U be an element of Uα. If x 6∈ U , then x? takes a constant value not greater

than α on every point of U . If x ∈ U , then x?(y) ∈ [α+ 1, κ] for every y ∈ U . As
a consequence, Uα ≺ x?←(Vα), so that x? is Lypschitz-continuous.

Analogously, y ∈ Uα(x) iff for every z ∈ X there exists Vz ∈ Vα containing both
x?(z) and y?(z). Hence the map x −→ x? is an isometry.

Remark 3. We denote by C(X) the vector space of continuous real-valued func-
tions on X. Notice that, if X is κ-additive, it is not restrictive that R has
the discrete topology. If A is a subset of X, a linear extender is a linear map
Γ : C(A) 7→ C(X) such that Γ(f) extends f for each f in C(A). In [4], Dugundji
proved that, for every closed subspace A of a metric space X, there exists a linear
extender Γ such that the range of Γ(f) is contained in the convex hull of the
range of f . Stares and Vaughan proved that the same property does not hold in
κ-metric spaces [12]: the counterexample is the space Fκ of Prop. 1.5. However,
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if the closed subspace A is B-complete for some telescopic base B, then the exis-
tence of a linear extender follows from the property that A is a retract of X. This
result is given in [2] and its proof requires a property weaker than B-completeness:
namely, that every nest of balls in A of length less than κ has non-empty inter-
section with A. In this way, we have a generalization of the analogous result in
strongly zero-dimensional metric spaces [6].
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