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Abstract. α is a regular cardinal number or the symbol ∞, and X is a

compact Hausdorff space. It is shown that (Theorem 2.1) X is αcozero-

complemented iff each αBorel set differs from an αcozero set by a meagre

set. This immediately yields (Corollary 2.2) X is αdisconnected iff each

αBorel set differs from a clopen set by a meagre set. (The cases α = ∞
in Theorem 2.1, and α = ω1 in Corollary 2.2 are important theorems in

Boolean Algebra). The Boolean algebra of αBorel sets modulo meagre sets is

considered as an extension of the clopen algebra on X (when X is Boolean),

and compared with the αcut-completion and the αcompletion. (For α =∞,

each of the three is the completion.)

1. Preliminaries

Throughout, α denotes a regular cardinal number or the symbol∞ (the mean-
ing of which will be clear from context), and topological spaces are compact
Hausdorff. These assumptions are not always totally needed, but will simplify
the discussion. Our main references will be [1, 3, 6].

In a space X, an αcozero set is the union of < α cozero sets, and the collection
of all these is denoted αcozX. Since X is compact Hausdorff, the cozero sets are
the open Fσ’s. If clopX (the collection of all clopen sets) is a basis (i.e., X is a
Boolean space), each cozero set is the union of < ω1 clopen sets, and each αcozero
set is the union of < α clopen sets. (One may see [1] about cozero sets.) We note
that ∞cozero = open, and ω1cozero = cozero.
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X is called αcozero-complemented, abbreviated αcc, if for each U ∈ αcozX
there is V ∈ αcozX with U ∩ V = ∅ and U ∪ V dense in X; here we say that
“V αcomplements U”. Note that any X is ∞cc: if U is ∞cozero, i.e., open, then
V = X − Ū . The one point compactification of an infinite discrete space is not
ω1cc.

The family of αBorel sets, denoted αBX, is the σ-field in PX (the power set
of X) generated by αcozX. Note that ∞Borel = Borel and ω1Borel = Baire.

A subset of X which is the union of < ω1 nowhere dense sets is called meagre
(or first category), and the collection of all these is denoted MX, or M . This is
a σ-ideal in αBX. We recall the Baire Category Theorem in the forms: the only
meagre open set is ∅, and the complement of a meagre set is dense (in a compact
Hausdorff space).

Let A be a Boolean algebra with an ideal I, and let B,G ∈ A. The symmetric
difference B4G is (B −G)∨ (G−B), and B4G ∈ I means B and G have the
same image in the quotient A/I.

2. αccspaces

Theorem 2.1. X is αcozero-complemented iff for each αBorel set B there is an
αcozero set G with B 4G meagre.

Proof. Suppose the condition obtains. Let U ∈ αcozX, and apply the condition
to X −U : there is G ∈ αcozX with (X −U)4G meagre. Then (X −U)−G =
X − (U ∪G) is meagre, so U ∪G is dense (by the Baire Category Theorem). And
G−(X−U) = G∩U is meagre, and also open thus empty (by the Baire Category
Theorem).

Suppose X is αcc. Let C = {S ⊆ X | ∃G ∈ αcozX with S 4 G meagre}.
Clearly, C ⊇ αcozX. We shall show that C is a σ-field; it follows that C ⊇ αBX,
as desired.
S ∈ C implies X − S ∈ C: if S ∈ C, there is G ∈ αcozX with S 4 G meagre.

Note that S 4 G = (X − S) 4 (X − G). Choose H αcomplementing G; then
H4 (X−G) is meagre. Since (X−S)4 (X−G), (X−G)4H are both meagre,
it follows that (X − S)4H is meagre.
S1, S2, . . . ∈ C implies

⋃

Sn ∈ C: if Sn ∈ C, there is Gn ∈ αcozX with Sn4Gn
meagre. Then,

⋃

Gn ∈ αcozX since α is regular (or just sequentially regular),
and (

⋃

Sn)4(
⋃

Gn) ⊆
⋃

(Sn−Gn). The latter is meagre, so the former is meagre
also.
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X is called αdisconnected if Ū is open for each U ∈ αcozX. (So,∞disconnected
means extremely disconnected, and ω1disconnected means basically disconnected.)

Corollary 2.2. X is αdisconnected iff for each αBorel set B there is a clopen
set C with B 4 C meagre.

Proof. Supposes the condition holds. Let U ∈ αcozX, and apply the condition
to U : there is clopen C with U 4 C meagre. Then U ⊆ C (for if not, U − C is
open and nonvoid, contradicting the Baire Category Theorem), and C ⊆ Ū (for
if not, C − Ū . . . ). Since C is closed, C = Ū ; so Ū is open.

Suppose X is αdisconnected. If U ∈ αcozX, then X − Ū αcomplements U ,
since Ū is open. So X is αcc, and we can use Theorem 2.1. If B ∈ αBX, there is
G ∈ αcozX with B 4 G meagre; and Ḡ is clopen. Since B 4 G and G4 Ḡ are
meagre; so is B 4 Ḡ.

We quote Halmos [3, p.101] regarding Theorem 2.1 (α =∞) and Corollary 2.2
(α = ω1). “The (latter) resembles (the former) in many details, in both statement
and proof. It is almost certain that the two results are special cases of a common
generalization; it is far from certain whether the formulation and proof of such a
generalization would yield any new information or save any time.”

We may note, that in both Theorem 2.1 and Corollary 2.2 the implications
“⇒” do not require assuming that X is compact Hausdorff, and about α, require
only sequential regularity; and the implications “⇐” do not require assuming
anything about α, and about X, require only that the Baire Category Theorem
holds. But, further observations below shall need regularity of α, and, that X be
Boolean. So, we abandon such commentary.

We consider the meaning of Corollary 2.2 for Boolean algebras. Given the
Boolean space X, we have present two Boolean homomorphisms: the injection

clopX
i
↪→ αBX and the surjection αBX

S
� αBX/αM ; and the composite si

is an injection, by the Baire Category Theorem. By Corollary 2.2 then X is
αdisconnected iff si : clopX → αBX/αM is an isomorphism (onto). Given a
Boolean algebra A, we have the Stone representation of A as clopSA, and A is
αcomplete (meaning,

∨

F exists when |F| < α) iff SA is αdisconnected [6, 22.4].
Thus,

Corollary 2.3. The Boolean algebra A is αcomplete iff and only if A is isomor-
phic to αB SA/αM via Stone representation and si.
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The case α = ω1 in Corollary 2.3 implies, or is, the Loomis-Sikorski Theorem,
usually stated as: each ω1complete Boolean algebra is ω1-representable, i.e., iso-
morphic to an ω1-field of sets modulo an ω1-ideal. The corresponding statement
for αcomplete algebras is very false; few α complete algebras are α-representable.
See [6, §29]. Whether Corollary 2.3 says anything useful in this regard, I don’t
know.

We note (Proposition 2.4 below) that αcomplete Boolean algebras are α-
representable as αFrames: (See [5] for the various definitions, etc.) Given X,
αcozX is an αFrame (since α is regular). The codensity congruence on αcozX
is: (U, V ) ∈ cdns if Ū = V̄ . Evidently, X is αdisconnected iff for each αcozero
set B there is clopen C with (B,C) ∈ cdns (cf. Corollary 2.2 above). Since
cdns is an αFrame congruence, X/cdns is an αFrame, and the canonical sur-
jection αcozX t→ αcozX/cdns is an αFrame homomorphism. When X is a

Boolean space, we have the lattice injection clopX
j
↪→ αcozX, the composite tj

is also a lattice injection, by the Baire Category Theorem, and tj is onto iff X is
αdisconnected (by the remark above). Then, as with Corollary 2.3, we obtain

Proposition 2.4. The Boolean algebra A is αcomplete iff A is lattice-, hence
Boolean-, isomorphic to the αFrame αcozSA/cdns via Stone representation and
tj.

We note two consequences of αcc, by way of Theorem 2.1, which are exactly
similar to the known case of α =∞.

A subalgebra A of the Boolean algebra B is αdense if, for each b ∈ B there is
F ⊆ A with |F| < α, with

∨

F = b. (“∞dense” is just called “dense”.)

Theorem 2.5.

1. If X is αcozero-complemented, then αBX/αM is αcomplete.
2. For Boolean X, X is αcozero-complemented if and only if clopX is αdense

in αBX/αM ( via si).

Lemma 2.6 (cf. [6, p.75]). Consider the Boolean surjection s : αBX → αBX/αM .
Suppose {Gi | i ∈ I} ⊆ αcozX, with |I| < α. Then, s(

⋃

iGi) =
∨

i{s(Gi)}.

Proof. This uses Banach’s Category Theorem [4, pp. 59-85]: In any space Y , if
{Xi}i is a family of subsets such that for each i, Xi is open in

⋃

iXi, and Xi is
meagre in Y , then

⋃

Xi is meagre in Y .
To prove the Lemma: First, for each Gi, Gi −

⋃

iGi is empty, hence meagre.
So s(

⋃

iGi) is an upper bound for {s(Gi)}i. Second, suppose s(A) is another
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upper bound: A ∈ αBX, and Gi − A ∈ αM for each Gi. Since Gi is open,
and Gi − A = (

⋃

iGi − A) ∩ Gi, Gi − A is relatively open in
⋃

iGi − A. Thus,
⋃

iGi−A =
⋃

i(Gi−A) ∈ αM (by Banach’s Theorem). So s(
⋃

iGi) ≤ s(A).

Proof of Theorem 2.5.

Point 1. Let {Bi | i ∈ I} ⊆ αBX, |I| < α. For each i, there is Gi ∈ αcozX
with Bi 4 Gi ∈ αM , by Theorem 2.1. Then, using Lemma 2.6, s(

⋃

iGi) =
∨

i s(Gi) =
∨

i s(Bi), so this last exists.
Point 2. Suppose X is αcc, and B ∈ αB(X). Choose G ∈ αcozX with

B4G ∈ αM , by Theorem 2.1. Now G =
⋃

i Ci for < α clopen sets Ci. We then
have, using Lemma 2.6, s(B) = s(

⋃

i Ci) =
∨

i s(Ci) as desired.
Suppose clopX is αdense in αBX/αM , and let U ∈ αcozX. By αdensity,

s(X − U) =
∨

i s(Ci), for some < α clopen sets Ci. Let V =
⋃

i Ci; of course
V ∈ αcozX. By Lemma 2.6, s(V ) =

∨

i s(Ci), so that s(X − U) = s(V ), i.e.,
(X − U)4 V ∈ αM . This means V is an α complement for U (using the Baire
Category Theorem).

The converse of Point 1 of Theorem 2.5 fails: An easy counterexample is X =
the one-point compactification of a discrete space of cardinal ≥ α. I don’t know
what property of X is equivalent to αcompleteness of αBX/αM .

3. Comparison with other extensions

A ≤ B means that A is a Boolean subalgebra of the Boolean algebra B. The
completion of A is, in its simplest definition, an extension A ≤ Ā, with

1. Ā complete, and
2. A dense in Ā. (Such an extension is unique up to isomorphism fixing A.)

We have just seen in Theorem 2.5 that (identifying A with clopSA, by Stone
Representation) A ≤ ∞B SA/∞M is a model of A ≤ Ā. (This is standard, and
Theorem 2.5 more-or-less replicates the proof in [6, §35]).

The αcompletion of A (see [6, §35]) is an extension A ≤ αĀ, with

1. αĀ αcomplete,
2. Adense in αĀ, and
3. the only C with A ≤ C ≤ αĀ and C αcomplete is C = αĀ.

Such an extension is unique as before, and it is easily seen that
⋂

{C | A ≤ C ≤ Ā,
C αcomplete} is a model∞Ā of Ā. Of course, ∞Ā = Ā, i.e., for α =∞, Condition 3
can be dropped (and, alternatively, Condition 2 can be dropped [2]).
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Another construction of αĀ is by transfinite iteration of the passage A 7→ αA1,
where αA1 is the Boolean subalgebra of Ā generated by the set S of all

∨

F ,F ⊆ A
and |F| < α (“

∨

” meant in Ā).

Theorem 3.1. Let A be a Boolean algebra.

1. αB SA/αM is the ω1completion of αA1.
2. αB SA/αM ≤ αĀ.

Proof. To compress notation, let X ≡ SA, and let A(α) ≡ αBX/αM . With
some obvious identifications and suppression of notation, we have

A= clopX ≤ A(α)≤∞BX/∞M = Ā
↓ ↑

αcozX ↪→ αB

Here, s(αcozX) is exactly the generating set S for αA1; this uses Lemma 2.6
and the fact that dense embeddings preserve all joins ([6, 23.1]). Since αBX is
ω1complete and αM is an ω1ideal (σ-ideal) A(α) is ω1complete and the quotient
homomorphism s preserves all countable joins ([6, 21.1]).

To prove Point 1, it suffices to show that, if s(αcozX) ⊆ C ≤ A(α) and C
is ω1complete, then C = A(α). (Since A ≤ A(α) ≤ Ā, A is dense in A(α)).
Given such C, consider s−1(C) ⊆ αBX. We show that s−1(C) is a σ-field; then
s−1(C) = αBX, and C = A(α). So let A ∈ s−1(C). Since s is a homomorphism,
s(X − A) = s(A)′ ∈ C (( )′ being Boolean complement), so X − A ∈ s−1(C).
Now let A1, A2, · · · ∈ s−1(C). Since s preserves countable joins, s(

⋃

nAn) =
∨

n s(An) (the latter join in A(α)). Since C is ω1complete,
∨C
n s(An) exists. The

dense embedding C ≤ A(α) preserves all joins, so
∨C
n s(An) =

∨

n s(An). Thus,
∨

n s(An) ∈ C, so
⋃

nAn ∈ s−1(C). So s−1(C) is a σ-field, and Point 1 is shown.
To prove Point 2, we want to show that (A ≤ C ≤ Ā with C αcomplete

implies A(α) ≤ C). Given such C, clearly αA1 ⊆ C, and the result follows from
Point 1.

Corollary 3.2. If αB SA/αM is αcomplete (e.g., if SA is αcc (Theorem 2.5))
then αB SA/αM is the αcompletion of A.

Corollary 3.2 represents an unusual circumstance of αĀ being achieved in a con-
crete manner (i.e., rather than from without as a large intersection, or from within
by transfinite induction, per the comments before Theorem 3.1).

On the other hand, there is another “α-generalization” of completeness which
is better in this regard. See [2] for the details of what follows.
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An αcut in the Boolean algebra A is a pair (F ,H) of subsets of A of cardinal
< α, with F ≤ H elementwise, and

∧

{h − f | h ∈ H, f ∈ F} = 0. A is said to
be αcut-complete if, whenever (F ,H) is an αcut in A, then there is a ∈ A with
∨

F = a =
∧

H. Then, for each A, there is A ≤ Aα, with Aα αcut-complete,
and A αdense in Aα. This Aα is called the αcut-completion of A, is unique up to
isomorphism over A, and has this simple description as a subset of the completion
Ā:
Aα = {

∨

F | there is H ⊆ A for which (F ,H) is an αcut in A}. (Clearly, A∞
is the completion Ā). Obviously, we have

Proposition 3.3. For any Boolean algebra A, Aα is contained in the generating
set S for αA1, so that Aα ≤ αB SA/αM .

Observe that SA is αcc iff each subset of A of cardinal < α is the left (lower)
half of an αcut in A. The following is now obvious or routine.

Proposition 3.4. For a Boolean algebra A, the following are equivalent.

1. Aα = S
2. Aα = αB SA/αM .
3. S is a Boolean algebra (hence an αcomplete algebra, hence S = αĀ).
4. SA is αcc.
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