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Abstract. Let X be a plane separating continuum. Suppose C is a convex

space contained in a bounded component of R2 − X. It is shown that the

span of the boundary of C is a lower bound for both the span and semispan

of X. It is also shown that if a span of X is equal to the breadth of X and

Y satisfies certain conditions relative to X then that span of X is an upper

bound for the corresponding span of Y .

1. Introduction

The concept of the span of a metric space was introduced in [L1]. Various
modified versions of the span have been defined since then (cf [L2] and [L3]).
Questions, about how these various spans are related for simple closed curves,
have motivated work in this area. The following question by H. Cook, has also
generated interest.

If S1 and S2 are two simple closed curves in the plane and S2

is contained in the bounded component of R2 − S1, then is the
span of S1 larger than the span of S2? ([CIL,pg391]).

K. Tkaczyńska has obtained some partial answers to these questions (also see
[W1], [W2], [W3]). She has shown that if C is a convex space in the plane then
each of the spans of ∂C are equal to the breadth of ∂C ([T1]). Later in [T2], she
showed that if X is a simple closed curve in the plane and C is a convex region in
the bounded complement of X, then the span of X is larger than or equal to the
span of ∂C. In this paper we extend this result to cover any X, which is a plane
separating continuum (see Theorem 2). For another partial solution to Cook’s
problem see [W1].
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The following result is also given. If X is a continuum, where a span, τ , of X
is the breadth of X and either Y ⊆ X or X separates R2 and Y ⊆ R2−U , where
U is the unbounded component of the complement of R2−X, then τ(Y ) ≤ τ(X).

2. Preliminaries

If X is a non-empty metric space, we define the span σ(X) of X to be the least
upper bound of the set of real numbers α which satisfy the following condition:
there exists a connected space C and continuous mappings f1, f2 : C → X such
that

(σ) f1(C) = f2(C)

and α ≤ dist[f1(c), f2(c)] for c ∈ C.
The definition does not require X to be connected, but to simplify our discus-

sion we will now consider X to be connected. The surjective span σ∗(X), the
semispan σ0(X), and the surjective semispan σ∗0(X) are defined as above, except
we change conditions (σ) to the following :

(σ∗) f1(C) = f2(C) = X,

(σ0) f1(C) ⊆ f2(C),

(σ∗0) f1(C) ⊆ f2(C) = X,

The following inequalities follow immediately from the definitions.

0 ≤ σ∗(X) ≤ σ(X) ≤ σ0(X) ≤ diamX,

0 ≤ σ∗(X) ≤ σ∗0(X) ≤ σ0(X) ≤ diamX.

The notion of a directional diameter of a simple closed curve was given in [T2].
We can extend the definition of directional diameter to all planar continua. Let
X be a planar continuum. Let Lα denote the line passing through the origin such
that the angle between the positive x-axis and Lα, measured counterclockwise,
is α, where α ∈ [0, π). The directional diameter dα(X) of X, in the direction
α, is the length of the longest line segment (or segments) with endpoints on X,
that is parallel to Lα. In [T2] the breadth of a continuum was defined to be the
inf{dα(X) : α ∈ [0, π)}. The breadth of a continuum was original denoted by
d(X) in [T1]. In this paper we will denote the breadth of X by b(X), so that the
name and the notation will correspond.

In the proof of Theorem 2, we use the following theorem from [L2, section 7].



CONCERNING THE SPANS OF CERTAIN PLANE SEPARATING CONTINUA 699

Theorem L. If X is a closed subset of the Hilbert cube and Iωf : X −→ S is an
essential mapping of X into the circumference S, then

inf
s∈S

ρ(f−1(s), f−1(−s)) ≤ σ(X).

3. Main Results

Theorem 1. Let X be a continuum in R2 such that τ(X) = b(X), where τ = σ,
σ0, σ∗, or σ∗0 . Suppose Y is a continuum. If either Y ⊆ X or X separates R2and
Y ⊆ R2−U , where U is the unbounded complement of R2−X, then τ(Y ) ≤ τ(X).

Proof. For each ε > 0, there exists αε[0, π) such that dα(X)−b(X) ≤ ε. Let Aα
be a line segment parallel to Lα, such that endpoints a and b of Aα are elements
of X and ρ(a, b) = dα(X).

We can rotate and translate X in R2, such that a is moved to the origin and
b is moved to the point (dα(X), 0).

Let f, g : Z −→ Y be continuous functions, Z connected, and condition (τ)
holds where:

(σ) g(Z) = f(Z)

(σ0) g(Z) ⊆ f(Z)

(σ∗) g(Z) = f(Z) = Y

(σ∗0) g(Z) ⊆ f(Z) = Y.

Let d = max{t | the graph of y = t intersects f(Z)} and let c = min{t |
the graph of y = t intersects f(Z)}. There are points z′ and z′′ of Z such
that p2 ◦ f(z′) = c and p2 ◦ f(z′′) = d, where p2 : R2 −→ R is the projection
map given by p2(x, y) = y. We observe that c = p2 ◦ f(z′) ≤ p2 ◦ g(z′) and
p2◦g(z′′) ≤ p2◦f(z′′) = d. Consequently, there exists z∗ ∈ Z such that p2◦f(z∗) =
p2 ◦ g(z∗). So, either f(z∗) = g(z∗) or f(z∗) and g(z∗) are endpoints of an
arc, A, which is parallel to the x-axis. In the latter case, there is an arc B,
with endpoints in X such that A ⊆ B. By the definition of dα(X), we see that
ρ(f(z∗), g(z∗)) = l(A) ≤ l(B) ≤ dα(X). Consequently, in either case, we get
τ(Y ) ≤ ρ(f(z∗), g(z∗)) ≤ dα(X) ≤ b(X) + ε. Since this is true for any ε > 0, we
get that τ(Y ) ≤ τ(X). 2
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Corollary 1.1. Let X be a planar simple closed curve such that the bounded
component B, of R2−X is convex. For any continuum Y ⊆ X∪B, τ(Y ) ≤ τ(X)
where τ = σ, σ0, σ∗, or σ∗0 .

Proof. This follows immediately, since by [Theorem 3 of T1], τ(X) = b(X).

Corollary 1.2. Let Q be a planar quadrilateral. For any continuum Y ⊆ Q∪B,
where B is the bounded component of R2 −Q, τ(Y ) ≤ τ(Q) for τ = σ, σ0, σ∗,
or σ∗0 .

Proof. This follows from the fact that τ(Q) = b(X), which was shown in [T1].

The corresponding result also holds for the class of polygons described in [T1,
example 3].

In Theorem 2, we consider X to be either in the real plane or the complex
plane. We use the one that simplifies the exposition.

Theorem 2. Let X be a separating planar continuum and let C be a convex
region contained in a bounded component of the complement of X. Then σ(X) ≥
σ(∂C).

Proof. Let D be the simple closed curve such that D = ∂C. Pick < b(D) ≤
diamD. We inscribe a convex polygon P in D such that each vertex of P is
an element of D and H(P,D) < ε

2 , where H is the Hausdorff metric. Clearly,
b(D) ≥ b(P ) ≥ b(D)− ε. In order to simplify the exposition, we will assume that
no three vertices are on the same straight line.

Let a, b be vertices of P such that dist (a, b) = diamP . We can rotate and
translate our whole space so that b is moved to the origin and a is moved to the
point (0, diamP ). Note that the x-axis intersects P only at the point b and the
line through a parallel to the x-axis, L, intersects P only at a. This is true since
a and b are of distance the diameter of P apart.

The vertices of P have a clockwise ordering. Let a′ be the next vertex of P in
clockwise ordering after a. Let b′ be the next vertex of P in clockwise ordering
ofter b. Not both a′ and b′ can be on the y-axis, otherwise P would not be a
convex polygon. If one of these points is on the y-axis, we can assume without loss
of generality that it is b′. In which case, b′ = a. Consider the angle α formed by
the line segment aa′ and the line L where 0 < α < 90o. Also, consider the angle β
formed by the line segment bb′ and the x-axis where 0 < β ≤ 90o. Again, without
loss of generality we can assume 0 < α ≤ β ≤ 90o, since we could accomplish
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this relationship of the angles merely by changing the labels for the points a and
b. We label the vertices of P, P1, P2, P3, . . . , Pn where P1 = a, P2 = a′ and we
continue the labeling in this successive clockwise manner. The sides are labeled
L1, L2, . . . , Ln where Li = PiPi+1 for i = 1, 2, ..., n − 1 and Ln = PnP1. For
i = 1, 2, ..., n let Ri be the line containing the side Li. Because of a previous
assumption, we know that only two of the vertices Pi and Pi+1 lie on Ri. Let
Ai for i ∈ {1, 2, ..., n} be a vertex of P such that dist [Ri, Ai] ≥ dist [Ri, A] for
each A ∈ P . Note that for some k ∈ {2, 3, ..., n} Pk = b and dist (Pk, R1) ≥
dist (A,R1) for all A ∈ P , so we let A1 = Pk = b.

We will describe the motion of two points F and G tracing P . Both points
will move only in the clockwise direction and each point will stop when it reaches
the starting position of the other point. When F travels along one side of P ,
G will remain still at one of the vertices of P and vice versa. Except for some
slight modifications, the movements of these points F and G are the same as was
described by K. Tkaczyńska in [T1].

The point F begins at P1 = a and G at A1 = Pk = b.

Step 1 G remains at Pk, while F travels along L1 until it reaches P2. Notice that
for each x ∈ L1

d(A1, x) ≥ d(A1, L1) ≥ d(A1, R1).

Consider the lines R2 and Rk, containing L2 and Lk respectively. There are
two cases:

case 1: R2 ∩Rk 6= ∅.
case 2: R2 ∩Rk = ∅.
case 1: R2 ∩Rk 6= ∅.

Since P is convex, it is contained in one of the four infinite wedges
formed by R2 and Rk. Consider the clockwise motion of the points F
and G. One of the points would move toward the point of intersection
of R2 and Rk and the other would move away from this point of in-
tersection. We let the point, that would move away from this point of
intersection, move while the other print remains fixed.

case 2: R2 ∩Rk = ∅.
We arbitrarily choose one of the points, either F or G, to move along
the succeeding side of P , while the other point remains fixed.

After we complete step 2, F is at Pi and G is at Pj where either i = 2 and
j = k + 1 or i = 3 and j = k.
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Notice that in our very first step, we did follow the pattern for movement given
in step 2. In case R1 ∩Rk = ∅ (i.e. α = β), we let G remain at Pk while F moves
along L1 to P2. In case R1 ∩Rk 6= ∅ (α < β), again G remains fixed at Pk while
F moves along L1 and away from the point of intersection of R1 and Rk.

We now consider the lines Ri and Rj containing Li and Lj respectively and
repeat the procedure described in step 2. At each step, one point stays fixed while
the other point advances one side. Clearly, after n steps a total of n sides have
been covered by F and G together. We now want to show that after n steps F is
at Pk (F covered k − 1 sides of P ) and G is at P1 (G covered n − k + 1 sides of
P ).

It is clear that in these n steps there is an l, where 1 ≤ l ≤ n such that on step
l either
case 1: F is at Pk and G is at Pj where k < j ≤ n or j = 1.
or
case 2: G is at P1 and F is at j where 1 < j ≤ k.
First we consider case 1. If F is at Pk and G is at P1, then F has covered k − 1
sides, G has covered n+ 1−k sides and l = k− 1 +n+ 1−k = n. So we have our
desired result. Suppose F is at Pk and G is at Pj where k < j ≤ n. Then F has
covered k− 1 sides and G has covered j− k sides so l = k− 1 + j− k = j− 1. We
claim, that according to our algorithm, on the steps l+ 1 = j to n, F remains at
Pk while G covers the sides Lj through Ln.

We claim, that if at a step in the movements of F and G, F is at Pk and G is at
Pj where k < j ≤ n, then on the next step F remains at Pk while G advances to
Pj+1. In the case j = k+1, it is clear that in the next step F remains at Pk while
G advances to Pj+1 = Pk+2. So, we just need to consider the situation when
j ≥ k + 2. Let β be the angle formed by Lk and the x-axis where 0 < β ≤ 90o.

case A: β = 90o

In this case Pj ∈ PkP1. But this can not happen because no three vertices
of P lie on are straight line. So, 0 < β < 90o.

case B: 0 < β < 90o

In this case Pj must be contained in the triangle, T , bounded by the
line Rk, the line L (i.e. the line parallel to the axis through the vertex P1)
and the line segment, S, with endpoints Pk+1 and P1. Also, Pj /∈ L. Let
θ be the angle formed by the line segment S and the ray R, starting at
Pk+1 through the vertex Pj , where θ is measured starting at S and in the
counterclockwise direction. So 0 < θ, since Pj /∈ S. Then Pj+1 must be
contained in the triangle, T ′, bounded by the line segment, S′, which joins
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Pj and P1, the line L, and the ray R. This means that Rj and Rk intersect
at a point p such that Pk+1 is between p and Pk on the line Rk. According
to our algorithm F must remain at Pk while G advances from Pj to Pj+1.

Now we consider case 2. If G is at the vertex P1 and F is at Pk, then l =
n + 1 − k + k − 1 = n and we have our desired result. Suppose G is at P1 and
F is at Pj where 1 < j < k, then G has covered n + 1 − k sides, F has covered
j − 1 sides and l = n + 1 − k + j − 1 = n + j − k. We claim that, according to
our algorithm, in the next k − j steps, G remains at P1 and F covers sides Lj
through Lk−1. The proof of this is comparable to the one given in case 1.

So, in both cases we see that after n steps F is at the vertex Pk after having
covered sides L1 through Lk−1 and G is at the vertex P1 after having covered
sides Lk through Ln.

Based on these n steps, it is clear that we can define steps for each positive
integer. In the first n steps, F moves in clockwise order from P1 to Pk and G

moves in clockwise order from Pk to P1. In steps n + 1 to 2n, G moves from P1

to Pk in clockwise order and F moves from Pk to P1 in clockwise order. In this
same manner we can define the steps for all positive integers. We can define steps
on the negative integers in a similar manner, but where F and G move counter
clockwise. The point F starts at P1 and G starts at Pk. In steps −1 to −n, F
moves (counter clockwise) to Pk and G moves counterclockwise to P1. During
the next n-steps (−n− 1 to −2n), F would return to P1 and G would return to
Pk, both moving in the counterclockwise direction. In the same manner we can
define steps for all Z−.

We claim that whenever a point travels along a side Li while the other point
remains at a vertex Pj then

dist[Ri, Pj ] = dist[Ri, Ai].

Suppose F remains at Pj while G travels from Pi to Pi+1. There are two cases
to consider

Case 1 Ri ∩Rj = ∅
In this case Ri and Rj are parallel and P is contained in the portion of

the plane bound by the lines Ri and Rj and on the lines Ri and Rj . It is
clear that dist[Ri, Rj ] = dist[Ri, Ai] and that Ai = Pj or Ai = Pj+1.

Case 2 Ri ∩Rj 6= ∅
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Let Ri∩Rj = {p} then Pj+1 is between p and Pj on Rj and Pi is between
p and Pi+1 on Ri. This is true since our labeling is in clockwise order and
based on our algorithm for F and G. Let L be the line parallel to Ri,
through the vertex Pj . The vertex Pj−1 must be contained in the wedge W
formed by Rj and Ri which contains all of P . If Pj−1 ∈ L, then

dist(Ri, Pj) = dist(Ri, Pj−1) = dist(Ri, Ai)

and either Pj = Ai or Pj−1 = Ai. If Pj−1 is in the portion of the plane
bound by L and Ri, then it is clear that dist[Ri, Pj ] = dist[Ri, Ai] and
Pj = Ai. The other possibility is that Pj−1 is in the wedge W ′ formed by
Rj and L which is in W , but not in the portion of the plane bound by L

and Ri. Also Pj−1 /∈ (L ∪Rj).
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We can go back the number of steps necessary in our algorithm so that F
is at Pj−1 (that is F moves back exactly one vertex), and G is at Pq where
Pq is between Pj and Pi on P , but not on the portion of P that contains
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Pi+1. If Pq = Pj then on the next step F would remain at Pj−1 while G
moves to Pj+1. If Pq = Pi then on the next step F would remain at Pj−1

and G would move to Pi+1. So we can assume that Pq = Pj+1 or Pq = Pi−1

or Pq is between Pj+1 and Pi−1 on P but not on the portion that contains
Pi+1. Then Pq must be in the triangle T bound by Ri, Rj and PiPj+1. Note,
Pq is not on the boundary of the triangle T . The line Rj−1 is contained in
W ′ ∪W ′′ where W ′′ is the wedge formed by L and Rj which is opposite to
the wedge W ′. We now consider how Rj−1 and Rq are related. The lines Rq
and Rj−1 are not parallel, since Pi would not be contained between them.
Also, Rq and Rj−1 can not intersect in W ′ since again this would exclude
Pi as an element of P . So, Rj−1 and Rq must intersect in W ′′. According
to our algorithm and since labeling of the vertices are clockwise, in the next
step, F remains at Pj−1 and G moves from Pq to the next vertex towards
Pi. In each succeeding step, F would remain at Pj−1 until G reaches Pi.
Then again, by our algorithm, F remains at Pj−1 and G moves to Pi+1.
Hence Pj−1 /∈ W ′. So, we get our desired result. That is if F stays at Pj
while G moves along Li, then dist(Ri, Pj) = dist(Ri, Ai) and vice versa.
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Let ai = dist [Ai, Ri] and let a = min {ai| i = 1, . . . , n}. The motion of the
points F and G are such that the distance between them is always larger than
or equal to a. Tkaczyńska has shown in [T1] that σ(P ) = a, so the minimum
distance between them can not be bigger than a.

In this section we use Pn+1 as a second labeling for the vertex P1.
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The movements of F and G determine two increasing functions f and g. The
function f is defined as follows

f : {1, 2, . . . , k} → {k, . . . , n, n+ 1}

given by f(1) = l1 = k and f(j) = lj where Plj is a vertex of P such that F is at
the vertex Pj and G is at the vertex Plj and lj is the largest index for which this
is true. By a previous observation, we see that f(1) = k and f(k) = lk = n + 1.
The function g is defined as follows

g : {k, k + 1, . . . , n, n+ 1} → {1, 2, . . . , k}

given by g(j) = lj where Plj is a vertex of P such that G is at the vertex Pj and
F is at the vertex Plj and lj is the largest such index. By previous observation
we see that g(k) = lk ≥ 2 and g(n+ 1) = ln+1 = k.

We now construct a new convex polygon Q, where the vertices of Q are a
subset of the vertices of P . According to our algorithm and functions f and g,
when the point F is at the vertex Pg(k) the point G moves along the sides of P
from the vertex Pk to the vertex Pf◦g(k). We replace these sides with a new side
connecting vertices Pk and Pf◦g(k). This side corresponds to an old side of P if
f ◦ g(k) = k + 1. Now G is at the vertex Pf◦g(k) and F is at the vertex Pg(k).

Now, G stays at the vertex Pf◦g(k) while F travels along the sides of P from the
vertex Pg(k) to the vertex Pg◦f◦g(k). We replace the sides of P covered by F with
a side connecting vertices Pg(k) and Pg◦f◦g(k). Again, this corresponds to a side
of P if g ◦ f ◦ g(k) = g(k) + 1.

We continue this process until the last two sides have been constructed, that
is the side connecting Pj and Pn+1 where k < j ≤ n and the side connecting Pm
and Pk where 1 < m ≤ k − 1.

We now make one final replacement. If the last side constructed was the side
connecting Pm and Pk where 1 < m ≤ k−1 (i.e. the point G stayed at Pn+1 while
F moved from the vertex Pm to Pk) then replace the sides L1 through Lg(k)−1

with a side connecting the vertices P1 and Pg(k). If the last side constructed was
the side connecting Pj and Pn+1 where k < j ≤ n (i.e. the point F stayed at Pk
while G moved from Pj to Pn+1), then replace this side with a side connecting
Pj and Pg(k).

We can see from this construction that each vertex of Q is paired with exactly
one side of Q. We can show also that the number of vertices of Q is odd. Draw
a line L∗ through Pk and the midpoint of the side corresponding to it, the side
connecting Pj and Pg(k) (either j = 1 or k < j ≤ n + 1). Consider the two
components of Q−L∗. Suppose there are q vertices in the component containing
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Pg(k) then in the other component there must be q sides corresponding to these
vertices. Consequently there are also q vertices in the other component. Hence
the total number of vertices of Q is m = 2q+1. We can label these vertices. We let
Pj = B1 where either k < j ≤ n or j = 1 and PjPg(k) is a side of Q. We continue
labeling in the counterclockwise order. Hence, Pg(k) = Bm and Pk = Bq+1. So
B1 corresponds to the side connecting Bq+1 and Bq+2. In general each vertex Bi
corresponds to the side Bi+m−1

2
Bi+m+1

2
, with subscripts taken modulo m.

Let O be a point in the bounded complement of Q. We rotate the plane
clockwise through the smallest possible angle so that the ray

−−→
OB1 coincides with

the positive x-axis. Let θj for j = 1, 2, · · ·,m be the angle that the ray
−−→
OBj makes

with the positive x-axis, where the angle is measured in the counter-clockwise
direction. Clearly, 0 = θ1 < θ2 < . . . < θm < 2π.

We pick an angle α, such that 0 < α < 1
4 min{θj+1− θj for j = 1, 2, · · ·,m− 1;

2π− θm} and so that if reiθ ∈ Q where θj −α < θ < θj +α, then ρ(reiθ, Bj) < ε
2 .

Let Wj be the portion of the plane which is bounded by the rays
−−−−−−→
Oei(θj−α) and

−−−−−−→
Oei(θj+α) and contains the point Bj . Let W ′j be the portion of the plane bounded

by the rays
−−−−−−−−−−−−→
Oei(θj+(m−1)/2+α) and

−−−−−−−−−−−−→
Oei(θj+(m+1)/2−α) which does not contain the

point Bj . If p ∈ Wj ∩ X and q ∈ W ′j ∩ X then ρ(p, q) ≥ ρ(Bj , P ∩ W ′j) − ε
2 ,

since ρ(Bj , P ∩W ′j) − ε
2 ≥ b(P ) − ε

2 and b(P ) − ε
2 ≥ b(∂C) − 3ε

2 . Consequently,
ρ(p, q) ≥ b(∂C)− 3ε

2 = σ(∂C)− 3ε
2 .

Let S be the unit circle centered at O. Let p : X −→ S be the map defined by
p(reiθ) = eiθ. Clearly, p is essential. Let q be any 1-1 map on S such that

q(eiθ) =











ei
2π
m (j−1), for θ = θj , j = 1, 2, · · ·,m

ei(
2π
m (j−1)− 2π

4m ), for θ = θj − α, j = 1, 2, · · ·,m
ei(

2π
m (j−1)+ 2π

4m ), for θ = θj + α, j = 1, 2, · · ·,m

Also, the map q ◦ p : X −→ S is essential. We can see that if q ◦ p(x) = s and
q ◦ p(y) = −s, then one of the points, say x, must be contained in Wj and the
other point, y, must be contained in W ′j . Consequently, infs∈S ρ((q ◦ p)−1(s), (q ◦
p)−1(−s)) ≥ b(∂C)− 3ε

2 . Since this is true for all ε such that 0 < 3ε < b(∂C)/2,
infs∈S ρ((q ◦ p)−1(s), (q ◦ p)−1(−s)) ≥ b(∂C) = σ(∂C). By Theorem L, σ(∂C) ≤
σ(X).

Corollary 2.1. Let X be a separating planar continuum and let C be a convex
region contained in a bounded component of the complement of X. Then σ0(X) ≥
σ0(∂C).

Proof. This is true since, σ0(X) ≥ σ(X) and σ0(∂C) = σ(∂C) = b(∂C).
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Corollary 2.2. Let X be a simple closed curve in the plane and let C be a convex
region contained in the bounded component of the complement of X. Then τ(X) ≥
τ(∂C) where τ = σ, σ0, σ∗ , or σ∗0 .

Proof. This is true since when X is a simple closed curve, σ(X) = σ∗(X) and
σ0(X) = σ∗0(X).
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