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Abstract. A space X is weakly perfect if each closed subset of X contains

a dense subset that is a Gδ-subset of X. This property was introduced by

Kočinac and later studied by Heath. We provide three mechanisms for con-

structing ZFC examples of spaces that are weakly perfect but not perfect.

Some of our examples are compact linearly ordered spaces, while others are

types of Michael lines. Our constructions begin with special subsets of the

usual unit interval, e.g., perfectly meager subsets. We conclude by giving

a new and strictly internal topological characterization of perfectly meager

subsets of [0, 1], namely that a topological space X is homeomorphic to a

perfectly meager subset of [0, 1] if and only if X is a zero-dimensional sepa-

rable metrizable space with the property that every subset A ⊂ X contains

a countable set B that is dense in A and is a Gδ-subset of X.

1. Introduction

Recall that a topological space X is perfect if each closed subset of X is a Gδ-
subset of X. Over the years, many different generalizations of this notion have
appeared. Almost all of them are, for a generalized ordered space X, equivalent
to the statement “X is perfect” [3]. But there is one very interesting exception,
namely the property “weakly perfect” introduced by Kočinac in [8] and [9], and
studied by Heath [7]. According to Kočinac [8], a space X is weakly perfect if each
closed subset C of X contains a set D having:

(a) D is a Gδ-subset of X,
and
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(b) the closure of D in X is C.

Kočinac observed [9] that the original definition is equivalent to the assertion
that every open subset U of X is the interior of some Fσ-subset of X.

The usual space of countable ordinals is weakly perfect (see Lemma 2.2) so that
even among linearly ordered spaces, “weakly perfect” and “perfect” are very differ-
ent properties. It is harder to see that the two concepts are distinct among really
nice spaces, e.g., among Lindelöf spaces or compact Hausdorff spaces. Kočinac [8]
used the set-theoretic principle ♦ to construct a compact Hausdorff space that is
weakly perfect but not perfect. Subsequently, R.W. Heath [7] showed that there
is a ZFC example of a Lindelöf quasi-developable space that is weakly perfect
and not perfect, commented that there is a linearly ordered space that is weakly
perfect but not perfect, and constructed a ZFC example of a compact Hausdorff
space that is weakly perfect but not perfect. Section 3 of this paper sharpens the
examples provided by Kočinac and Heath, providing a family of ZFC examples
of compact linearly ordered topological spaces that are hereditarily weakly perfect
but not perfect. We use a point-splitting process to construct a compact LOTS
X(P ) for each subset P ⊂ [0, 1] and prove that X(P ) is weakly perfect but not
perfect if and only if P is an uncountable subset of [0, 1] that is perfectly meager,
i.e., P ∩K is a first category subset of the subspace K whenever K is a closed,
dense-in-self subset of the real line.

The space X(P ) contains interesting subspaces, and we study some of them in
Sections 4 and 5. Starting with any subspace P of the unit interval, in Section
4 we construct a natural subspace Y (P ) ⊂ X(P ) that uses only points of P in
its construction (and does not invoke properties of the set [0, 1]− P that play an
important role in the study of X(P )). It is surprising that we can show that Y (P )
is weakly perfect if and only if X(P ) is weakly perfect. Then, in Section 5, we
start with any subset P ⊂ [0, 1] and study certain Michael line constructions that
yield natural subspaces M(P ) of X(P ). We characterize when M(P ) is weakly
perfect in terms of properties of P . Our characterization resembles, but is strictly
weaker than, the definition of perfectly meager. We use the M(P ) construction
to obtain generalized ordered examples of quasi-developable, hereditarily weakly
perfect spaces that are not metrizable. Assuming the existence of an ω1-scale, we
construct such spaces that are Lindelöf and hereditarily weakly perfect, thereby
extending certain results of Heath [7] mentioned above. Finally, in Section 6 we
combine our results to give a new, internal, and strictly topological characteriza-
tion of perfectly meager subsets of [0, 1], namely:
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Proposition. A topological space X is homeomorphic to a perfectly meager subset
of the unit interval I = [0, 1] if and only if X is a zero-dimensional, separable
metric space and for every A ⊂ X there is a countable set B ⊂ A that is dense
in A and is a Gδ-subset of X.

Readers of Sections 4 and 5 will note that the spaces X(P ), Y (P ), and M(P )
studied in this paper are hereditarily weakly perfect whenever they are weakly
perfect. Our proofs of that fact depend in central ways on the close relation
between our spaces and the unit interval, a totally bounded metric space. We
do not know whether the property “weak perfect” is hereditary in arbitrary GO-
spaces. It would be enough to show that every dense subspace of a weakly perfect
GO-space is weakly perfect.

Recall that a linearly ordered topological space (LOTS) is a linearly ordered set
(X, <) equipped with the usual open interval topology of <. By a generalized
ordered space, or GO-space, we mean a linearly ordered set equipped with a
Hausdorff topology that has a base of open, convex subsets, where we say that a
set C is convex (in X) provided for any a < b < c in X, if {a, c} ⊂ C then b ∈ C.
It is known that the class of GO-spaces coincides with the class of subspaces of
linearly ordered topological spaces. It will be important to distinguish between
subsets of a space X that are relatively discrete, i.e., discrete in their subspace
topologies, and those subsets that are both closed and discrete. Other notation
and terminology will follow [5] and [10].

2. Preliminary results and examples on weakly perfect GO-spaces

It is difficult to find topological properties that follow from the weakly perfect
property, even in ordered spaces. However, one can show:

Lemma 2.1. Suppose that X is a weakly perfect GO-space. Then X is first
countable.

Proof. Let X be a weakly perfect GO-space and let a ∈ X. Then the closed set
C = {a} must contain a dense set D that is a Gδ-subset of X. Then D = C, so
each point is a Gδ-subset of X. Hence X is first countable.

It is known [10] that any perfect GO-space is paracompact. The situation for
weakly perfect GO-spaces is quite different as can be seen from the fact that the
usual space of countable ordinals is weakly perfect. That follows from our next
lemma.
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Lemma 2.2. Let X be a topological space that is scattered, hereditarily collection-
wise Hausdorff, and in which each point is a Gδ-set. Then X is weakly perfect.
In particular, any first-countable, scattered GO-space is weakly perfect.

Proof. Let C be any closed subset of X, and let D = {x ∈ C : {x} is relatively
open in C}. Then D is dense in C because X is scattered. In addition, because
X is hereditarily collectionwise Hausdorff, there is a pairwise disjoint collection
U = {U(x) : x ∈ D} of open subsets of X with x ∈ U(x) and, because points are
Gδ-sets, there is a sequence U(x, n) of open subsets of U(x) such that

⋂

{U(x, n) :
n ≥ 1} = {x} for each x ∈ D. Let V (n) =

⋃

{U(x, n) : x ∈ D}. Then D =
⋂

{V (n) : n ≥ 1}, so D is the required Gδ-subset of X.

Example 2.1. The usual space [0, ω1[ of countable ordinals is weakly perfect,
countably compact, and not perfect or paracompact. The usual ordinal space
[0, ω1] is not weakly perfect, in the light of Lemma 2.1.

Remark. Arhangel’skĭı and Kočinac asked in [1] whether the spread of a countably
compact, weakly perfect space must be countable. The usual space of countable
ordinals provides a negative answer.

Remark. In the light of Example 2.1, it is unlikely that there is an interesting char-
acterization of paracompactness in weakly perfect GO-spaces that goes beyond
repeating the familiar characterization of paracompactness in arbitrary ordered
spaces, namely that the space in question does not contain a closed subspace
that is a topological copy of a stationary subset of an uncountable regular cardi-
nal κ. It is worth pointing out that, even though weakly perfect GO-spaces are
first countable, one must consider stationary sets in cardinals other than κ = ω1

when applying that characterization to weakly perfect GO-spaces, because consis-
tently there are E(ω2) sets. Such a set (in its subspace topology from ω2) would
be weakly perfect and would fail to be paracompact, even though it would not
contain any stationary subset of ω1.

Example 2.2. The lexicographic square X = [0, 1] × [0, 1] is a compact LOTS
that is not weakly perfect. To see that X is not weakly perfect, consider the
closed subset C = [0, 1] × {0, 1} of X. Suppose that D =

⋂

{G(n) : n ≥ 1} ⊂ C

is a Gδ-subset of X whose closure is C. Then D is Čech-complete. Furthermore,
because D ⊂ C, the collection G(n) = {H : H is a convex component of G(n) }
separates points of the subspace D. Thus D is Čech-complete, paracompact, and
has a Gδ-diagonal, so that D is completely metrizable [5]. But that is impossible
because, by a Baire category argument, C has no such subspace. (See [4]).



WEAKLY PERFECT GENERALIZED ORDERED SPACES 613

The existence of weakly perfect LOTS that are not perfect (e.g., the countable
ordinals or the spaces in Section 3, below) suggests two variations on a well-known
question from the theory of perfect GO-spaces. First, is it true that every perfect
GO-space can be topologically embedded in a weakly perfect LOTS? Second, is
it true that every weakly perfect GO-space can be topologically embedded in a
weakly perfect LOTS? (We say “topologically embedded” to emphasize that there
is no requirement that the orders of the original GO-space and the larger LOTS
are compatible.)

The following examples show that the X∗ and L(X) constructions, the best-
known linearly ordered extensions of a GO-space X, might, or might not, embed
a perfect GO-space into a weakly perfect LOTS. To describe those two extensions,
let T be the given topology of X and let I be the usual open interval topology
induced on X by the given linear ordering. Define subsets of X as follows:

(1) R = {x ∈ X : [x → [∈ T − I},
(2) L = {x ∈ X :] ←, x] ∈ T − I}.

Let N be the set of all natural numbers and define

L(X) = (X × {0}) ∪ (R× {−1}) ∪ (L× {1}),

and

X∗ = (X × {0}) ∪ ({(x,−n) : x ∈ R, n ∈ N}) ∪ ({(x, n) : x ∈ L, n ∈ N}).

Order both sets lexicographically and endow each with the open interval topology
of the lexicographic order. Then X is naturally homeomorphic to a dense subspace
of the LOTS L(X) and to a closed subspace of the LOTS X∗. It is important
to note that L(X) is a subset, but not generally a subspace, of X∗. It is easy to
verify:

Example 2.3. Let X be the Sorgenfrey line. Then L(X) is perfect (because it
is separable), but X∗ is not weakly perfect. To see that X∗ is not weakly perfect,
suppose that the closed subset X×{0} contains a dense subset S that is a Gδ-set
in X∗, say S =

⋂

{G(n) : n ≥ 1}. Then S would necessarily be a subset of the
set of end points of the convex components of the sets G(n), so that S would be
countable. But that is impossible because X × {0} is a topological copy of the
Sorgenfrey line which is a Baire space, and a dense-in-itself Baire space cannot
contain any dense, countable Gδ-set.

Example 2.4. Let Y be the GO-space obtained by isolating every limit ordinal
in the usual space [0, ω1[. Then Y is metrizable and hence perfect, so that Y ∗
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is also metrizable. But L(Y ) is a copy of the usual space of countable ordinals.
Thus L(Y ) is weakly perfect but not perfect.

Example 2.5. Let Z = R × [0, 1[, where R is the set of all real numbers, and
modify the lexicographic order topology by declaring [(x, 0),→ [ to be open in Z

for each x ∈ R. Then Z is a topological sum of copies of the usual space [0, 1[,
so that Z is metrizable. Hence so is Z∗. The space L(Z) is the lexicographically
ordered set Z ∪ {(x,−1) : x ∈ R} with the usual open interval topology. To see
that L(Z) is not weakly perfect, consider the closed subset C = {(x,−1) : x ∈ R}
of L(Z). This subspace is homeomorphic to the usual Sorgenfrey line, so it is a
Baire space. If L(Z) were weakly perfect, there would be a Gδ-subset S ⊂ L(Z)
that is a dense subset of C. As in Example 2.3, the set S would be countable, and
that is impossible because the Sorgenfrey line has no dense, countable Gδ-subsets.

Example 2.6. Let W be the topological sum of the spaces X and Z from
Examples 2.3 and 2.5, ordered in such a way that X precedes Z. Then W is
perfect and neither W ∗ nor L(W ) is weakly perfect. Because of well-known
minimality properties of the construction of W ∗ and L(W ), it follows that the
perfect GO-space W cannot embed as a closed, or dense, subset of any weakly
perfect LOTS whose order extends the given ordering of W . However, that does
not answer the question above about topological embedding in a weakly perfect
LOTS.

3. A compact, hereditarily weakly perfect LOTS that is not

perfect

In this section we will describe a point-splitting process that always constructs
compact linearly ordered spaces, and we will give necessary and sufficient con-
ditions in Theorem 3.9 for that process to yield compact spaces that are weakly
perfect but not perfect. Our results will produce a family of ZFC examples of
compact linearly ordered spaces that are (hereditarily) weakly perfect but not per-
fect. The best previously known example of this type was a compact Hausdorff
space, but not a LOTS, that was constructed by Heath in [7]. Our construction
establishes a close linkage between such spaces and special subsets of the unit
interval.

Lemma 3.1. For any subset P ⊂ [0, 1], define the set

X(P ) = ([0, 1]× {0}) ∪ (P × {−1, 1})
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and order X(P ) lexicographically. Then X(P ) is a compact LOTS and is perfect
if and only if the set P is countable.

Proof. That X(P ) is a compact LOTS is clear. If the set P is countable, then
X(P ) is separable and hence is perfect. Conversely, if X(P ) is perfect, then it
is hereditarily Lindelöf so that each relatively discrete subset must be countable.
Hence P × {0} is a countable set.

Definition 1. A subset P ⊂ [0, 1] is perfectly meager provided that for each
closed, dense-in-itself subset C ⊂ [0, 1], the set P ∩C is a first category subset of
C.

Note. It is crucial to understand that P ∩ C must be a first category subset of
C with its relative topology, and not merely a first category subset of [0, 1]. It
is often the case that the set C in Definition 1 will be nowhere dense in [0, 1], so
that P ∩ C would automatically be of first category in [0, 1].

Lemma 3.2. [11] Perfectly meager sets of cardinality ω1 exist in ZFC.

An earlier version of this paper showed that if P is an uncountable subset of
[0, 1] then X(P ) is weakly perfect if and only if P is a perfectly meager subset of
[0, 1]. Gary Gruenhage pointed out a theorem concerning first category subsets
of the unit interval whose proof can be modified to show that the compact LOTS
X(P ) is hereditarily weakly perfect and not perfect. Gruenhage observed that if
Y ⊂ [0, 1] is of the first category in itself, then Y must contain a countable dense
subset D that is a relative Gδ-subset of Y . The techniques in his proof allow us
to shorten and sharpen our earlier results, and details appear in Propositions 3.6
and 3.7, below.

Our proof requires three technical lemmas. The first two must be well known
and we omit the proofs.

Lemma 3.3. Let (Y, d) be a totally bounded metric space and D a dense subset
of Y . Suppose ε > 0 and F1 ⊂ Y has the property that if p 6= q belong to F1, then
d(p, q) ≥ ε. Then there is a subset F2 ⊂ D − F1 such that:

(a) the set F2 is finite and if p, q ∈ F1 ∪ F2 are distinct, then d(p, q) ≥ ε
2 ;

(b) for each point y ∈ Y , some p ∈ F1 ∪ F2 has d(y, p) ≤ ε
2 .

Lemma 3.4. Let {Wα : α ∈ A} be any collection of pairwise disjoint open subsets
of a space Z, and suppose that Hα is a Gδ-subset of Z with Hα ⊂ Wα for each
α. Then H =

⋃

{Hα : α ∈ A} is a Gδ-subset of Z. In particular, if each point of
Z is a Gδ-subset of Z and if Z is hereditarily collectionwise Hausdorff, then any
relatively discrete subset of Z is a Gδ in Z.
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Lemma 3.5. Let P be a perfectly meager subset of I = [0, 1] and let Z be any
subspace of X(P ). Let C be a relatively closed subset of Z that is dense-in-itself.
Then there is a set M ⊂ C that is dense in C and is a relative Gδ-subset of the
subspace Z.

Proof. Let X = X(P ). Let K be the closure of C in X. Then K is compact
and dense in itself, and K ∩ Z = C. Let π : X → I be the first coordinate
projection. Then π[K] is a closed, dense-in-itself subset of I and π[C] is a dense
subset of π[K]. Because P is perfectly meager, there are closed nowhere dense
subsets T (1) ⊂ T (2) ⊂ · · · of π[K] such that P ∩π[K] ⊂

⋃

{T (n) : n ≥ 1} ⊂ π[K].
Let V (0) = π[K]. Applying (3.3) to the totally bounded subspace π[K] of

the unit interval, we recursively define pairwise disjoint finite sets F (n), dense,
relatively open subsets V (n) of π[K], and relatively open subsets U(p, n) ⊂ π[K]
for each p ∈ S(n) =

⋃

{F (j) : j ≤ n} such that the following seven conditions are
satisfied for each n ≥ 1:

(1) F (n) ⊂ π[C] ∩ [π[K]− T (n)] ∩ V (0) ∩ · · · ∩ V (n− 1);
(2) for every point x ∈ π[K], |x− p| ≤ 2−n for some point p ∈ S(n);
(3) the collection {U(p, n) : p ∈ S(n)} is pairwise disjoint, each of its members

has diameter less than 2−n, and p ∈ U(p, n) for each p ∈ S(n);
(4) if q ∈ S(n) has q ∈ U(p, n − 1) for some p ∈ S(n − 1), then U(q, n) ⊂

U(p, n− 1);
(5) if p ∈ F (n), then U(p, n) ⊂ [π[K]− T (n)] ∩ V (0) ∩ · · · ∩ V (n− 1);
(6) if V ′(n) = [π[K] − T (n)] −

⋃

{Clπ[K](U(p, n)) : p ∈ S(n)}, then V (n) =
V ′(n) ∪

⋃

{U(p, n) : p ∈ S(n)} is a dense, relatively open subset of π[K];
(7) S(n) ⊂

⋂

{V (j) : j ≤ n}.
Given those seven conditions, let S =

⋃

{S(n) : n ≥ 1} and observe that S is
a countable subset of π[C]. To complete the proof, we verify the following four
claims.

Claim 1.
⋂

{V (n) : n ≥ 1} ⊂ S ∪ (π[K] − P ). For suppose q ∈ V (n) for
each n. This can happen in several ways. If there is a sequence n(1) < n(2) <

· · · such that q ∈ V ′(n(k)) for each k, then q ∈ π[K] − T (n(k)) for each k

so that q /∈
⋃

{T (n(k)) : k ≥ 1} =
⋃

{T (n) : n ≥ 1}. Then q /∈ π[K] ∩ P

so that q ∈ π[K] − P as required. Hence we may assume there is an n0 such
that q /∈ V ′(n) whenever n ≥ n0. For each n ≥ n0 choose p(n) ∈ S(n) with
q ∈ U(p(n), n). It is possible that a single point p ∈ S is repeated infinitely
often in the sequence p(n), and in that case recursion condition (3) forces q =
p ∈ S. The only remaining case is where no point occurs infinitely often in
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the sequence p(n). In that case, let m1 = n0 and recursively choose integers
m1 < m2 < m3 < · · · such that mk+1 is the first index greater than mk such that
p(mk+1) 6= p(mk). Consider p(m2) and p(m1). We claim that p(m2) /∈ S(m2−1).
For if p(m2) ∈ S(m2 − 1) then recursion condition (4) would guarantee that
q ∈ U(p(m2), m2) ⊂ U(p(m2), m2 − 1). At the same time, p(m2 − 1) = p(m1)
so that we would have U(p(m2 − 1), m2 − 1) = U(p(m1), m2 − 1) which would
yield q ∈ U(p(m2), m2 − 1)∩U(p(m1), m2 − 1) and that contradicts the pairwise
disjointness assumption in recursion condition (3). Therefore, p(m2) ∈ F (m2)
so that recursion condition (5) yields q ∈ U(p(m2), m2) ⊂ π[K] − T (m2). An
analogous argument shows that q ∈ π[K] − T (mk) for each k. Because T (n) ⊂
T (n+1) for all n, we conclude that q /∈

⋃

{T (n) : n ≥ 1} and hence q /∈ π[K]∩P .
Therefore q ∈ π[K]− P as claimed.

Claim 2. If L =
⋂

{π−1[V (n)] : n ≥ 1} and E = {(x, i) ∈ π−1[S] : (x, i) /∈ C},
then (L− E) ∩ Z ⊂ C. For suppose (q, j) ∈ (L− E) ∩ Z. For each n, q ∈ V (n)
so that by Claim 1, q ∈ S ∪ [π[K] − P ]. If q ∈ S, then (q, j) ∈ π−1[S]. Because
(q, j) ∈ (L−E) we know that (q, j) ∈ C as required. Therefore, it will be enough
to consider the case where q ∈ π[K] − P . Then q /∈ P so that the definition of
X(P ) forces j = 0. Then q ∈ π[K] guarantees (q, j) = (q, 0) ∈ K. Because C is
relatively closed in Z, we know that K∩Z = C. Hence (q, j) = (q, 0) ∈ K∩Z = C

as claimed.

Claim 3. (L − E) ∩ Z is dense in C. Fix any point (x0, j0) ∈ C. Because C is
dense-in-itself, at least one of the sets C∩ ] ←, (x0, j0)[ and C∩ ](x0, j0),→ [ has
(x0, j0) as a limit point. Without loss of generality, assume it is C∩ ] ←, (x0, j0)[ .
Then (x0, j0) has no immediate predecessor in X. Let W be any open neighbor-
hood of (x0, j0) in X. Then there is a point (u, i) ∈ X with (u, i) < (x0, j0) such
that ](u, i), (x0, j0)[ ⊂ W . Because (x0, j0) has no immediate predecessor in X,we
must have u < x0 in the unit interval I = [0, 1], and because ](u, i), (x0, j0)[ ∩C

must be infinite, the set ]u, x0[ ∩π[C] is also infinite and has x0 as a limit point. In
the light of recursion conditions (1) and (2), the set S is dense in π[C] so we may
choose a point r ∈ S∩ ]u, x0[ ∩π[C]. Because r ∈ π[C], there is an integer k with
(r, k) ∈ C. However (r, k) ∈ π−1[S] and (r, k) /∈ E so that (r, k) ∈ (L − E) ∩ Z.
But also (r, k) ∈ ](u, i), (x0, j0)[ ⊂ W so that W ∩ (L− E) ∩ Z 6= ∅ whenever W

is open in X and contains a point of C. Therefore, (L−E) ∩Z is dense in C, as
claimed.

Claim 4. The set M = (L−E)∩Z is a Gδ-subset of Z. Each V (n) is relatively
open in the compact set π[K] (see (7)) which is a Gδ-subset of [0, 1], so each V (n)
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is a Gδ-set in [0, 1]. Hence L is a Gδ-set in X. Because S is countable, so is E.
Hence L−E is also a Gδ-subset of X. Therefore, M = (L−E)∩Z is a Gδ-subset
of the subspace Z, as claimed.

Proposition 3.6. Suppose P is an uncountable perfectly meager subset of [0, 1].
Then X(P ) is a compact LOTS that is hereditarily weakly perfect but X(P ) is not
perfect.

Proof. By (3.1), the space X = X(P ) is not perfect. Let Z ⊂ X and suppose C

is a relatively closed subset of Z. We will find two subsets of C, each a Gδ-subset
of Z, whose union is dense in C, and that will complete the proof.

Let

I(C) = {x ∈ C : for some open set U in X, x ∈ U and U ∩ C is finite}.

Because X is first countable, it follows from (3.4) that I(C) is a Gδ-subset of X.
The set I(C) is one of the two Gδ-sets promised in the first paragraph.

Let K0 = ClX(I(C)) and W = X−K0. Let {W (α) : α ∈ A} be the family of all
convex components in X of the open set W . For each α ∈ A, let D(α) = C∩W (α).
If D(α) = ∅, let H(α) = ∅. If D(α) 6= ∅, consider any p ∈ D(α) and let
U be any neighborhood of p in X. The U ∩ W (α) is an open neighborhood
of p, so that p ∈ X − K0 forces C ∩ (W (α) ∩ U) to be infinite (for otherwise
p ∈ I(C) ⊂ K0). Thus, D(α) is dense-in-itself. Let C(α) = ClZ(D(α)). Then
because W (α) is an open convex subset of X and C is relatively closed in Z, the
set C(α)−D(α) has at most two points, and those two points are the end points
of W (α) in X. Apply Lemma 3.5 to each set C(α) to find a Gδ-subset H ′(α)
of Z that is contained in, and dense in, C(α). Because W (α) is open in X, the
set H(α) = H ′(α) ∩W (α) is also a Gδ-subset of Z and is dense in D(α). From
(3.4), we know that the set H =

⋃

{H(α) : α ∈ A} is a Gδ-subset of Z that is
dense in

⋃

{D(α) : α ∈ A} =
⋃

{C ∩W (α) : α ∈ A} = C ∩W = C − ClX(I(C)).
Hence I(C)∪H is a Gδ-subset of Z that is contained in, and dense in, the set C.
Therefore, the subspace Z is weakly perfect.

In the remainder of this section, we prove that uncountable perfectly meager
sets are exactly what one needs in order to construct spaces X(P ) that are weakly
perfect but not perfect.

Proposition 3.7. Suppose that P ⊂ [0, 1], and that the space X(P ) of (3.1) is
weakly perfect and not perfect. Then P is an uncountable perfectly meager subset
of [0, 1].
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Proof. Write X = X(P ) and let π : X → [0, 1] be the first coordinate projection.
Suppose X is weakly perfect but not perfect. Then P is uncountable, by (3.1).
To show that P is perfectly meager, we need some special notation and a lemma.

For each x ∈ [0, 1], let i(x) = 0 = j(x) if x 6∈ P and if x ∈ P then define
i(x) = +1 and j(x) = −1. Suppose C ⊂ [0, 1] is closed and dense-in-itself. Define
R(C) = {x ∈ C ∩ P : ]x, y[ ∩C = ∅ for some y > x} and let L(C) = {x ∈ C ∩ P :
]y, x[ ∩C = ∅ for some y < x}. Observe that R(C) ∩ L(C) = ∅, that (x, 1) is an
isolated point of π−1[C] if and only if x ∈ R(C), and that (x,−1) is an isolated
point of π−1[C] if and only if x ∈ L(C). In addition, note that P × {0} consists
entirely of isolated points of X. Therefore, if we define

C∗ = π−1[C]− ((C ∩ P )× {0}) ∪ (R(C)× {1}) ∪ (L(C)× {−1}),

then C∗ is a closed subset of X.
Because X is weakly perfect, there are open subsets G(n) of X such that the

set S =
⋂

{G(n) : n ≥ 1} is a dense subset of C∗. Apply Lemma 3.8, below, to
the sets G(n) to produce sets H(n) = H(G(n), C), each of which is a relatively
open, dense subset of C. Because C satisfies the Baire Category Theorem in its
relative topology, the set H =

⋂

{H(n) : n ≥ 1} must be a dense subset of C.
We claim that H ∩ P = ∅. For suppose there is a point a ∈ H ∩ P . Because

C has no relatively isolated points, it follows from (3.8) below that for each n

we can find points sn < a < tn such that ](sn, i(sn)), (tn, j(tn))[ ⊂ G(n). Then
(a, 0) ∈ ](sn, i(sn)), (tn, j(tn))[ ⊂ G(n) for every n so that (a, 0) ∈

⋂

{G(n) : n ≥
1} ⊂ C∗. But because a ∈ P and a ∈ H ⊂ C we see from the definition of C∗

that (a, 0) 6∈ C∗ and that contradiction shows that H ∩ P = ∅.
Therefore, we have proved that if C is closed in [0, 1] and dense-in-itself, then

there are relatively open, dense subsets H(n) of C such that
⋂

{H(n) : n ≥
1} ∩ P = ∅. Then P ∩ C ⊂

⋃

{C −H(n) : n ≥ 1} so that P ∩ C is indeed a first
category subset of C. Hence the set P must be perfectly meager, as claimed.

We now prove the lemma needed in 3.7, above. The proof is straightforward,
but somewhat technical.

Lemma 3.8. Let C be a closed, dense-in-itself subset of [0, 1] and let C∗ be as
in (3.7). Suppose G is an open subset of X such that G∩C∗ is dense in C∗. Let
H(G, C) = {x ∈ C : there are points s < x < t in [0, 1] with ](s, i(s)), (t, j(t))[ ⊂
G}. Then H(G, C) is relatively open in C and is dense in C.

Proof. Notation is as in (3.7). Write H = H(G, C). To show that H is relatively
open in C, let x ∈ H. Find numbers s < x < t with ](s, i(s)), (t, j(t))[ ⊂ G. Then
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U = ]s, t[ ∩C is the required relative neighborhood of x in C that is contained in
H.

Obviously H ⊂ C. To show that H is dense in C, suppose s < t are real
numbers with ]s, t[ ∩C 6= ∅. We will verify that ]s, t[ ∩H 6= ∅.

We claim that ](s, i(s)), (t, j(t))[ ∩C∗ 6= ∅. Choose c0 ∈ ]s, t[ ∩C. Then
(c0, k) ∈ ](s, i(s)), (t, j(t))[ whenever (c0, k) ∈ X. If c0 6∈ P , then we know
that (c0, 0) ∈ π−1[C] and (c0, 0) 6∈ ((C ∩ P ) × {0}) ∪ (R(C) × {1}) ∪ (L(C) ×
{−1}) so that we have (c0, 0) ∈ C∗∩ ](s, i(s)), (t, j(t))[ as required. If c0 ∈ P ,
consider the points (c0,−1) and (c0, +1) of π−1[C]. If c0 6∈ R(C) then (c0, 1) ∈
C∗∩ ](s, i(s)), (t, j(t))[ , as required. If c0 ∈ R(C), then because R(C) ∩ L(C) =
∅ we have c0 6∈ L(C) so that (c0,−1) ∈ C∗∩ ](s, i(s)), (t, j(t))[. In any case,
therefore, ](s, i(s)), (t, j(t))[ ∩C∗ 6= ∅.

Because G∩C∗ is dense in C∗, and because C∗∩ ](s, i(s)), (t, j(t))[ is a non-void
relatively open subset of C∗, there must be some point

(x1, k1) ∈ G ∩ C∗∩ ](s, i(s)), (t, j(t))[ .

The special definitions of i(s), j(t) in (3.7) yield

(a) s < x1 < t.
Because (x1, k1) ∈ C∗ we conclude

(b) if x1 ∈ P , then k1 6= 0
and

(c) if k1 = 1, then x1 6∈ R(C) and if k1 = −1, then x1 6∈ L(C).
Because G∩ ](s, i(s)), (t, j(t))[ is open, we may choose points (ui, mi) ∈ X

with
(d) (x1, k1) ∈ ](u1, m1), (u2, m2)[ ⊂ G∩ ](s, i(s)), (t, j(t))[ .

Then we must have
(e) u1 ≤ x1 ≤ u2

and the special definitions of i(u1), j(u2) yield
(f) ](u1, i(u1)), (u2, j(u2))[ ⊂ ](u1, m1), (u2, m2)[ ⊂ G.

Consider the inequalities in (e). If u1 = x1 = u2, then (d) yields k1 = 0 and
x1 ∈ P , contradicting (b). Hence at least one of the inequalities in (e) must be
strict. If both are strict, i.e., if u1 < x1 < u2, then (f) yields x1 ∈ H so that
x1 ∈ H∩ ]s, t[ as required. Consider the case where u1 = x1 < u2, the case where
u1 < x1 = u2 being analogous. Because u1 = x1 we have k1 ≥ 0 so that (d) yields
x1 ∈ P (because two distinct points of X have x1 as their first coordinate). Then
(b) gives k1 = 1. Because (x1, 1) = (x1, k1) ∈ C∗, we conclude that x1 6∈ R(C).
Because x1 ∈ P ∩ C, it follows that ]x1, y[ ∩C 6= ∅ whenever y > x1. That
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allows us to choose a point x2 ∈ C with u1 = x1 < x2 < u2. Then (f) gives
](x1, i(x1)), (x2, j(u2)[ ⊂ G so that x2 ∈ H.

To complete the proof, note that u1 = x1 < x2 < u2 so that (d) yields
s < x2 < t. Hence x2 ∈ H∩ ]s, t[ as required to show that H is dense in
C.

Combining (3.6) and (3.7) gives a proof of the following theorem:

Theorem 3.9. Suppose P ⊂ [0, 1] and X = X(P ). Then X is a compact LOTS
and X is weakly perfect but not perfect if and only if P is an uncountable perfectly
meager subset of [0, 1].

4. Special subspaces of X(P )

In this section, we will start with any subset P ⊂ [0, 1]. One can still construct
the compact LOTS X(P ) and it is conceivable that certain interesting subspaces
of X(P ) are weakly perfect even though X(P ) is not. We will begin by examining
one such subspace, namely, Y (P ) = {(x, i) ∈ X(P ) : x ∈ P, i ∈ {0, 1}}. Our
results (see (4.1)) show that, in fact, it is just as difficult for the subspace Y (P )
to be weakly perfect as it is for the compact space X(P ) to be weakly perfect.
Other interesting subspaces of X(P ) will be studied in Section 5, below.

An equivalent way to describe Y (P ) is to begin with the lexicographically
ordered LOTS Y = P × {0, 1} and modify the topology to isolate every point of
P ×{0}. We will give necessary and sufficient conditions for the space Y (P ) to be
weakly perfect. Some of our conditions do not involve P with its usual topology,
but rather P topologized as a subspace of the Sorgenfrey line in which basic open
sets have the form [a, b[ for real numbers a < b. We will denote that Sorgenfrey
topology on [0, 1] by S, and for a subset D ⊂ [0, 1] we will write (D,SD) for
D topologized as a subspace of ([0, 1],S). Analogously, E will denote the usual
Euclidean topology on [0, 1]. Clearly (P,SP ) is homeomorphic to the subspace
{(x, 1) : x ∈ P} of Y (P ). Our characterization is as follows:

Proposition 4.1. Let P be any subset of [0, 1]. The following are equivalent:

(a) Y (P ) is weakly perfect.
(b) for any closed subset C of the space (P,SP ) there is a set T satisfying

(i) T is countable subset of C;
(ii) T is a Gδ-subset of (P,SP );
(iii) T is a dense subset of the space (C,SC);

(c) P is a perfectly meager subset of [0, 1].
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(d) X(P ) is hereditarily weakly perfect.

Proof. From (3.6) and (3.7), we know that (c) and (d) are equivalent, and
because Y (P ) is a subspace of X(P ) we know that (d) implies (a). Thus it
remains only to prove that (a) implies (b) and (b) implies (c). The proof that (a)
implies (b) is contained in Lemma 4.4 below, and the proof that (b) implies (c)
appears in Lemma 4.5. Those two lemmas rely on technical results that appear
in Lemmas 4.2 and 4.3.

Lemma 4.2. Suppose that T ⊂ P × {1} is a Gδ-subset of Y (P ). Then T is
countable.

Proof. For A ⊂ P , the set T = A×{1} is a Gδ-subset of the subspace A×{0, 1} of
Y (P ) if and only if A×{0} is an Fσ-subset of A×{0, 1}. Because A is hereditarily
Lindelöf, A× {0} does not contain any uncountable closed subsets of A× {0, 1},
and so A× {0} is not an Fσ-subset unless A is countable.

To understand the point of our next lemma, recall the easy fact that the closed
subspace P × {1} of Y (P ) may have Gδ-subsets in its relative topology that are
not Gδ-subsets of the space Y (P ). Indeed, the set P×{1} is one such set, provided
P is uncountable. However, when it comes to countable sets, we have:

Lemma 4.3. Suppose T is a countable subset of P × {1} that is a Gδ-subset of
the subspace P × {1} of Y (P ). Then T is a Gδ-subset of Y (P ).

Proof. If T = A×{1} =
⋂

{Gn×{1} : n ≥ 1} where each Gn is open in (P,SP ),
then the set S = A × {0, 1} =

⋂

{Gn × {0, 1} : n ≥ 1} is a Gδ-subset of Y (P ).
But A× {0} is countable, and we remove one point of A× {0} at a time to show
that T is a Gδ-subset of Y (P ).

Lemma 4.4. In Proposition 4.1, (a) implies (b).

Proof. Suppose Y (P ) is weakly perfect. If C ⊂ P is closed in the space (P,SP ),
then C × {1} is closed in Y (P ), so there is a subset T × {1} ⊂ C × {1} that is a
Gδ-set in Y (P ) and is dense in C × {1}. By Lemma 4.2, T must be countable.
Clearly T is a Gδ-subset of (P,SP ) and is dense in C, as required to verify (b).

Lemma 4.5. In Proposition 4.1, (b) implies (c).

Proof. Suppose (b) holds. Let K be any nonempty dense-in-itself E-closed sub-
set of [0, 1]. Our goal is to show that the set F = P ∩K is of the first category in
K. Consider the set W of all x ∈ F having a neighborhood in (F,SF ) that has
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countable intersection with F . This set is countable and open in the hereditarily
Lindelöf space (F,SF ). Replacing K by K − W if necessary, we may assume
that W = ∅ and that each SF -neighborhood of each point of F meets F in an
uncountable set. Because F = P ∩ K is closed in (P,SP ), there is a countable
T ⊂ F such that T is dense in (F,SF ) and is a Gδ-subset of (P,SP ). Write
T =

⋂

{Un : n ≥ 1} where each Un is an open subset of (P,SP ). Being a count-
able subset of the dense-in-itself set K, T is clearly first category in (K, EK).
Hence, to show that F is of first category in (K, EK), it will be enough to show
that each set F − Un is nowhere dense in (K, EK). For contradiction, suppose
there exist a < b ∈ K such that

(∗) ∅ 6= ]a, b[ ∩K ⊂ ClEK
(F − Un) ⊂ ClEK

(F )− IntEK
(Un).

Because T is dense in (S,SF ), we have T∩ ]a, b[ 6= ∅, so that there exists t ∈
T∩ ]a, b[ and there must be some u ∈ [0, 1] with u > t such that [t, u[ ∩P ⊂
Un. It follows that the uncountable set ]t, u[ ∩F ⊂ IntEK

(Un). But (∗) yields
]a, b[ ∩K ∩ IntEK

(Un) = ∅, and that is impossible.

5. Michael lines in X(P )

In this section, P is any subspace of I = [0, 1]. Besides the space Y (P ) studied
in Section 4, there is another natural subspace of X(P ), namely M(P ) = {(x, 0) :
0 ≤ x ≤ 1}. Clearly, M(P ) is homeomorphic to the Michael line space obtained
by isolating all points of P and letting all other points have their usual Euclidean
neighborhoods. An argument reminiscent of the one used in (3.6) and (3.7) to
characterize weak perfectness in X(P ) allows us to prove:

Proposition 5.1. Let P ⊂ I = [0, 1]. Then the following are equivalent:

(a) M(P ) is hereditarily weakly perfect;
(b) M(P ) is weakly perfect;
(c) for each dense-in-itself closed subset K ⊂ I such that K −P is dense in K,

the set K ∩ P is a first category subset of K.

From (3.7) or Proposition 5.1, we obtain:

Corollary 5.2. If P is a perfectly meager subset of [0, 1], then M(P ) is heredi-
tarily weakly perfect.

However, in contrast to the situation for the spaces X(P ) and Y (P ) described
above, to say that M(P ) is weakly perfect is strictly weaker than the assertion
“P is perfectly meager,” as can be seen from:
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Example 5.1. There is a subspace P ⊂ I such that M(P ) is weakly perfect but
not perfect, and yet P is not perfectly meager. Let P1 = [0, 1

2 [ and let P2 be
an uncountable perfectly meager subset of [ 12 , 1] with 1

2 ∈ P2. Let P = P1 ∪ P2.
Clearly, P is not perfectly meager. However, M(P ) is the disjoint union (or
topological sum) of the subspaces X1 = M(P ) ∩ [0, 1

2 [ and X2 = M(P ) ∩ [ 12 , 1].
Every point of the subspace X1 is isolated, so that X1 is weakly perfect. The
proof of (3.6) shows that X2 is weakly perfect but not perfect. Hence M(P ) is
weakly perfect but not perfect.

Spaces of the type M(P ) can be used to answer a natural question about
the role of the property “weakly perfect” in certain parts of metrization theory.
Recall that a topological space Z is quasi-developable provided there is a sequence
of collections G(n) of open subsets of Z such that for each z ∈ Z, the collection
{St(z,G(n)) : n ≥ 1} contains a neighborhood base at z. (Some of the sets
St(z,G(n)) might be empty.) Also recall that a quasi-developable space Z is
developable if and only if it is perfect, so that if Z is a LOTS or GO-space, then
Z is metrizable if and only if Z is quasi-developable and perfect.

In [7], R.W. Heath showed that one can construct quasi-developable spaces
that are weakly perfect but not perfect, and asserted that similar examples could
be found inside of the lexicographic square. A space of the type described in
Proposition 5.3 below is probably what he had in mind. Observe that the following
example does not require any special set theoretic assumptions.

Proposition 5.3. In ZFC, there is a quasi-developable, hereditarily weakly per-
fect GO-space Z that is not perfect.

Proof. Let P be an uncountable perfectly meager subset of [0, 1] as in Section 3.
Construct Z = M(P ) as above. The resulting space is a quasi-developable GO-
space. However, M(P ) is not perfect because the set P cannot be an Fσ-subset
of M(P ) since P is a perfectly meager subset of [0, 1]. In addition, M(P ) embeds
as a subspace of the space X(P ) constructed in Section 3. In the light of (3.6),
Z is hereditarily weakly perfect.

To find a generalized ordered space that is Lindelöf, quasi-developable, and
weakly perfect but not perfect, we need to assume the existence of an ω1-scale
[2].

Proposition 5.4. If ωω has an ω1-scale, then there is a GO-space that is Lin-
delöf, quasi-developable, weakly perfect, and not perfect.
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Proof. Let E denote the usual topology on the set I = [0, 1]. We know that in
any model of set theory, [0, 1] contains a set that is a λ-set but not a λ′-set ([11,
Theorem 4.6]). Starting with such a set L, we may add countably many points
to L in such a way that the enlarged set L∗ contains a countable subset C that
is not a Gδ-subset of L∗ when L∗ is topologized as a subspace of [0, 1]. Because
any λ-set is perfectly meager ([11, Theorem 4.2]), and because adding countably
many points to a perfectly meager set produces another perfectly meager set, we
know that L∗ is perfectly meager.

Because C is not a Gδ-subset of L∗, the existence of an ω1 scale allows us to
construct an uncountable set E with C ⊂ E ⊂ L∗ such that if U is an E-open
subset of [0, 1] that contains C, then E − U must be countable. See [2, Lemma
2.2]. Let P = E − C. Then P is an uncountable perfectly meager set, so that
the space M(P ) is hereditarily weakly perfect (see Corollary 5.2) and not perfect.
Let M denote the topology of M(P ).

The subspace (E,ME) of M(P ) is hereditarily weakly perfect and quasi-
developable. We claim that (E,ME) is Lindelöf. For suppose U is a collection
of ME-open sets that covers E. Choose a countable subcollection U0 that covers
the countable set C. Because C ⊂ M(P ) − P , each M-neighborhood of a point
x ∈ C is an E-neighborhood of x. Let V0 =

⋃

U0. Then C ⊂ V0 so that E − V0

must be countable. Choose a countable subcollection U1 ⊂ U that covers E − V0.
Then U0 ∪ U1 covers all of E, showing that (E,ME) is Lindelöf.

Finally, note that (E,ME) is not metrizable and not perfect, because (E,ME)
is Lindelöf and yet contains an uncountable set of isolated points.

6. A characterization of perfectly meager sets

Combining the results of Sections 3 and 5 of this paper yields new internal
topological characterizations of perfectly meager subsets of the unit interval. A
shorter, more direct proof will appear in [6].

Proposition 6.1. The following properties of a topological space X are equiva-
lent:

(a) X is a perfectly meager subset of the unit interval I = [0, 1];
(b) X ⊂ I and for every A ⊂ X there is a countable set B ⊂ A that is dense in

A and is a relative Gδ-subset of X;
(c) X is a zero-dimensional, separable metrizable space and for every A ⊂ X

there is a countable set B ⊂ A that is dense in A and is a Gδ-subset of X.
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Proof. By ([5, 6.3.2]), every zero-dimensional separable metrizable space can
be embedded in [0, 1] so that (c) and (b) are equivalent. We will verify the
equivalence of (a) and (b).

(a) ⇒ (b). In this section of the proof, we will need to use two separate
topologies on I, namely the Euclidean topology E and a certain Michael line
topology M. To avoid ambiguity, we will use terms such as“E-dense-in-itself”
and “relatively M-closed.”

Suppose X is a perfectly meager subset of (I, E). Fix a subset A ⊂ X and
a countable dense subset A0 ⊂ A. Let P = X − A0. Then P is also perfectly
meager, so that X(P ) is hereditarily weakly perfect (see (3.6)). Hence M(P )
is hereditarily weakly perfect. Denote the topology of M(P ) by M. As sets,
X ⊂ M(P ) = I so that X inherits two different topologies, namely EX and MX .

The space (X,MX) is weakly perfect and A0 is a relatively closed subset of
(X,MX). Hence there is a subset B ⊂ A0 such that B is a Gδ-subset of (X,MX)
and such that B is dense in A0 with respect to the MX topology. Observe that
in the space M(P ), the M-neighborhoods of points of A0 are the same as the E-
neighborhoods of those points, and that the same is true for points of B, because
B ⊂ A0 ⊂ I − P . Therefore, B is also dense in A0 with respect to the relative
Euclidean topology. Because A0 is E-dense in A , B is also dense in A with respect
to the E-topology. Next, because B is a relative Gδ-subset of (X,MX), there are
M-open sets G(n) ⊂ M(P ) such that B =

⋂

{G(n) ∩ X : n ≥ 1}. Once again
because the E- and M-neighborhoods of points of B are the same, we may assume
that each G(n) is E-open. Thus B is as described in (b).

(b) ⇒ (a). In this part of the proof, all topologies are Euclidean topologies
(and their subspace topologies). Given X as in (b), let K be a closed, dense-in-
itself subspace of I = [0, 1]. Let A = K ∩ X. We must show that A is a first
category subset of K. Use (b) to find a countable subset B ⊂ A that is dense in
A and is a relative Gδ-subset of X. A standard argument shows that A is of the
first category in K.

Remark. Proposition 4.1 allows us to add another equivalent statement to the list
in (6.1) that resembles condition (b), except that it involves non-metrizable sub-
sets of the Sorgenfrey line rather than subsets of the line with its usual Euclidean
topology. We did not include it in order to simplify the statement of (6.1).
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