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Abstract. Concepts of chaotic and of rigid spaces with respect to a given

class of mappings are introduced and studied in the paper. A special atten-

tion is paid to the classes of open and of monotone mappings. The obtained

results are applied to dendrites.

1. Introduction

A nondegenerate topological space X is said to be:

(a) chaotic if for any two distinct points p and q of X there exists an open
neighbourhood U of p and an open neighbourhood V of q such that no open
subset of U is homeomorphic to any open subset of V ;

(b) strongly chaotic if for any two distinct points p and q of X there exist open
neighborhoods U of p and V of q respectively such that no open subset of
U is homeomorphic to any subset of V ;

(c) rigid if it has a trivial autohomeomorphism group, i.e., if the only homeo-
morphism of X onto X is the identity;

(d) strongly rigid if the only homeomorphism of X into X is the identity of X

onto itself.

These four concepts were extensively studied in many papers. In [2] a com-
prehensive list of references is produced and a number of results are presented
or recalled, especially those related to curves (i.e., one-dimensional metric con-
tinua). Compare also [4] and [5]. In particular, the following proposition is known
[5, Proposition 3.13, p. 183].
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Proposition 1.1. For every topological space X we have the following four im-
plications and none of them can be reversed, even if X is a dendrite.

X is strongly chaotic ⇒ X is strongly rigid
⇓ ⇓

X is chaotic ⇒ X is rigid.

The aim of this paper is to introduce some more general concepts related to
the above ones, and to extend earlier results. We also ask some questions related
to further research in the area. The leading idea is to replace homeomorphisms
in the definitions (a)-(d) above by mappings belonging to a suitable class M of
mappings between topological spaces.

The author is very grateful to WÀlodzimierz J. Charatonik for his fruitful sug-
gestions and helpful comments on this paper.

2. Preliminaries

Given a subset A of a space X, we denote by cl (A) its closure in X, and
by int (A) its interior. A continuum means a compact connected metric space,
and a curve means a one-dimensional continuum. A dendrite means a locally
connected continuum containing no simple closed curve. Given two points p and
q of a dendrite X, we denote by pq the unique arc from p to q in X.

We shall use the notion of order of a point in the sense of Menger-Urysohn
(see e.g. [14, §51, I, p. 274]), and we denote by ord (p, X) order of the space X at
a point p ∈ X. It is well-known (see e.g. [14, §51, p. 274-307]) that the function
ord takes it values from the set

S = {0, 1, 2, . . . , ω,ℵ0, 2ℵ0}.

Points of order 1 in a space X are called end points of X; the set of all end points
of X is denoted by E(X). Points of order 2 are called ordinary points of X. It
is known that in a dendrite the set of all its ordinary points is a dense subset of
the dendrite. And for each n ∈ {3, 4, . . . , ω,ℵ0, 2ℵ0} points of order n are called
ramification points of X; the set of all ramification points is denoted by R(X). It
is known that for each dendrite X the set R(X) is at most countable, and that
points of order ℵ0 and 2ℵ0 do not occur in any dendrite.

Given a dendrite X we decompose it into disjoint subsets of points of a fixed
order. Namely for each n ∈ {1, 2, 3, . . . , ω} we put

Rn(X) = {p ∈ X : ord (p, X) = n}.
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We denote by comp (p, X) the component of the space X containing the point p.
By a free arc A in a space X we mean an arc A with end points x and y such
that A \ {x, y} is an open subset of X. In particular, by a maximal free arc in a
dendrite X we mean such an arc st ⊂ X that st ∩ (E(X) ∪R(X)) = {s, t}.

A mapping means a continuous transformation. A mapping f : X → Y is said
to be:
– a local homeomorphism if each point in X has an open neighborhood U such
that f(U) is open in Y and f |U : U → f(U) is a homeomorphism;
– open if f maps each open set in X onto an open set in Y ;
– monotone if the inverse image of each point of Y is connected; or, which is
equivalent provided X is a compact Hausdorff space, if the inverse image of each
connected subset of Y is connected;
– light if f−1(y) has one-point components for each y ∈ Y (note that if the inverse
images of points are compact, this condition is equivalent to the property that
they are zero-dimensional).

As usual, the symbol N stands for the set of all natural numbers. Let M be
a class of mappings between topological spaces that contains the class of homeo-
morphisms. A nondegenerate topological space X is said to be:
– semi-chaotic with respect to M (shortly semi-M-chaotic) provided that for any
two distinct points p and q of X there are open neighborhoods U and V of p and
q respectively such that for every two open subsets U ′ ⊂ U and V ′ ⊂ V either
there is no surjection in M from U ′ onto V ′ or there is no surjection in M from
V ′ onto U ′;
– (strongly) chaotic with respect to M (shortly (strongly) M-chaotic) provided
that for any two distinct points p and q of X there exist an open neighbourhood
U of p and an open neighbourhood V of q such that no open subset of U can be
mapped onto any open subset (onto any subset) of V under a mapping belonging
to M;
– (strongly) rigid with respect to M (shortly (strongly) M-rigid) provided that
the only mapping from M of X onto itself (onto a subspace of X) is the identity
of X onto X.

If we take as M the class of homeomorphisms, we get the concepts of chaotic,
strongly chaotic, rigid or strongly rigid spaces in the sense of (a), (b), (c) or (d)
above, respectively.

Since H. Cook constructed in Section 3 of [7] a continuum M2 such that the
identity is the only mapping of M2 onto a nondegenerate subcontinuum of M2
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(see Theorem 11 of [7, p. 247]), then it follows that families of continua that are
strongly rigid with respect to any class of mappings are nonempty.

Continua which are rigid with respect to the class of all (continuous) mappings,
i.e., such that the identity is the only surjection of the continuum onto itself) are
called Cook continua ([17, Proposition 29, p. 546]). T. Maćkowiak has shown
that there exists a Cook continuum X which is arc-like, Suslinian and hereditarily
divisible by points ([17, Theorem 30, p. 547]). Further, he has constructed a Cook
continuum which is arc-like, hereditarily decomposable, and not only strongly
rigid but also hereditarily strongly rigid with respect to the class of all mappings,
i.e., such that each of its subcontinua is strongly rigid with respect to this class
(see [17, Corollary 32, p. 550] and [18, Corollary 6.2, p. 32]).

3. Open mappings

Let O denote the class of open mappings between topological spaces. We
consider asM any class of mappings that is contained in the classO. For example,
the class of homeomorphisms, of local homeomorphisms and of all open mappings
are such classes. To make formulations of statements shorter, we shall use the
terms openly chaotic (rigid, strongly rigid) rather then chaotic (rigid, strongly
rigid) with respect to the class O of open mappings.

A class M of mappings is said to be hereditary with respect to open subspaces
provided that if a mapping f : X → Y is in M and X ′ is an open subspace
of X, then the restriction f |X ′ : X ′ → f(X ′) ⊂ Y also is in M. For example,
the classes of homeomorphisms, of local homeomorphisms or of open mappings
are hereditary with respect to open subspaces, while monotone mappings are
not. Note that if M ⊂ O, then M need not be hereditary with respect to open
subspaces. In fact, let M denote the class of mappings that are monotone and
open simultaneously. Further, let C and R stand for the spaces of complex and of
real numbers, respectively, with their natural topologies. If f : C → R is defined
by f(z) = |z| for z ∈ C, then f ∈ M. Putting X ′ = {z ∈ C : |Re (z)| < 1} we
see that X ′ is an open subspace of C, while the restriction f |X ′ is open but not
monotone, so it is not in the class M.

Theorem 3.1. Let a class M of mappings be hereditary with respect to open
subspaces. If M⊂ O, then each M-chaotic space is M-rigid.

Proof. Let a space X be M-chaotic. Then it is chaotic, and thus Hausdorff.
Suppose X is not M-rigid. There exists a surjection f : X → X such that f ∈M
and f is not the identity. Thus there exists a point p in X that is distinct from
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f(p) = q. Let U and V be disjoint open neighborhoods of p and q respectively. By
continuity of f at p there is an open set U ′ ⊂ U such that p ∈ U ′ and f(U ′) ⊂ V .
Since f is open, f(U ′) is an open subset of V , and since M is hereditary with
respect to open subspaces, the restriction f |U ′ : U ′ → f(U ′) is in M. This
contradicts the assumption that X is M-chaotic.

Note that the classes of homeomorphisms, of local homeomorphisms and of
open mappings satisfy the assumptions of Theorem 3.1. Thus we have the follow-
ing corollary (being a generalization of [2, Proposition 6, p. 221]).

Corollary 3.2. If M denotes one of the following classes of mappings: homeo-
morphisms, local homeomorphisms, or open mappings, then each M-chaotic space
is M-rigid.

The following observation can easily be verified.

Observation 3.3. If a class M of mappings is hereditary with respect to open
subspaces, then each strongly M-chaotic space is strongly M-rigid.

Corollary 3.4. Let a class M of mappings be hereditary with respect to open
subspaces. If M⊂ O (in particular, if M denotes the class of homeomorphisms,
of local homeomorphisms, or of all open mappings), then we have the following
four implications and none of them can be reversed, even if X is a dendrite and
M is the class of homeomorphisms:

X is strongly M-chaotic ⇒ X is strongly M-rigid
⇓ ⇓

X is M-chaotic ⇒ X is M-rigid.
(3.4.1)

Proof. The two vertical implications are true by the definitions. The upper
horizontal one is just Observation 3.3, and the lower horizontal is Theorem 3.1.
It is proved in [5], Proposition 3.13, p. 183] that the considered implications
cannot be reversed if X is a dendrite and M is the class of homeomorphisms.

Proposition 3.5. Let M be a class of mappings between topological spaces. Con-
sider the following four conditions that a topological space X may satisfy

(3.5.1): for every subset U of X and for every mapping f : U → f(U) ⊂ X

with f(U) being open, if f ∈M, then f is the identity on U ;
(3.5.2): for any two nonempty distinct subsets U and V of X with V being

open there is in M no mapping from U onto V ;
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(3.5.3): for any two nonempty disjoint subsets U and V of X with V being
open there is in M no mapping from U onto V ;

(3.5.4): for any two distinct points p and q of X there exists an open neigh-
bourhood U of p and an open neighbourhood V of q such that there is in M
no surjection from a subset of U onto an open subset of V .

If the space X is Hausdorff, then the following three implications are true:

(3.5.1) ⇒ (3.5.2) ⇒ (3.5.3) ⇒ (3.5.4).

Proof. All implications are straightforward. Only in the last one do we use the
assumption that X is Hausdorff.

Proposition 3.6. Let a class M of mappings be hereditary with respect to open
subspaces. If M⊂ O, then (3.5.4) implies (3.5.1), and therefore conditions (3.5.1)
through (3.5.4) of Proposition 3.5 are equivalent.

Proof. Assume (3.5.1) does not hold. Then there are a set U0 ⊂ X and a
mapping f : U0 → f(U0) ⊂ X with f(U0) being an open subset of X such that
f ∈ M and f is not the identity on U0. Thus there is a point p0 ∈ U0 such that
p0 6= f(p0). Put q0 = f(p0) and note that by (3.5.4) there are open neighborhoods
U and V of p0 and q0 respectively such that

(3.6.1): for each subset U ′ of U and for each open subset V ′ of V there is in
M no surjection f ′ from U ′ onto V ′.

Since f is continuous at p0, there exists an open neighbourhood U1 of p0 (in X)
such that f(U1 ∩U ∩U0) ⊂ V . Put U ′ = U1 ∩U ∩U0 and V ′ = f(U ′). Thus U ′ is
an open subspace of the domain U0 of f , and since f ∈ M ⊂ O, its image V ′ is
an open subset of the range f(U0) of f . Since f(U0) is open in X, we see that V ′

is open in X, too. The class M being hereditary with respect to open subspaces,
the restriction f ′ = f |U ′ : U ′ → V ′ = f(U ′) is in M. Since V ′ is an open subset
and V ′ ⊂ V , we have a contradiction to (3.6.1). The proof is complete.

Under the assumptions of Proposition 3.6, putting U = X in condition (3.5.1) we
see that if a mapping f : X → f(X) ⊂ X is in M, then f is the identity (on X),
and thus X is strongly M-rigid. So, we have proved the following corollary.

Corollary 3.7. Let a class M of mappings be hereditary with respect to open
subspaces. If M ⊂ O, then each of the equivalent conditions (3.5.1) through
(3.5.4) of Proposition 3.5 implies that a Hausdorff space X is strongly M-rigid.

The author does not know if the assumption on M of being hereditary with
respect to open subspaces is indispensable in Theorem 3.1 and Proposition 3.6.
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As is known from Corollary 4.9 (of the next chapter), the question of the exis-
tence of dendrites that are either (strongly) chaotic or (strongly) rigid with respect
to monotone mappings has a negative answer. Concerning a similar problem for
the class of open mappings, it is natural to verify first whether or not the known
examples of (strongly) chaotic or (strongly) rigid dendrites are either chaotic or
rigid with respect to open mappings. To do this recall the following result, which
is a part of Theorem 13 of [4].

Statement 3.8. If a dendrite X satisfies the conditions

cl (R(X)) = X(3.8.1)

and

card Rn(X) ≤ 1 for each n ∈ {3, 4, . . . , ω},(3.8.2)

then X is chaotic.

The simplest dendrite known to be chaotic (and to which Statement 3.8 can be
applied) is one due to Johan J. de Iongh and described by de Groot and Wille in
[10, p. 443] (compare also [2, Section 5, p. 227-228]). It satisfies, besides (3.8.1)
the following conditions:

card Rn(X) = 1 for each n ∈ {3, 4, . . . },(3.8.3)

Rω(X) = ∅.(3.8.4)

However, neither conditions (3.8.1), (3.8.3) and (3.8.4), nor a rough description
given in [10], nor one presented in [2], lead to a uniquely determined dendrite,
because the constructed dendrite X depends on a function that assigns the con-
secutive i-ods (used in the successive steps of the construction) to midpoints of
the maximal free arcs in finite dendrites (i.e., trees) the closure of the union of
which is just X (see [2, p. 228]). Thus we call any of the dendrites obtained
in this way to be of de Groot-Wille type rather than call it the de Groot-Wille
dendrite.

We show that the above mentioned function can be chosen in such a way
that the resulting dendrite, being chaotic, is not openly chaotic. To this aim we
need another definition of the considered dendrite, namely one in terms of inverse
limits. To show the mentioned result we will use the following proposition, an
easy proof of which is left to the reader.

Proposition 3.9. For each topological space X the following conditions are equiv-
alent
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(3.9.1): X is M-chaotic;
(3.9.2): X is Hausdorff, and for every two nonempty distinct open subsets U

and V of X there is in M no surjection from U onto V ;
(3.9.3): X is Hausdorff, and for every two nonempty disjoint open subsets U

and V of X there is in M no surjection from U onto V .

Theorem 3.10. There exists a dendrite X of de Groot-Wille type which is chaotic
and not openly chaotic.

Proof. The dendrite X (in the plane) will be defined as

X = cl (
⋃

{Xn : n ∈ N}),(3.10.1)

where each Xn is a tree, and Xn ⊂ Xn+1 for each n ∈ N. To show that X is not
openly chaotic we will use condition (3.9.3) of Proposition 3.9, namely we will find
an open retraction of X onto Y ⊂ X that maps an open subset of X to an open
subset of Y . The retraction will be defined as an inverse limit mapping. Therefore
it will be convenient to construct three inverse sequences simultaneously: of trees
Xn, of trees Yn ⊂ Xn, and of (open) retractions gn : Xn → Yn.

Let us start with the sequence {Ti : i ∈ N}, where each Ti is an i-od, i.e., the
union of i straight line segments Am

i for m ∈ {1, . . . , i} emanating from one point,
called the origin of Ti. We proceed by induction.

Define X1 as the unit straight line segment with end points a and b, and denote
by c its midpoint. We consider X1 as the union of m(1) = 2 segments: ac and cb.
For further purposes let j1 = 0. Put Y1 = ac ⊂ X1 and define g1 : X1 → Y1 by
the conditions

g1|Y1 = id |Y1, g1(b) = a, and g1|cb : cb → ac is linear.

Thus g1 is an open retraction. Let x1 and x2 be the midpoints of the segments
ac and cb contained in X1.

Define X2 as the union of X1 and of j2 = j1 + m(1) = 2 copies of T1 and
T2 = Tj2 diminished in such a way that the diameter of each copy is less than
1/2, and located in the plane so that, for i ∈ {1, 2}, the origin of Ti is identified
with xi and xi is the only common point of X1 and Ti. Thus X2 is a tree which
is the union of m(2) = 7 maximal free segments, i.e., segments whose end points,
and only end points, belong to the set {c}∪E(X2)∪R(X2). Note that X1 ⊂ X2,
and that ord (x1, X2) = 3 and ord (x2, X2) = 4.

Define a bonding mapping f1 : X2 → X1 by

f1|X1 = id |X1, and f1(Ti) = {xi} for i ∈ {1, 2},
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whence it follows that f1 is a monotone retraction. Define further

Y2 = Y1 ∪ T1 ⊂ X2.

Note that ord (c, X1) = ord (c, X2) = 2, and thus c cuts X1 as well as X2 into two
components. Thus we can write

Yn = cl (comp (a, Xn \ {c})) for n ∈ {1, 2}.

Define g2 : X2 → Y2 by the conditions: g2|Y2 = id |Y2, g2|X1 = g1, and g2|Am
2 :

Am
2 → T1 for m ∈ {1, 2} are linear surjections. Thus g2(x2) = x1, and we see

that g2 is an open retraction. It can be verified that the diagram

X1
f1←−−−− X2

g1





y





y
g2

Y1 ←−−−−
f1|Y2

Y2

commutes.
Assume now that a tree Xn containing X1 has been defined for some natural

number n ≥ 2 in such a way that it is the union of finitely many, say m(n),
straight line segments whose end points, and only end points, are in the set
{c} ∪ E(Xn) ∪R(Xn), and that Xn contains (properly diminished) copies of the
first jn terms of the sequence {Ti : i ∈ N}. We also assume that

(3.10.2): ord (c, Xn) = 2,
(3.10.3): Yn = cl (comp (a, Xn \ {c})),
(3.10.4): gn : Xn → Yn is an open retraction that is linear on each segment

contained in Xn whose end points, and only end points, are in the set
{c} ∪ E(Xn) ∪R(Xn).

To define the dendrite Xn+1 consider all m(n) segments mentioned in (3.10.4).
We label the midpoints x of these segments with indices i ∈ {jn + 1, . . . , jn+1},
where jn+1 = jn + m(n), so that

(3.10.5): xi1 ∈ Yn and xi2 ∈ Xn \ Yn imply i1 < i2 for every i1, i2 ∈ {jn +
1, . . . , jn+1}.

With each point xi so labeled we associate the set Ti for the indices i ∈ {jn +
1, . . . , jn+1}. We take each midpoint xi as the origin of a diminished copy Ti so
that the diameter of Ti is less than 1/2n+1 and that Xn has only the point xi in
common with the added copy Ti. All this can clearly be done so carefully that
the resulting set Xn+1, when defined as the union of Xn and of all m(n) copies
Ti for i ∈ {jn + 1, . . . , jn+1}, is a dendrite.
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Note that ord (c, Xn+1) = 2, and define Yn+1 = cl (comp (c, Xn+1 \ {c})).
Observe that ord (xi, Xn+1) = i + 2, whence it follows by (3.10.5) that

(3.10.6): if xi1 ∈ Yn ⊂ Xn+1 and xi2 ∈ Xn\Yn ⊂ Xn+1, then ord (xi1 , Xn+1) <

ord (xi2 , Xn+1).

It should be stressed here that labeling the midpoints of the considered seg-
ments so that condition (3.10.5) (and, consequently, condition (3.10.6)) is satis-
fied, we have defined the function mentioned before the formulation of Theorem
3.10 that guarantees the existence, for each n ∈ N, of an open mapping from an
open subset of Xn (namely from Xn \Yn) onto Yn \{c}, whence it will follow that
X is not openly chaotic.

Define fn : Xn+1 → Xn by fn|Xn = id |Xn and fn(Ti) = {xi} for each
i ∈ {jn + 1, . . . , jn+1}. Thus fn is a monotone retraction. Now define gn+1 :
Xn+1 → Yn+1 as follows. First, let gn+1|Xn = gn. So, for each midpoint xi ∈
Xn, where i ∈ {jn + 1, . . . , jn+1}, its image gn+1(xi) = gn(xi) ∈ Yn ⊂ Yn+1

is already determined and, since by (3.10.4) the mapping gn is linear on each
segment mentioned there,

(3.10.7): the point gn+1(xi) coincides with xj for some j ∈ {jn+1, . . . , jn+1}.

In particular, since gn is a retraction by (3.10.4), for each i ∈ {jn + 1, . . . , jn+1},
we have gn+1(xi) = xi if xi ∈ Yn, and, by (3.10.6),

(3.10.8): ord (gn+1(xi), Xn+1) < ord (xi, Xn+1) if xi ∈ Xn \ Yn.

Second, let gn+1|Yn+1 = id |Yn+1. It remains to define gn+1 on each copy Ti in
Xn+1 whose origin xi is in Xn \Yn. To this aim let xj = gn+1(xi) ∈ Yn according
to (3.10.7), and note that j < i by (3.10.5). Let Tj =

⋃

{Am
j : m ∈ {1, . . . , j}}

and Ti =
⋃

{Am
i : m ∈ {1, . . . , i}}, where Am

j and Am
i are arms of Tj and Ti

respectively. Define gn+1|Am
i : Am

i → Am
j for m ∈ {1, . . . , j} and gn+1|Am

i :
Am

i → A1
j for m ∈ {j + 1, . . . , i} as linear surjections. Thus the definition of

gn+1 : Xn+1 → Yn+1 is complete, and it follows that gn+1 is an open retraction.
It follows also from the definitions of the mappings that the diagram

(3.10.9)

Xn
fn←−−−− Xn+1

gn





y





y
gn+1

Yn ←−−−−−
fn|Yn+1

Yn+1

is exact, which means that the diagram commutes and for every pn ∈ Xn and
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qn+1 ∈ Yn+1 the condition gn(pn) = (fn|Yn+1)(qn+1) implies

(fn)−1(pn) ∩ g−1
n+1(qn+1) 6= ∅

(see [13, §3, IV, p. 19]). Finally let

X = lim←−{Xn, fn}.(3.10.10)

Then the continuum X as defined in (3.10.10) is homeomorphic to the one of
(3.10.1) according to [1, Theorem I, p. 348]. Since each Xn is a dendrite and the
bonding mappings are monotone, X is a dendrite [21, Theorem 4, Part 3, p. 229],
and consequently

Y = lim←−{Yn, fn|Yn+1}

is a subdendrite of X. Further, it follows that

Y = cl (
⋃

{Yn : n ∈ N}) = cl (comp (a, X \ {c})).

Let g = lim←− gn. Since for each n ∈ N the diagram (3.10.9) is exact, it follows that
g : X → Y is continuous [8, Chapter 8, Theorem 3.13, p. 218], surjective (since
for each n ∈ N all four mappings in the diagram (3.10.9) are surjective), and open
([9], Theorem 3, p. 58]; see also [22, Theorem 4, p. 61]).

Take two disjoint open subsets of X, viz. X \ Y and Y \ {c}. Since open map-
pings are hereditary with respect to open subspaces, we see that the restriction
g|(X \ Y ) : X \ Y → Y \ {c} is open. Then X is not openly chaotic according to
condition (3.9.3) of Proposition 3.9. Finally, it follows from Statement 3.8 that
X is chaotic (for another argument see [2, Section 5, p. 227-228]). The proof is
complete.

Question 3.11. Is the dendrite X of Theorem 3.10 semi-openly chaotic?

Question 3.12. Does there exist a dendrite of de Groot-Wille type which is a)
semi-openly chaotic, b) openly chaotic?

Question 3.13. Note that each dendrite of de Groot-Wille type satisfies the
condition

(3.13.1): for each k ∈ N there exists m ∈ N with m ≥ k such that Rm(X) 6= ∅,
which is a consequence of (3.8.3). Does there exist an openly chaotic dendrite
satisfying (3.13.1)?

The chaotic dendrites considered above contain ramification points of arbitrar-
ily great finite order (compare conditions (3.8.1) and (3.8.2) of Statement 3.8).
Another type of chaotic or rigid dendrites are those that have orders of points
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bounded. Constructions of such dendrites are known from Theorem 27 and Ex-
ample 33 of [4], and Theorem 3.7 of [5, p. 185] (a construction of a chaotic
dendrite given in [2, Statement 13, p. 231], is a special case of that described in
Theorem 27 of [4]). It will be shown below that some of the above quoted results
can be generalized from the class of homeomorphisms to that of open mappings.
However, to show the generalization, an argument is used that depends on, and
is strictly connected with, some structural properties of the dendrites. Thus it is
necessary to repeat their construction. It should be stressed, however, that the
main idea of this construction is taken from E. W. Miller’s paper [20], while some
parts of the proof given below imitate the argument presented in the proof of
Statement 13 of [2], p. 231-234].

Theorem 3.14. For any two integers m and n with 3 ≤ m < n there exists a
chaotic, strongly rigid and not strongly chaotic dendrite X(m, n) such that

(3.14.1): ord (x, X(m, n)) ∈ {1, 2, m, n} for each point x ∈ X(m, n);
(3.14.2): if α ∈ {1, 2, m, n}, then cl (Rα(X(m, n))) = X(m, n);
(3.14.3): if C is a subcontinuum of X(m, n) such that there is an open map-

ping f : C → f(C) ⊂ X(m, n) with int (f(C)) 6= ∅, then C = X(m, n) and
f is the identity. Thus X(m, n) is openly rigid.

Proof. First we define two auxiliary dendrites D0 and D1. Within a straight
line segment ab ordered from a to b by < we choose points ai (where i ∈ N) so
that

ai+1 < ai and lim
i→∞

ai = a.

Within each interval ai+1ai choose points ai,j so that

ai,j < ai,j+1 and lim
j→∞

ai,j = ai.

At each point ai and ai,j erect m− 2 straight line segments mutually disjoint
apart from these points and having only these points in common with the segment
ab. Take the segments so that for any positive number ε only finitely many of
them have length greater than ε. The set of points obtained in this way is called
D0. It is clear that D0 is a dendrite.

Everything is the same in the definition of D1 except that the points ai,j are
taken within the intervals ai+1ai so that

ai,j+1 < ai,j and lim
j→∞

ai,j = ai+1.
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So D1 is also a dendrite. The point a is called the origin of either D0 or D1,
and the straight line segments which we have erected are all referred to as straight
line segments of rank 1.

The defined dendrites D0 and D1 start an inductive construction of dendrites
Dγ1...γk

, where k ∈ N and γ1 . . . γk is a zero-one sequence. Assume now that we
have defined dendrites Dγ1...γk

for some k ∈ N. Assume furthermore that we have
defined the expressions: the origin of Dγ1...γk

and the straight line segments of
rank k of Dγ1...γk

. To define the set Dγ1...γk0 we proceed as follows. We replace
each straight line segment of rank k of Dγ1...γk

by a copy of D0 diminished so
that the diameter of the copy equals the length of the straight line segment, and
located in such a way that the origin of the copy of D0 is the foot of the erected
straight line segment. Furthermore, we do this, as we clearly can, so that the
resulting set Dγ1...γk0 is a dendrite. By the origin of Dγ1...γk0 we mean the origin
of Dγ1...γk

, and by the straight line segments of rank k + 1 of Dγ1...γk0 we mean
the segments of rank 1 of the sets D0 used in obtaining Dγ1...γk0 from Dγ1...γk

.
The definition of Dγ1...γk1 is the same except that in obtaining Dγ1...γk1 from

Dγ1...,γk
we use sets D1 instead of D0. The inductive definition of Dγ1...γk

for
each k ∈ N is thus finished.

Now define the desired dendrite X(m, n). The construction uses the sequence
of dendrites

D0, D10, D110, . . . , D11...10, . . .

which we re-label in the same order as

W1, W2, W3, . . . , Wk, . . .

We begin with the dendrite W1 whose origin is the point a, and we adjoin
to it n − 1 straight line segments ab1, . . . , abn−1 so that the only point which
any two of the sets W1, ab1, . . . , abn−1 have in common is the point a. Let us
denote the resulting dendrite by X1. Observe that just one of the n distinct arcs
ab ⊂ W1, ab1, . . . , abn−1 contained in X1 which meet at a (namely the arc ab)
has the property that there is a sequence of ramification points on it of Menger-
Urysohn order m which converges to a.

Consider now an arbitrary maximal free arc in X1. It is evident from the con-
struction that every such an arc is a straight line segment. Denote the midpoint
of this segment by x. We obtain, of course, a countable set of points x. With this
countable set we associate, in a one-to-one way, the sets Wk of odd indices k, i.e.,

W3, W5, . . . , W2r+1, . . . ,
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and take x as the origin of the associated set W2r+1 = W (x) in such a way that
X1 and W (x) have only the point x in common. Moreover, to the point x we
attach n− 3 straight line segments having x as one end point and having only x

in common with W (x) ∪X1. All this can be clearly done in such a way that the
resulting set X2 is a dendrite. Observe that, for every point y of X2 of Menger-
Urysohn order n, just one of the n essentially distinct arcs of X2 which meet at
y (namely the arc contained in W (x) if y = x or in W1 if y = a) has the property
that there is a sequence of ramification points on it of order m which converges
to y. Now, X3 is related to X2 in the same way as X2 is related to X1, except
that we make use of sets W2(2k+1) instead of sets W2k+1. In general, Xi+1 is
related to Xi in the same way as Xi is related to Xi−1 except that we make use
of sets W2i−1(2k+1) instead of sets W2i−2(2k+1). It can be observed easily that,
for every point y of Xi of order n, just one of the n essentially disjoint arcs in
Xi which meet at y has the property mentioned previously. It is well known that
such a construction can be carried through so that the closure of the union of the
dendrites Xi successively obtained is itself a dendrite. We may assume then that

X(m, n) = cl (
⋃

{Xi : i ∈ N})(3.14.4)

is a dendrite.
Now we intend to prove the needed properties of X(m, n). We notice first that

any ramification point of X(m, n) is either of order m or of order n. Thus (3.14.1)
follows from the construction. The points of order n are the point a of X1 and
the points x which arise at successive stages of the process of construction. We
put

K = Rn(X(m, n)).(3.14.5)

Since for each i ∈ N we take in the construction of Xi the midpoints x of all
maximal free arcs in Xi, the set K is dense in X(m, n). Furthermore, notice that
the above mentioned property of points of order n in each Xi is preserved in X.
Precisely, if y is in K, then there is just one of n arcs in X(m, n) ending at y and
mutually disjoint out of it, such that it contains a sequence of ramification points
of order m converging to y. Thus an open neighbourhood about a point y ∈ K

contains points of order m in X(m, n) and, henceforth, the density of the set
Rm(X(m, n)) in X(m, n) follows from the density of the set K. Consequently, we
see that (3.8.1) holds true, which is equivalent, for dendrites, to cl (E(X(m, n))) =
X(m, n) (see [3, Theorem 2.4, p. 167], cf. [6, Theorem 4.6, p. 10]). The set of
points of order 2 is always dense in a dendrite ( [19, p. 309]; cf. [14, §51, VI,
Theorem 8, p. 302]). Thus (3.14.2) is shown.
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It is proved in Theorem 27 of [4] that the dendrite X(m, n) is chaotic and
strongly rigid, and an argument is given in [5, Remark 5.4, p. 185] that it is not
strongly chaotic.

Now we prove that (3.14.3) holds. So, let C be a subcontinuum of X(m, n)
and let f : C → f(C) ⊂ X(m, n) be an open mapping such that int (f(C)) 6= ∅.
Since the set K defined by (3.14.5) is dense, we have K ∩ int (f(C)) 6= ∅. Recall
that f , being open, does not increase order of a point of compact spaces ([24,
Chapter 8, Corollary 7.31, p. 147]). Since no point of X(m, n) is of order greater
than n and since K contains all points of order n of X(m, n), for each point
v ∈ K ∩ int (f(C)) there is a point u ∈ C ∩K such that f(u) = v. Since X(m, n)
is locally connected at v, we can choose a closed connected neighbourhood V of
v such that V ⊂ int (f(C)). Denote by U the component of f−1(V ) to which the
point u belongs. It follows from [24, (7.5) p. 148] that f(U) = V .

We claim that

the restriction f |U : U → V is open.(3.14.6)

Indeed, let Z be an open subset of U . Thus there is an open subset Z0 of C such
that Z = Z0 ∩ U . Then, since f(U) = V , we infer that

(f |U)(Z) = (f |U)(Z0 ∩ U) = V ∩ f(Z0),

and since f(Z0) is an open subset of f(C), we see that (f |U)(Z) is an open subset
of the range space V . So, the claim (3.14.6) is proved.

Thus f |U : U → V is an open surjection defined on a dendrite U . Since every
nonconstant open mapping defined on a dendrite is light, (see [6, Corollary 6.15,
p. 25]) Theorem 2.4 of [24, p. 188] can be applied which says that that if f is
open and light mapping of a compact space, then for each dendrite D in the range
and for each point x0 ∈ f−1(D) there is a dendrite E in the domain such that
x0 ∈ E and f |E : E → D is a homeomorphism (compare also [6], Corollary 6.22,
p. 26]). Thereby

(3.14.7): there is a dendrite E ⊂ U such that u ∈ E and that the restriction
f |E : E → V is a homeomorphism.

Let us assume for definiteness (by (3.14.7) the argument is similar in the opposite
case) that the set Wi which has the point u as its origin is of lower index than the
set Wi which has v as its origin. Consider now an arc ubu ⊂ U which is the only
arc of n arcs ending at u and pairwise disjoint out of u that contains a sequence
of ramification points of order m converging to u. Let vbv ⊂ V have a similar
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meaning. Since

ord (u, X(m, n)) = ord (v, X(m, n)) = n,

it is clear by (3.14.7) that there are a subarc ub′u of ubu and a subarc vb′v of
vbv such that f(ub′u) = vb′v. We can take b′u so close to u and, similarly, b′v so
close to v that ub′u and vb′v are straight line segments. Any ramification point
of X(m, n) on ub′u is mapped under f into a ramification point of X(m, n) on
vb′v. If W (u) = W1, we see that we have already reached a contradiction, by
(3.14.7). For W1 = D0 and W (v) = Wi = D111...10, which means that ub′u
contains ramification points being limit points of ramification points from the
left, while vb′v contains no such points. If W (u) = W2, we fix our attention upon
some one ramification point of X(m, n) interior to ub′u. Let us denote this point by
su and put sv = f(su) ∈ vb′v. Consider the straight line segments erected to ub′u
and vb′v at su and sv respectively. Denote these straight line segments by sutu and
svtv. Now, since W2 = D10, su is a limit point along sutu of ramification points
of X(m, n) which are, in turn, limit points of ramification points of X(m, n) from
below along sutu, while svtv contains no such points since W (v) = Wi = D111...10.
It follows from (3.14.7) that the argument exemplified above can be extended to
apply to the general case where W (u) = Wi and W (v) = Wj for i < j and j < i,
respectively. Therefore we conclude that u = v if u, v ∈ K and f(u) = v. Thus
f is the identity on K which is dense in X(m, n), whence it follows that f is the
identity on X(m, n).

In particular, if C = X(m, n) = f(C), then the condition int (f(C)) 6= ∅ is
obviously satisfied, whence it follows that each open autosurjection on X(m, n)
is the identity, and therefore X(m, n) is openly rigid. The proof is complete.

Remark 3.15. The assumption int (f(C)) 6= ∅ is essential in (3.14.3) because
condition (3.14.2) implies that the set R(X(m, n)) is dense in X(m, n) and there-
fore X(m, n) contains a homeomorphic copy of the standard universal dendrite
D3 of order 3 (see [3, Proposition 3.2, p. 169]), and since by (3.14.1) for each
point x ∈ X(m, n) the order ord (x, X(m, n)) is finite, there exists an open map-
ping f : X(m, n) → D3 ⊂ X(m, n). This shows that the dendrite X(m, n) being
openly rigid is not strongly openly rigid.

Question 3.16. Is the dendrite X(m, n) of Theorem 3.14 openly chaotic?

Our next result generalizes Theorem 3.7 of [5], p. 185]. Namely, the same con-
struction as in that theorem (which is, in fact, a modification of the construction
recalled above in the proof of Theorem 3.14, with changing the role of numbers
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m and n in the definition of dendrites X(m, n) of Theorem 3.14 to get some extra
properties needed in a proof) as well as a very similar proof (based on condi-
tion (3.14.7)) lead to this more general result. Thus the details of the proof are
omitted.

Theorem 3.17. For any two integers m and n with 3 ≤ m < n there exists a
strongly chaotic and openly rigid dendrite Y (m, n) such that

(3.17.1): ord (x, Y (m, n)) ∈ {1, 2, m, n} for each point x ∈ Y (m, n);
(3.17.2): if α ∈ {1, 2, m, n}, then cl (Rα(Y (m, n))) = Y (m, n);
(3.17.3): for every arc A in Y (m, n) we have A ∩Rm(Y (m, n)) 6= ∅.

Question 3.18. Is the dendrite Y (m, n) of Theorem 3.17 openly chaotic?

4. Monotone mappings of dendrites

Since strongly rigid (thus rigid) dendrites as well as strongly chaotic (thus
chaotic) ones do exist in profusion (even having various additional properties:
see [4, Theorem 27 and Example 33]; [5, Theorem 5.5, p. 185]), it is interesting
to know whether or not these existence results can be extended from homeo-
morphisms to other classes of mappings. Mappings which are relatively close to
homeomorphisms are local homeomorphisms. However, each local homeomor-
phism of a continuum onto a dendrite is a homeomorphism (see [24, Chapter 10,
Corollary, p. 199]; for generalizations a) with a λ-dendroid as the range space
see [15, Corollary 10, p. 858]; b) with a tree-like continuum as the domain or the
range space see [16, Theorem, p. 64 and Corollary, p. 67]). Thus considering M
as the class of local homeomorphisms with X as an arbitrary tree-like continuum
is not interesting from our point of view.

Another class of mappings that are generalizations of homeomorphisms is the
class of monotone ones. We will show that the mentioned results cannot be ex-
tended to this class of mappings: no nondegenerate dendrite is (strongly) chaotic
or (strongly) rigid with respect to monotone mappings.

We start our study of monotone mappings of dendrites with a theorem of a
more general nature.

Theorem 4.1. Let a compact space X have the following properties

(4.1.1): the set of all points of X at which X is locally connected is dense in
X;

(4.1.2): for each open connected subset C of X and for each monotone map-
ping f : X → X the restriction f |C : C → f(C) ⊂ X is also monotone.
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Then, if X is (strongly) chaotic with respect to monotone mappings, then it is
also (strongly) rigid with respect to this class of mappings.

Proof. Suppose X is not rigid with respect to monotone mappings. Then there
exists a monotone surjection f : X → X distinct from the identity. Thus there
is a point p ∈ X such that p 6= f(p) = q. Since X, being chaotic with respect to
monotone mappings, is a Hausdorff space by Proposition 3.9, there are disjoint
open neighborhoods U and V of points p and q respectively. Since X is locally
connected at each point of a dense subset of X, there is a point q′ ∈ V at which
X is locally connected. Hence there is an open connected neighbourhood V ′ ⊂ V

of q′. Let U ′ = f−1(V ′). Then, by continuity of f , the set U ′ is open. Further,
since X is compact and f is monotone, U ′ is connected as the inverse image of a
connected set ([24, Chapter 8, (2.2), p. 138]). Hence, by (4.1.2), the restriction
f |U ′ : U ′ → V ′ is a monotone surjection. Note that U ′ 6= V ′, because otherwise
we would have p ∈ U ′ = V ′ ⊂ V and p ∈ U , a contradiction with U ∩ V = ∅.
Applying the equivalence of conditions (3.9.1) and (3.9.2) of Proposition 3.9 we
see that X is not chaotic with respect to monotone mappings.

Suppose now X is not strongly rigid with respect to monotone mappings. Then
there exists a monotone mapping f : X → X which is not the identity. Thus there
is a point p ∈ X such that p 6= f(p) = q. Take two disjoint open neighborhoods
U and V of points p and q respectively. By (4.1.1) and by continuity of f there
is an open connected set U ′ ⊂ U such that f(U ′) ⊂ V . By (4.1.2) the restriction
f |U ′ : U ′ → f(U ′) ⊂ V is also monotone. Thus X is not strongly chaotic with
respect to monotone mappings. The proof is complete.

Theorem 4.1 implies the following result.

Theorem 4.2. Let a compact space X satisfy conditions (4.1.1) and (4.1.2), and
let M denote the class of monotone mappings. Then the four implications (3.4.1)
hold.

Before proving the next result we show an easy lemma.

Lemma 4.3. Let a monotone mapping f : X → Y be defined on a dendrite X.
Then, for each connected subset U of X, the restriction f |U : U → f(U) ⊂ Y is
also monotone.

Proof. For each point y ∈ f(U) we have (f |U)−1(y) = f−1(y)∩U . Both f−1(y)
and U are connected subsets of the dendrite X. Since a continuum is a dendrite
if and only if the intersection of two connected sets is connected (see [24, Chapter
5, (1.1) (v), p. 88]), the conclusion follows.
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Note that each dendrite satisfies condition (4.1.1) and, by Lemma 4.3, also condi-
tion (4.1.2). Thus we see by Theorem 4.1 that the implications (3.4.1) of Theorem
4.2 hold true if X is a dendrite. But it will be seen from further results that for
dendrites all of these implications are satisfied vacuously. To prove this recall
several definitions and results.

Given a class M of mappings, we say that topological spaces X1 and X2 are
M-equivalent provided that there are in M surjections from X1 onto X2 and
from X2 onto X1. If M is the class of monotone mappings, then we say that X1

and X2 are monotone equivalent.
We denote by D3 the standard universal dendrite of order 3, i.e., a dendrite X

characterized by the following two conditions (see [23, Chapter K, p. 137]; [19,
Chapter 10, §6, p. 318]; [3, Section 3, p. 167-169])

(4.3.1): each ramification point of X is of order 3, i.e., R(X) = R3(X),

and

(4.3.2): for each arc A ⊂ X we have cl (A ∩R(X)) = A.

It is known that if a dendrite X satisfies (4.3.1), then it can be embedded into
D3.

The following proposition is a particular case of [3, Theorem 6.7, p. 180].

Proposition 4.4. If a dendrite X satisfies condition (3.8.1), then X is monotone
equivalent to D3.

Let M be a class of mappings between topological spaces. A space X is said to
be homogeneous with respect to M provided that for every two points p and q of
X there is a surjective mapping f : X → X such that f(p) = q and f ∈M. Kato
has proved the following result (see [11, Example 2.4, p. 59] and [12, Proposition
2.4, p. 223]; for a generalization see [3, Theorem 7.1, p. 186]).

Proposition 4.5 (H. Kato). The standard universal dendrite D3 of order 3 is
homogeneous with respect to monotone mappings.

The author is obliged to Professor Alejandro Illanes for the formulation and a
fruitful discussion of the following theorem.

Theorem 4.6 (A. Illanes). Let a dendrite X satisfy condition (3.8.1). Then for
each point p ∈ X \E(X) and for any two components C1 and C2 of X \ {p} there
is a monotone mapping f : X → X such that

f(C1) = C2, f(C2) = C1, and f |(X \ (C1 ∪ C2)) = id |(X \ (C1 ∪ C2)).
(4.6.1)
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Proof. Since p is not an end point of X, it is a cut point [24, Chapter 5, (1.1),
(ii), p. 88], and thus there are at least two components of X \ {p}. Take two of
them, C1 and C2, and note that

cl (Ci) = Ci ∪ {p} for i ∈ {1, 2},

and that, by (3.8.1),

cl (R(cl (Ci)) = cl (Ci) for i ∈ {1, 2}.(4.6.2)

By (4.6.2) and Proposition 4.4 each of the dendrites cl (C1) and cl (C2) is mono-
tone equivalent to D3. In particular there are monotone surjective mappings
g1 : cl (C1) → D3 and g2 : D3 → cl (C2). Let q ∈ g−1

2 (p). By Proposition 4.5
there is a monotone mapping g : D3 → D3 such that g(g1(p)) = q. Defining
f1 = g2 ◦ g ◦ g1 we see that f1 : cl (C1) → cl (C2) is a monotone surjection with
f1(p) = p. Similarly we can find a monotone surjection f2 : cl (C2) → cl (C1) such
that f2(p) = p. Define f : X → X putting

f |Ci = fi for i ∈ {1, 2} and f |X \ (C1 ∪ C2) = id |(X \ (C1 ∪ C2)).

It is obvious that f is a continuous monotone mapping satisfying condition
(4.6.1). The proof is finished.

It is observed in Proposition 25 of [4] that each rigid dendrite has a dense set of
ramification points. In fact, if (3.8.1) does not hold for a dendrite X, the closure
of each component of X \ cl (R(X)) is a free arc A, and therefore the needed
homeomorphism h : X → X can be defined so that h|X \ A is the identity and
h|A is not. Thus we have an observation.

Observation 4.7. If a dendrite X does not satisfy condition (3.8.1), then there
exists a homeomorphism of X onto itself which is not the identity.

Corollary 4.8. For each dendrite X there exists a monotone surjection f : X →
X which is not the identity.

Proof. Consider two cases. If (3.8.1) holds, the conclusion follows by Theorem
4.6. If (3.8.1) is not satisfied, then there is a free arc A in X \ cl (R(X)) and
therefore the needed monotone surjection can be defined as a homeomorphism
h : X → X such that h|cl (R(X)) is the identity, and h|A : A → A is not.

Corollary 4.9. Any dendrite is not rigid (and thus by (3.4.1) neither strongly
rigid, nor chaotic nor strongly chaotic) with respect to monotone mappings.
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Investigating rigidity phenomena for monotone mappings of acyclic continua,
in particular for acyclic curves, it is natural (in the light of Corollary 4.9) to
extend the area of interest to curves which are not necessarily locally connected.
A class of such curves, that includes dendrites, is the one of dendroids, i.e., arcwise
connected and hereditarily unicoherent continua. So, the following question seems
to be both interesting and natural.

Question 4.10. Do there exist dendroids which are (strongly) chaotic or (strongly)
rigid with respect to monotone mappings?

References

[1] R. D. Anderson and G. Choquet, A plane continuum no two of whose nondegenerate

subcontinua are homeomorphic: An application of inverse limits, Proc. Amer. Math. Soc.

10 (1959), 347–353.

[2] J. J. Charatonik, On chaotic curves, Colloq. Math. 41 (1979), 219–236.

[3] J. J. Charatonik, Monotone mappings of universal dendrites, Topology Appl. 38 (1991),

163–187.

[4] J. J. Charatonik, On chaotic dendrites, Period. Math. Hungar. 38 (1999), 19–29.

[5] J. J. Charatonik and W. J. Charatonik, Strongly chaotic dendrites, Colloq. Math. 70 (1996),

181–190.

[6] J. J. Charatonik, W. J. Charatonik and J. R. Prajs, Mapping hierarchy for dendrites,

Dissertationes Math. (Rozprawy Mat.) 333 (1994), 1–52.

[7] H. Cook, Continua which admit only the identity mapping onto nondegenerate subcontinua,

Fund. Math. 60 (1967), 241–249.

[8] S. Eilenberg and N. Steenrod, Foundations of algebraic topology, Princeton University

Press, Princeton, N.J., 1952.

[9] K. R. Gentry, Some properties of the induced map, Fund. Math.66 (1969), 55–59.

[10] J. de Groot and R. J. Wille, Rigid continua and topological group-pictures, Arch. Math.

(Basel) 9 (1958), 441–446.

[11] H. Kato, Generalized homogeneity of continua and a question of J. J. Charatonik, Houston

J. Math. 13 (1987), 51–63.

[12] H. Kato, On problems of H. Cook, Topology Appl. 26 (1987), 219–228.

[13] K. Kuratowski, Topology, vol. 1, Academic Press and PWN, New York, London and

Warszawa, 1966.

[14] K. Kuratowski, Topology, vol. 2, Academic Press and PWN, New York, London and

Warszawa, 1968.
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