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Abstract. The paper presents an approach to “selection homotopy exten-

sion” properties of set-valued mappings showing that they become equivalent

to usual selection extension properties of exponential set-valued mappings as-

sociated to them. As a result, several “controlled” homotopy extension the-

orems are obtained like consequences of ordinary selection theorems. Also,

involving set-valued mappings, a simple proof of the Borsuk homotopy ex-

tension theorem is given.

1. Introduction

Let Z and Y be topological spaces, and let 2Y be the family of the non-empty
subsets of Y . Also, let

F(Y ) = {S ∈ 2Y : S is closed}.

A single-valued map f : Z → Y is a selection for a set-valued mapping ϕ : Z → 2Y

if f(z) ∈ ϕ(z) for every z ∈ Z.

In this paper, we deal with extending of partial selections for set-valued map-
pings which domain is the product X×I of a space X with the closed unit interval
I = [0, 1]. More precisely, the purpose of the paper is to present reasonable con-
ditions on X, A ⊂ X and ϕ : X × I → F(Y ) under which every continuous
selection h : X × {0} ∪ A × I → Y for ϕ|X × {0} ∪ A × I can be extended to
a continuous selection for ϕ. A central role in this will be played by a class of
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mappings ϕ : X × I → F(Y ) for which the above problem is, in fact, equivalent
to an usual selection problem for set-valued mappings defined only on X.

So far, concerning continuous selections, the best continuity condition on set-
valued mappings is that of lower semi-continuity. Let us recall that a mapping
ϕ : Z → 2Y is lower semi-continuous, or l.s.c., if the set

ϕ−1(U) = {z ∈ Z : ϕ(z) ∩ U 6= ∅}

is open in Z for every open U ⊂ Y . Let us also recall a property which is a weaker
condition for the existence of continuous selections. Let (Y, d) be a metric space
and let, for S ∈ 2Y and ε > 0, Bd

ε (S) denote {y ∈ Y : d(y, S) < ε}. A mapping
ϕ : Z → 2Y is quasi-lower semi-continuous, or q.l.s.c., [8] if for every z ∈ Z, every
neighbourhood V of z, and every ε > 0 there exists a point z′ ∈ V such that
z ∈ int(ϕ−1(Bd

ε (y))) for every y ∈ ϕ(z′). It should be mentioned that every l.s.c.
mapping is q.l.s.c. one while the converse is not true (see, for instance, [8, 9, 21]).
Also, note that the definition of q.l.s.c. mappings depends on the metric d on the
range Y .

In the present paper, we are interested of set-valued mappings ϕ : X × I → 2Y

which are “equi-l.s.c.” with respect to the first coordinate and each restriction
on the second coordinate has nice selection properties. Towards this end, let us
agree to say that ϕ : X × T → 2Y is equi-l.s.c. at X if for every open set U ⊂ Y

and a point (x0, t0) ∈ ϕ−1(U) there exists a neighbourhood V × W of (x0, t0)
such that

V ⊂ {x ∈ X : ϕ(x, t) ∩ U 6= ∅}, whenever t ∈ W with ϕ(x0, t) ∩ U 6= ∅.

Concerning set-valued mappings whose domain is I, an important place is occu-
pied by special q.l.s.c. mappings. Namely, we shall say that ψ : I → 2Y is lower
quasi-monotone, or l.q.m., if for every t ∈ I, every neighbourhood V of t, and
every ε > 0 there exists δ ∈ [0, 1) such that

(i) δ · t ∈ V ;
(ii) [δ · t, t] ⊂ int(ψ−1(Bd

ε (y))) for every y ∈ ψ(δ · t).
As it follows from the definition, every l.q.m. ψ : I → 2Y is also q.l.s.c. but the
converse is not true. In fact, as we will see, there are l.s.c. mappings ψ : I → 2Y

which fail to be l.q.m. ones. On the other hand, one can easy construct l.q.m.
mappings ψ : I → 2Y which are not l.s.c.

Turning to the basic component of our reduction, we shall use C(I, Y ) to de-
note the space of all continuous maps k : I → Y with the topology of uniform
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convergence, i.e. the topology generated by the metric d defined as

d(k, `) = sup{d(k(t), `(t)) : t ∈ I}, k, ` ∈ C(I, Y ).

The following are well-known (see, for instance, [7, Chapter XII; Theorems 3.1,
5.3 and 8.2]).

(1.1) w(C(I, Y )) ≤ w(Y ) · ℵ0 = w(Y ).

(1.2) (C(I, Y ), d) is complete if so is (Y, d).

(1.3) For every space X, the exponential map Λ : Y X×I → C(I, Y )X , de-
fined for x ∈ X and t ∈ I by [Λ(f)(x)](t) = f(x, t), establishes an one-to-one
correspondence between continuous maps f : X × I → Y and continuous maps
g : X → C(I, Y ).

Now, we consider the following extension of Λ over set-valued mappings:

(1.4) To every pair (ϕ, f) of a mapping ϕ : X × I → F(Y ) and its partial
selection f : X × {0} → Y we associate another set-valued mapping

Λ(ϕ, f) : X → 2C(I,Y ) ∪ {∅}

defined for x ∈ X by

Λ(ϕ, f)(x) = {k ∈ C(I, Y ) : k(t) ∈ ϕ(x, t), t ∈ I, and k(0) = f(x, 0)}.

To state our main result, we need also the following terminology. For technical
reasons only, let us agree that an image of a “(−1)-sphere” is contractible in
S ⊂ Y provided S is non-empty. Suppose that n ≥ −1. A family S of subsets of
(Y, d) is uniformly equi-LCn [15] if to every ε > 0 there corresponds a δ(ε) > 0
such that, for every S ∈ S, every continuous image of a k-sphere (k ≤ n) in S of
diameter < δ(ε) is contractible over a subset of S of diameter < ε. A space S is
Cn if every continuous image of a k-sphere (k ≤ n) in S is contractible in S.

The following theorem will be proved.

Theorem 1.5. Let (Y, d) be a complete metric space, S ⊂ F(Y ) be uniformly
equi-LCn for some n ≥ 0, ϕ : X × I → S be such that each ϕ|{x} × I, x ∈ X, is
l.q.m., and let f : X×{0} → Y be a selection for ϕ|X×{0}. Then, {Λ(ϕ, f)(x) :
x ∈ X} is a family of closed subsets of C(I, Y ) which is uniformly equi-LCn−1

and Λ(ϕ, f)(x) is Cn−1 for every x ∈ X. If, in addition, f is continuous and ϕ

is equi-l.s.c. at X, then Λ(ϕ, f) is l.s.c.
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Motivated by Theorem 1.5, we shall say that ϕ : X × I → 2Y is Λ-l.s.c. if it is
equi-l.s.c. at X and each ϕ|{x} × I, x ∈ X, is l.q.m.

Theorem 1.5 has several interesting applications. In Sections 4 and 6 of the
paper we use this theorem to prove some “controlled” homotopy extension results.
Thus, we also improve some known results. In fact, once Theorem 1.5 is known,
the approach to these applications becomes almost transparent. To illustrate this,
let us mention here only the following generalization of [16, Theorem 3.4]. Below,
dimX(X\A) ≤ n means that dim(S) ≤ n for every S ⊂ X\A which is closed in
X.

Theorem 1.6. Let (Y, d) be a complete metric space, S ⊂ F(Y ) be uniformly
equi-LCn in Y for some n ≥ 0, X be paracompact, and let A be a closed subset of
X with dimX(X\A) ≤ n. Also, let ϕ : X × I → S be a Λ-l.s.c. mapping. Then,
every continuous selection h : X × {0} ∪A× I → Y for ϕ|X × {0} ∪A× I can be
extended to a single-valued continuous selection for ϕ.

Proof. Let h : X×{0}∪A×I → Y be a continuous selection for ϕ|X×{0}∪A×I.
Set f = h|X × {0} and g = h|A× I. By Theorem 1.5, Λ(ϕ, f) : X → F(C(I, Y ))
is an l.s.c. mapping such that {Λ(ϕ, f)(x) : x ∈ X} is uniformly equi-LCn−1 and
each Λ(ϕ, f)(x) is Cn−1. Also, Λ(g) : A → C(I, Y ) is a continuous selection for
Λ(ϕ, f)|A. Then, by [15, Theorem 1.2], Λ(g) can be extended to a single-valued
continuous selection q for Λ(ϕ, f). Finally, the map ` = Λ←(q) is a continuous
extension of h which is a selection for ϕ.

Concerning the right place of Theorem 1.6, we refer the interested reader to
Section 4. In the same section, the reader can find some natural examples of
Λ-l.s.c. mappings. In effect, the constant set-valued mappings stand for the most
trivial one. Relying on them, in Section 5 we obtain a simple proof of the fa-
mous Borsuk homotopy extension theorem and next, in Section 6, further its
generalizations in terms of selections.

The proof of Theorems 1.5 will be finally accomplished in Section 3. It is based
on special “homotopy extension” properties of uniformly equi-LCn families of sets
which are established in the next Section 2 of the paper.

A word should be said also about the statements of Theorem 1.5 and especially
about the requirement on the restrictions ϕ|{x} × I, x ∈ X, to be l.q.m. As [16,
Example 7.1] shows, Theorem 1.5 fails if this condition is replaced by the one
each ϕ|{x} × I, x ∈ X, to be merely l.s.c. On the other hand, [16, Example 7.2]
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shows that the requirement on the restrictions ϕ|{x} × I, x ∈ X, to be l.q.m.
with respect to the fixed metric d is essential and cannot be replaced by that the
restrictions to be l.q.m. with respect to an admissible metric ρ on Y . In fact, this
also demonstrates that the metric property of S to be “uniformly equi-LCn” is
essential and cannot be replaced by the topological one of “equi-LCn in Y ”.

2. Homotopy extension properties of uniformly equi- LCn families

of sets

Let ϕ : X × I → 2Y . We shall say that a mapping h : X × I → Y is a
ϕ-homotopy if it is a continuous selection for ϕ, and that h is a homotopy of
f : X × {0} → Y if it is a continuous extension of f .

Suppose that A is a subset of a space X. We shall say that ϕ : X × I → 2Y

has the Selection Homotopy Extension Property with respect to A, or the SHEP
at A, if, whenever f : X ×{0} → Y is a continuous selection for ϕ|X ×{0}, every
ϕ|A× I- homotopy g : A× I → Y of f |A×{0} can be extended to a ϕ-homotopy
h : X × I → Y of f .

In this section, we will establish a “controlled” variant of the SHEP. To prepare
for this, we need the following “controlled” extension property of uniformly equi-
LCn families which was actually stated in [15, Corollary 4.2].

(2.1) Let (Y, d) be a complete metric space, and let S ⊂ F(Y ) be uniformly
equi- LCn. Then, to every ε > 0 there corresponds a γ(ε) > 0 with the following
property: If X is paracompact with dim(X) ≤ n+1, A ⊂ X is closed, Φ : X → S
is l.s.c., ` : A → Y is a continuous selection for Φ|A, and p : X → Y is a
continuous γ(ε)-selection for Φ such that d(p|A, `) < γ(ε), then ` can be extended
to a continuous selection h : X → Y for Φ such that d(p, h) < ε.

Here, a map p : X → Y is a µ-selection for Φ if d(p(x), Φ(x)) < µ for every
x ∈ X.

In what follows, we consider only T1-spaces. To every mapping Ψ : X → 2Y

we associate another one Ψ′ : X → 2Y ∪ {∅} defined by

Ψ′(x) = {y ∈ Ψ(x) : x ∈ int(Ψ−1(W )) for every neighbourhood W of y},

which is known as a derived mapping of Ψ [5]. Concerning derived mappings, we
will need the following result which was actually proved in [10, Theorems 1.2 and
3.1] (see the remark after the proof of [10, Theorem 1.2]).
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(2.2) Let (Y, d) be a complete metric space, T ⊂ F(Y ) be uniformly equi-
LCn, and let

T ′ =
⋃

{

{Ψ′(x) : x ∈ X} : Ψ : X → T is a q.l.s.c. mapping
}

.

Then, T ′ is uniformly equi-LCn too.
To state our result, we need also the following notation. Let Sk denote the

k-sphere, and Bk the corresponding k-ball For technical reasons only, we assume
that S−1 = ∅ as well as S−1 × X = ∅ for every space X. Finally, to every
Ψ : I → F(Y ) and every natural n ≥ 0 we associate another set-valued mapping
Ψn : Bn × I → F(Y ) defined by Ψn(b, t) = Ψ(t), (b, t) ∈ Bn × I.

Lemma 2.3. Let (Y, d) be a complete metric space, and let T ⊂ F(Y ) be uni-
formly equi-LCn. Then, to every ε > 0 there corresponds an α(ε) > 0 with the
following two properties :

(a) If 0 ≤ k < n, Ψ : I → T is q.l.s.c., and f0 : Bk+1 × {0} → Y is a
constant selection for Ψk+1|Bk+1 × {0}, then every Ψk+1|Sk × I-homotopy
g : Sk × I → Y of f0, with d(g|{s1} × I, g|{s2} × I) < α(ε) for every
s1, s2 ∈ Sk, can be extended to a Ψk+1-homotopy h : Bk+1 × I → Y of f0

such that d(h|{b1} × I, h|{b2} × I) < ε for every b1, b2 ∈ Bk+1.

(b) If −1 ≤ k < n and Ψ : I → T is l.q.m., then Ψk+1 has the SHEP at Sk. In
particular, the statement of (a) is true with α(+∞) = +∞.

Proof. By (2.2), the family S = T ′ is uniformly equi-LCn. Then, let δ(ε) ≤ ε

be as in the definition of uniformly equi-LCn of S. Next, let α(ε) = δ(γ(ε/3)/3),
where γ(ε) ≤ ε is as in (2.1) applied with S, and let us show that this α(ε) works
for the case of (a). So, let 0 ≤ k < n and let Ψ : I → T be q.l.s.c. Also, let f0

and g be as in (a). Set Φ = Ψ′ : I → S. According to [9, Theorem 2.1], Φ is
an l.s.c. mapping such that g is a selection for Φk+1|Sk × I. Since g is uniformly
continuous, there exists a positive integer m such that, for every s ∈ Sk and
t′, t′′ ∈ I,

|t′ − t′′| ≤ 1
m

implies d(g(s, t′), g(s, t′′)) < α(ε).(1)

Whenever 0 ≤ i ≤ m, we now set

Sk
i = Sk ×

{

i
m

}

and Bk+1
i = Bk+1 ×

{

i
m

}

.

Let 0 ≤ j < m. Since δ is as in the definition of uniformly equi-LCn of S,
k + 1 ≤ n, diam(g(Sk

j+1)) < δ(γ(ε/3)/3) and Φk+1
∣

∣Bk+1
j+1 is a constant mapping,
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there exists a continuous selection fj+1 : Bk+1
j+1 → Y for Φk+1

∣

∣Bk+1
j+1 such that fj+1

is an extension of g
∣

∣Sk
j+1 with

diam
(

fj+1

(

Bk+1
j+1

))

< γ(ε/3)/3 .(2)

Next, we set Xj+1 = Bk+1×
[

j
m , j+1

m

]

and Aj+1 = Bk+1
j ∪Sk×

[

j
m , j+1

m

]

∪Bk+1
j+1 , and

then we define a continuous `j+1 : Aj+1 → Y by `j+1

∣

∣Bk+1
i = fi for i = j, j + 1,

and `j+1

∣

∣Sk ×
[

j
m , j+1

m

]

= g
∣

∣Sk ×
[

j
m , j+1

m

]

. Note that `j+1 is a selection for
Φk+1

∣

∣Aj+1 such that, by (1) and (2),

diam (`j+1 (Aj+1)) < γ(ε/3).(3)

For convenience, let Φj+1 = Φk+1
∣

∣Xj+1. Now, we shall extend `j+1 to a contin-
uous selection hj+1 : Xj+1 → Y for Φj+1 such that

diam (hj+1 (Xj+1)) < ε .(4)

Towards this end, we define a continuous pj+1 : Xj+1 → Y by pj+1(b, t) =
`j+1(b, j/m), (b, t) ∈ Xj+1. Note that, by (3), pj+1 is a continuous γ(ε/3)-
selection for Φj+1 such that d

(

pj+1

∣

∣Aj+1, `j+1

)

< γ(ε/3). Hence, by (2.1), `j+1

can be extended to a continuous selection hj+1 : Xj+1 → Y for Φj+1 such that
d(pj+1, hj+1) < ε/3. This hj+1 is as required.

Finally, we define our h : Bk+1×I → Y by h|Xj+1 = hj+1, 0 ≤ j < m, which is
possible because j > 0 implies Xj ∩Xj+1 = Bk+1

j and hj+1

∣

∣Bk+1
j = fj = hj

∣

∣Bk+1
j .

By virtue of (4), this completes the proof of (a).

We now proceed to the proof of (b). Suppose that −1 ≤ k < n and Ψ : I → T
is l.q.m. Take a continuous selection f0 : Bk+1×{0} → Y for Ψk+1|Bk+1×{0}. In
case k ≥ 0, let g : Sk × I → Y be a Ψk+1|Sk × I-homotopy of f0. Otherwise, let g

be the restriction of any map, say g = f0|Sk × I. We apply the same reduction as
before. Namely, let S = T ′ and let Φ = Ψ′ : I → S. Then, Φ is an l.s.c. mapping
such that, by [10, Lemma 2.1], for every t ∈ I, every neighbourhood V of t, and
every ε > 0 there exists δ ∈ [0, 1) such that

δ · t ∈ V and Ψ(δ · t) ⊂
⋂

{

Bd
ε (Φ(s)) : s ∈ [δ · t, t]

}

.(5)

In particular, this implies that f0 is a selection for Φk+1|Bk+1 × {0} because
Φ(0) = Ψ(0). Hence, as in the previous case, g is a Φk+1|Sk × I-homotopy of
f0. Then, let us denote by A the set of all points t ∈ I for which there exists a
continuous extension ht : Bk+1 × [0, t] → Y of f0 such that ht is a selection for
Φk+1|Bk+1 × [0, t] and ht|Sk × [0, t] = g|Sk × [0, t]. Obviously, 0 ∈ A. First, we
show that A is open. Let t0 ∈ A, and let h0 = ht0 be as above. Since Φk+1 is
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l.s.c., dim(Bk+1 × I) ≤ n + 1 and Bk+1 × I is compact, by (2.2) and [15, Theorem
1.2], there exists t1 > t0 and a continuous selection h1 : Bk+1 × [0, t1] → Y for
Φk+1|Bk+1×[0, t1] such that h1|Sk×[0, t1] = g|Sk×[0, t1] and h1|Bk+1×[0, t0] = h0.
Therefore, t0 ∈ [0, t1) ⊂ A.

Now, we show that A is closed. Take a point t1 ∈ A such that t1 > 0. It follows
from the definition of A that [0, t1) ⊂ A. Let γ(1) be as in (2.1) applied to the
elements of S. In case k ≥ 0, use the continuity of g and fix a point t0 ∈ [0, t1)
such that d(g(s, t), g(s, t1)) < γ(1)/2 for every s ∈ Sk and t ∈ [t0, t1]. Otherwise,
let t0 = 0. Then, let δ ∈ [0, 1) be as in (5) applied with t = t1, V = (t0, 1]
and ε = γ(1). Since t = δ · t1 ∈ A, there now exists a continuous extension h :
Bk+1× [0, t] → Y of f0 which is a selection for Φk+1|Bk+1× [0, t] and h|Sk× [0, t] =
g|Sk × [0, t]. Then, define p1 : Bk+1 × [0, t1] → Y by p1(b, s) = h(b, s) if s ≤ t and
p1(b, s) = h(b, t) otherwise. In this way, by (5), we get a continuous γ(1)-selection
p1 for Φk+1|Bk+1× [0, t1] such that p1|Bk+1× [0, t] = h. Because of the choice of t0
and t, we also have that d(p1(z), g(z)) < γ(1) for every z ∈ Sk× [t, t1]. Therefore,
by (2.1), h can be extended to a continuous selection h1 : Bk+1 × [0, t1] → Y for
Φk+1|Bk+1 × [0, t1] such that h1|Sk × [0, t1] = g|Sk × [0, t1]. That is, t1 ∈ A. As
a result, A is a non-empty clopen subset of I. Hence, A = I which complete the
proof.

Let us explicitly state the following partial case of Lemma 2.3(b) which we will
use in the sequel.

Corollary 2.4. Let (Y, d) be a complete metric space, S ⊂ F(Y ) be uniformly
equi-LC0, and let Φ : I → S be an l.q.m. mapping. Then, for every point y ∈ Φ(0)
there exists a continuous selection h : I → Y for Φ such that h(0) = y.

3. Proof of Theorem 1.5

We are now ready for the proof of Theorem 1.5. In fact, it consists of the
following three separate statements.

Proposition 3.1. Let (Y, d) be a complete metric space, S ⊂ F(Y ) be a uni-
formly equi-LC0, ϕ : X× I → S be such that each ϕ|{x}× I, x ∈ X, is l.q.m., and
let f : X×{0} → Y be a selection for ϕ|X×{0}. Then, Λ(ϕ, f) : X → F(C(I, Y )).

Proof. Take a point x ∈ X. Since ϕ(x, t) is closed for every t ∈ I, to prove that
Λ(ϕ, f)(x) ∈ F(C(I, Y )) it suffices to show that Λ(ϕ, f)(x) 6= ∅. That this is so,
it follows from Corollary 2.4 because ϕ|{x} × I is l.q.m.
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Our next proposition states just the principal effect which the exponential map-
ping Λ of (1.4) yields when it transforms a pair (ϕ, f) into a set-valued mapping
Λ(ϕ, f).

Proposition 3.2. Let (Y, d) be a complete metric space, S ⊂ F(Y ) be uniformly
equi-LCn for some n ≥ 1, ϕ : X × I → S be such that each ϕ|{x} × I, x ∈ X, is
l.q.m., and let f : X×{0} → Y be a selection for ϕ|X×{0}. Then, {Λ(ϕ, f)(x) :
x ∈ X} is uniformly equi-LCn−1 and each Λ(ϕ, f)(x) is Cn−1.

Proof. Let α(ε) be as in Lemma 2.3 applied to S. It suffices to show that the
family {Λ(ϕ, f)(x) : x ∈ X} is uniformly equi-LCn−1 with δ(ε) = α(ε) because
one can take α(+∞) = +∞. So, let 0 ≤ k < n, x ∈ X, and let q : Sk → Λ(ϕ, f)(x)
be continuous with diam(q(Sk)) < α(ε). We look for a continuous extension
p : Bk+1 → Λ(ϕ, f)(x) of q such that diam(p(Bk+1)) < ε. Towards this end, we
consider the l.q.m. mapping Φ : I → S defined by Φ(t) = ϕ(x, t), t ∈ I. Also, we
fix a constant selection f0 for Φk+1|Bk+1×{0} by f0(Bk+1×{0}) = {f(x, 0)}, and
its Φk+1|Sk×I-homotopy g by g = Λ←(q). Then, by Lemma 2.3, g can be extended
to a Φk+1-homotopy h : Bk+1×I → Y of f0 such that d(h|{b1}×I, h|{b2}×I) < ε

for b1, b2 ∈ Bk+1. Finally, p = Λ(h) is as required.

We complete the proof of Theorem 1.5 showing that Λ(ϕ, f) is l.s.c. provided
f is continuous and ϕ is Λ-l.s.c.

Proposition 3.3. Let (Y, d) be a complete metric space, T ⊂ F(Y ) be uniformly
equi-LC0, ϕ : X × I → T be Λ-l.s.c., and let f : X × {0} → Y be a continuous
selection for ϕ|X × {0}. Then, Λ(ϕ, f) is l.s.c.

Proof. Let ε > 0, x0 ∈ X, and let k0 ∈ Λ(ϕ, f)(x0). By (2.2), the family
S = T ′ is uniformly equi-LC0. Then, let γ(ε) be as in (2.1) applied to S. Since
f and k0 are continuous and ϕ is equi- l.s.c. at X, for every t ∈ I there exists
a neighbourhood Vt ×Wt of (x0, t) such that Wt ⊂ k←0 (Bd

γ(ε)/4(k0(t))) and, for
every s ∈ Wt,

Vt ⊂ {x ∈ X : d(f(x, 0), f(x0, 0)) < γ(ε) and ϕ(x, s) ∩Bd
γ(ε)/4(k0(t)) 6= ∅}.

Since I is compact, there exists a finite T ⊂ I such that I =
⋃

{Wt : t ∈ T}.
Then, let us check that V =

⋂

{Vt : t ∈ T} works. Take a point x ∈ V , and let
us consider the l.q.m. mapping Φ = ϕ|{x} × I : I → T . On the one hand, by
the choice of V , the map k0 is a γ(ε)/2-selection for Φ. Since Φ is q.l.s.c., by
[10, Lemma 2.1], this implies that k0 is a γ(ε)-selection for Φ′ : I → S. On the
other hand, f(x, 0) ∈ Φ′(0) = Φ(0) because Φ is, in fact, l.q.m. Finally, let us
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observe that d(f(x, 0), f(x0, 0)) < γ(ε) while Φ′ is l.s.c. Thus, by (2.1), Φ′ has a
continuous selection k : I → Y such that d(k, k0) < ε and k(0) = f(x, 0). This
completes the proof because k ∈ Λ(ϕ, f)(x).

For later use, let us mention the following consequence of Proposition 3.3.

Corollary 3.4. Let (Y, d) be a complete metric space, T ⊂ F(Y ) be uniformly
equi-LC0, and let ϕ : X×I → T be a Λ-l.s.c. mapping. Then, the derived mapping
ϕ ′ of ϕ has the property that ϕ ′|{x} × I = (ϕ|{x} × I)′ for every x ∈ X.

4. Selection homotopy extension theorems I

In this section, we present some possible applications of Theorem 1.5. Our first
result is the following improvement of Theorem 1.6 from the Introduction.

Theorem 4.1. Let Y be a Banach space, S ⊂ F(Y ) be uniformly equi-LCn, X

be paracompact, and let Z ⊂ X with dimX(Z) ≤ n. Also, let ϕ : X × I → S be a
Λ-l.s.c. mapping such that ϕ(z) is convex for every z /∈ Z × I. Then, ϕ has the
SHEP at A for every A ⊂ X closed.

Proof. Take a continuous selection f : X × {0} → Y for ϕ|X × {0}, a closed
A ⊂ X and a ϕ|A × I-homotopy g of f . We consider the Banach space C(I, Y )
and the mapping Λ(ϕ, f) of (1.4). By Theorem 1.5, Λ(ϕ, f) : X → F(C(I, Y )) is
l.s.c., {Λ(ϕ, f)(z) : z ∈ Z} is uniformly equi-LCn−1 and Λ(ϕ, f)(z) is Cn−1 for
every z ∈ Z. Note that Λ(ϕ, f)(x) is convex for every x /∈ Z because ϕ|{x} × I
is convex-valued for x /∈ Z. Also, note that Λ(g) : A → C(I, Y ) is a continuous
selection for Λ(ϕ, f)|A. Then, by [17, Theorem 1.2], Λ(g) can be extended to a
single-valued continuous selection ` for Λ(ϕ, f). Finally, the map h = Λ←(`) is a
ϕ- homotopy of f which extends g.

In the special case of a d-continuous ϕ and Z ⊂ X open, Theorem 4.1 implies
[16, Theorem 3.4] because every metric space can be embedded isometrically into
a Banach space. Let us recall that ϕ : X × I → 2Y is d-continuous if, given
ε > 0, every (x0, t0) ∈ X × I admits a neighbourhood W such that, for every
(x1, t1) ∈ W ,

ϕ(x1, t1) ⊂
⋂

{Bd
ε (ϕ(x, t)) : (x, t) ∈ W}.

It should be mentioned that the Michael’s arguments for proving [16, Theorem
3.4] work if the restriction on the continuity of ϕ is weakened to that of quasi-
continuity. A mapping ϕ : X × I → 2Y is called quasi-continuous [16] if it is l.s.c.
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and, for every ε > 0, every point (x0, t0) ∈ X × I has a neighbourhood U × V

such that, for every (x1, t1) ∈ U × V ,

ϕ(x1, t1) ⊂
⋂

{Bd
ε (ϕ(x1, t)) : t ∈ V ∩ [t1, 1]}.

Every d-continuous ϕ : X × I → 2Y is quasi-continuous while the converse is not
true, see [16, Example 3.2]. On the other hand, as it follows from the definitions,
every quasi-continuous ϕ is Λ-l.s.c. The following is a simple example showing
that our Theorem 4.1 improves the case of quasi-continuity as well.

Example 4.2. A compact space X and a Λ-l.s.c. mapping ϕ : X×I → F(R) into
the convex compact subsets of the real line R such that ϕ is not quasi-continuous.

Proof. Let X = {0, 1/n : n = 1, 2, . . . }. Define ϕ : X × I → F(R) by letting for
(x, t) ∈ X × I that ϕ(x, t) = [0, (1− t) · n] if x = 1/n and ϕ(x, t) = {0} otherwise.
This ϕ satisfies all our requirements.

Theorem 1.5 applies also to “continuous” mappings. For the purpose, let us
recall some concepts concerning continuity of set-valued mappings. Let Y be a
space. A mapping Φ : X → 2Y is upper semi-continuous, or u.s.c., if

Φ#(U) = {x ∈ X : Φ(x) ⊂ U}

is open in X for every U ⊂ Y open. If (Y, d) is a metric space, then Φ is d-u.s.c.
provided Φ#(Bd

ε (Φ(x))) is a neighbourhood of x for every x ∈ X and ε > 0.
Finally, we say that Φ is continuous if it is both l.s.c. and u.s.c., and we say that
Φ is d-proximal continuous if it is both l.s.c. and d-u.s.c. It should be mentioned
that a continuous Φ is not necessarily d-continuous and vice versa (see, e.g., [13,
Proposition 2.6]), while every continuous or d-continuous Φ is certainly d-proximal
continuous. On the other hand, there are d-proximal continuous mappings Φ
which are neither continuous nor d-continuous (see, [13, Propositions 2.5]). In
view of that, we shall henceforth restrict our attention only to d-proximal conti-
nuity. Finally, let us agree to say that a mapping ϕ : X × I → 2Y is d-proximal
Λ-continuous if ϕ is d-proximal continuous and ϕ|{x}×I is d-continuous for every
x ∈ X.

Proposition 4.3. Let (Y, d) be a complete metric space, S ⊂ F(Y ) be uniformly
equi-LC0, ϕ : X × I → S be d-proximal Λ-continuous, and let f : X × {0} → Y

be a continuous selection for ϕ|X×{0}. Then, Λ(ϕ, f) is d-proximal continuous.

Proof. By Theorem 1.5, we have only to check that Λ(ϕ, f) is d-u.s.c. To this
end, let x0 ∈ X and ε > 0. Also, let γ(ε) be as in (2.1) applied to S. Since
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ϕ|{x0}× I is d-continuous and ϕ is d-u.s.c., there exists a neighbourhood U of x0

in X such that x ∈ U implies

d(f(x, 0), f(x0, 0)) < γ(ε) and ϕ(x, t) ⊂ Bd
γ(ε)(ϕ(x0, t)), t ∈ I.(6)

Now, let k ∈ Λ(ϕ, f)(x) for some x ∈ U . Then, by (6), k is a continuous γ(ε)-
selection for ϕ|{x0} × I such that d(k(0), f(x0, 0)) < γ(ε). Hence, by (2.1), there
is k0 ∈ Λ(ϕ, f)(x0) with d(k, k0) < ε. So, U ⊂ Λ(ϕ, f)#(Bd

ε (Λ(ϕ, f)(x0))).

To state our results for d-proximal Λ-continuous mappings, we need to recall
some other concepts. For a subset Z of a space X, we use r-dimX(Z) ≤ m to
denote that dim(V ) ≤ m for every V ⊂ Z which is cozero-set in X (see, [12]).
Here, dim(V ) ≤ m means that every finite cozero-set cover V of V admits a finite
cozero-set refinement U of order Ord(U) ≤ m + 1, i.e. the covering dimension
of V in the sense of Morita [19]. Let us mention that r-dimX(Z) ≤ m is valid
if either dim(X) ≤ m ([12, Lemma 5.1]) or dim(Z) ≤ m ([12, Corollary 5.2]).
For more detailed information about r-dimX(Z), see [12]. Finally, let us recall
that a subset A of a space X is P τ -embedded, where τ is an infinite cardinal
number, if for every locally finite cozero-set cover W of A of cardinality |W| ≤ λ

there exists a locally finite cozero-set cover U of X such that W is refined by
U ∩ A = {U ∩ A : U ∈ U}. The notion “P τ -embedded” in this sense is the same
as “P τ -embedded” in the sense of Shapiro [24] which was introduced by Arens
[2] under the name “τ -normally embedded” (see, [24]).

Theorem 4.4. Let Y be a Banach space, S ⊂ F(Y ) be uniformly equi-LCn, X

be a space, and let Z ⊂ X with r-dimX(Z) ≤ n. Also, let ϕ : X × I → S be a
d-proximal Λ-continuous mapping such that ϕ(z) is convex for every z /∈ Z × I.
Then, ϕ has the SHEP at A for every Pw(Y )- embedded subset A of X.

Proof. We repeat the proof of Theorem 4.1. Briefly, let f be a continuous selec-
tion for ϕ|X ×{0}, A ⊂ X be Pw(Y )-embedded, and let g be a ϕ|A× I-homotopy
of f . By Proposition 4.3, the mapping Λ(ϕ, f) is d-proximal continuous. By The-
orem 1.5, the family {Λ(ϕ, f)(z) : z ∈ Z} is uniformly equi-LCn−1 and Λ(ϕ, f)(z)
is Cn−1 for every z ∈ Z. Finally, Λ(ϕ, f)(x) is convex for every x /∈ Z. Then,
by [11, Theorem 5.1], the continuous selection Λ(g) : A → C(I, Y ) for Λ(ϕ, f)|A
can be extended to a single-valued continuous selection ` for Λ(ϕ, f). The map
h = Λ←(`) is a ϕ-homotopy of f which extends g.

Theorem 4.4 presents another improvement of [16, Theorem 3.4] showing that
this theorem remains valid for arbitrary X and under weaker restrictions on the
continuity of ϕ.
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5. The Borsuk homotopy extension theorem as a selection problem

The technique developed in this paper allows one to read the famous Borsuk
homotopy extension theorem [4] as an usual problem of the selection theory.
Namely, using only the construction of an exponential mapping Λ(ϕ, .) stated in
(1.4), the properties of the space C(I, Y ) listed in (1.1), (1.2) and (1.3), and the
well-known Michael selection theorem [14, Theorem 3.2′′], we reduce the proof of
this theorem to extension properties of P τ -embedded sets of topological spaces.
In this way, we obtain a simple proof of the following general version of the Borsuk
homotopy extension theorem.

Theorem 5.1. Let X be a space, Y be an ANR for metrizable spaces which
is Čech complete, and let f : X → Y be continuous. Then, for every Pw(Y )-
embedded subset A of X, every homotopy ` : A × I → Y of f |A can be extended
to a homotopy h : X × I → Y of f .

It should be mentioned that, in this form, Theorem 5.1 coincides with [20,
Theorem 5]. In case X is normal and Y is separable, it coincides with [25,
Theorem 3] (for countably paracompact normal X, see [6]). Also, let us mention
the case of countably paracompact and collectionwise normal X and A ⊂ X

closed, [6].

In what follows, for a Banach space E, we denote

Fc(E) = {S ∈ F(E) : S is convex}.

Our proof of Theorem 5.1 follows an elegant approach to this theorem that was
announced in [22, Theorem 4.3]. Now, however, we rely on the following simple
consequence of the famous Michael selection theorem [14, Theorem 3.2′′] which
supplies a more direct way to the fact of interest.

Proposition 5.2. Let X be a topological space, (E, d) be a Banach space, and
let Φ : X → Fc(E) be d-continuous. Also, let A ⊂ X be Pw(E)-embedded, and
let g : A → E be a continuous selection for Φ|A. Then, g can be extended to a
single-valued continuous selection for Φ.

Proof. By a result of [1, 19, 23]1, there exists a continuous f : X → E which
extends g. Considering Fc(E) as a space with the topology generated by the
Hausdorff distance H(d) on F(E), we let Z = Fc(E) × E. Also, let Ψ : Z →
Fc(E) and k : Z → E be the projections. Now, define a map h : X → Z by
h(x) = (Φ(x), f(x)), x ∈ X, which is continuous because so are Φ and f . Finally,

1for a simple proof of this fact, see [23]
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define B = {z ∈ Z : k(z) ∈ Ψ(z)} which is closed because k is continuous and Ψ
is d-continuous (as a set-valued mapping). Since Z is metrizable and Ψ is l.s.c.,
by [14, Theorem 3.2′′], k|B can be extended to a continuous selection ` : Z → E

for Ψ. Therefore ` ◦ h is a continuous selection for Φ which extends g because
h(A) ⊂ B.

In fact, Proposition 5.2 is a partial case of [13, Theorem 6.1]. However, the use
of [13, Theorem 6.1] is not justifiable because its own proof is quite complicated.

Proof of Theorem 5.1. Let A, f and ` be as in this theorem and let d be a
compatible complete metric on Y . Embed (Y, d) isometrically in a Banach space
(E, d) with w(E) = w(Y ). Next, define ϕ : X×I → Fc(E) by ϕ(z) = E, z ∈ X×I,
and let Φ = Λ(ϕ, f) be as (1.4). Note that, by (1.2), C(I, E) is a Banach space
and Φ : X → Fc(C(I, E)). Also, note that Φ is d-continuous. Indeed, let ε > 0,
x0 ∈ X, and let U be a neighbourhood of x0 such that diam(f(U)) < ε/2. Take
points x1, x2 ∈ U and k1 ∈ Φ(x1). Next, define an l.s.c. mapping φ : I → Fc(E) by
φ(t) = Bd

ε/2(k1(t)) if t > 0 and φ(0) = {f(x2)}. By [14, Theorem 3.2′′], φ admits
a continuous selection k2 : I → E. Then d(k1, k2) ≤ ε/2 < ε and k2 ∈ Φ(x2), and
therefore Φ(x1) ⊂ Bd

ε (Φ(x2)). So, Φ is d-continuous. Finally, note that Λ(`) is a
continuous selection for Φ|A. Hence, by (1.1) and Proposition 5.2, Λ(`) extends
to a continuous selection g : X → C(I, E) for Φ. Now, let us recall that Y is
an ANR. Therefore, there exists a neighbourhood V of Y in E and a retraction
r : V → Y . Note that C(I, V ) ⊂ C(I, E) is open, C(I, Y ) ⊂ C(I, E) is closed,
and Λ(`)(A) ⊂ C(I, Y ) ⊂ C(I, V ). Hence, F = g←(C(I, Y )) is a zero-set of X,
W = g←(C(I, V )) is a cozero-set of X, and A ⊂ F ⊂ W . Then, take a continuous
function α : X → I such that α←(0) = X\W and α←(1) = F . Finally, the map
h : X × I → Y defined for x ∈ X and t ∈ I by h(x, t) = r(Λ←(g)(x, α(x) · t)) is as
required.

6. Selection homotopy extension theorems II

We conclude this paper presenting some further applications of Theorem 1.5
which are related to Theorem 5.1. In fact, our first result is the following gener-
alization of Theorem 5.1 in terms of selections.

Theorem 6.1. Let (Y, d) be a complete metric ANR, S ⊂ F(Y ) be uniformly
equi-LCn, X be a space, and let Z ⊂ X with r-dimX(Z) ≤ n. Also, let ϕ :
X × I → S be a d-proximal Λ- continuous mapping such that ϕ(z) = Y for every
z /∈ Z× I. Then, ϕ has the SHEP at A for every Pw(Y )-embedded subset A of X.
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Proof. Let A ⊂ X be Pw(Y )-embedded, f be a single-valued continuous selec-
tion for ϕ|X ×{0}, and let g be a ϕ|A× I-homotopy of f . By Theorem 5.1, g can
be extended to a homotopy h : X × I → Y of f . By Proposition 4.3, Λ(ϕ, f) is
d-proximal continuous. Hence, by [13, Proposition 2.2] and [3, Theorem 3.2], the
set D = {x ∈ X : d(Λ(h)(x), Λ(ϕ, f)(x)) = 0} is a zero-set of X. On the other
hand, V = X\D ⊂ Z. So, by condition, dim(V ) ≤ n. Finally, let us observe that,
by Theorem 1.5, {Λ(ϕ, f)(x) : x ∈ V } is uniformly equi-LCn−1 and Λ(ϕ, f)(x) is
Cn−1 for every x ∈ V . Therefore, by [11, Theorem 1.1], the map Λ(h)|D can be
extended to a continuous selection ` : X × I → C(I, Y ) for Λ(ϕ, f). Then, Λ←(`)
is a ϕ-homotopy of f which is an extension of g.

The last result of this paper is a further improvement of Theorem 5.1 in the
special case of a paracompact X. To state it, let us recall that a metric space
(Y, d) is a uniform ANR if for every ε ∈ (0, +∞] there exists δ(ε) ∈ (0, +∞] such
that, whenever (Y, d) is isometrically embedded into a Banach space (E, d) as a
closed subset, there is a retraction r : Bδ(+∞)(Y ) → Y such that

z ∈ E and d(z, Y ) < δ(ε) imply d(z, r(z)) < ε.(7)

Theorem 6.2. Let (Y, d) be a complete metric uniform ANR, S ⊂ F(Y ) be
uniformly equi-LCn, X be a paracompact space, and let Z ⊂ X with dimX(Z) ≤
n. Also, let ϕ : X × I → S be a Λ- l.s.c. mapping such that ϕ(z) = Y for every
z /∈ Z × I. Then, ϕ has the SHEP at A for every A ⊂ X closed.

Proof. Let f : X × {0} → Y be a continuous selection for ϕ|X × {0}, A ⊂ X

be closed, and let g be a ϕ|A × I-homotopy of f . Let ψ = ϕ ′ and T = S ′.
According to Corollary 3.4, ψ : X × I → T is an l.s.c. mapping such that f is a
selection for ψ|X × {0}, g is a ψ|A × I-homotopy of f and ψ(z) = Y for every
z /∈ Z × I. Then, define a continuous selection ` : X × {0} ∪ A × I → Y for
ψ|X×{0}∪A× I by `|X×{0} = f and `|A× I = g. As a result, our proof is now
reduced to the verification that ` can be extended to a continuous selection for
ψ. To this end, we regard [17, Property (3.2)]. Namely, we consider this property
for B = X × {0} ∪A× I, ` and ψ as follows:

(6.3) To every ε > 0 there corresponds β(ε) > 0 such that for every continuous
β(ε)-selection h for ψ, with d(h|B, `) < β(ε), and every µ > 0 there exists a
continuous µ-selection kµ for ψ such that d(kµ, h) < ε and d(kµ|B, `) < µ.

By virtue of [17, Proposition 3.3], it will be now sufficient to show that ψ

satisfies (6.3), and that
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(6.4) for every ε > 0 (hence, for some β(ε) > 0 as well) there exists a contin-
uous ε-selection hε : X × I → Y for ψ such that d(hε|B, `) < ε.

This is what we shall do till the end of this proof. First, to show that ψ

satisfies (6.3), let us observe that dimX×I(Z × I) ≤ n + 1. Indeed, take a subset
T ⊂ Z× I which is closed in X× I. Since the projection π : X× I → X is perfect,
S = π(T ) ⊂ X is a closed. Hence, dim S ≤ n because S ⊂ Z, and therefore, by
a result of [18], dim(S × I) ≤ n + 1. Then, dim T ≤ n + 1 because T ⊂ S × I is
closed. That is, dimX×I(Z × I) ≤ n + 1. On the other hand, by (2.2), the family
T is uniformly equi-LCn. Hence, according to the proof of [17, Theorem 1.3], ψ

satisfies [17, Property (3.2)] and, in particular, (6.3) as well.

We complete the proof showing that ψ satisfies (6.4). To this end, note that,
by Corollary 3.4, Λ(ψ, f) = Λ(ϕ, f). Hence, by Theorem 1.5, Λ(ψ, f) : X →
F(C(I, Y )) is l.s.c., the family {Λ(ψ, f)(x) : x ∈ X} is uniformly equi-LCn−1

and each Λ(ψ, f)(x) is Cn−1. On the other hand, the map Λ(g) : A → Y

is a continuous selection for Λ(ψ, f)|A. Then, define another l.s.c. mapping
Ψ : X → F(C(I, Y )) by Ψ(x) = {Λ(g)(x)} if x ∈ A and Ψ(x) = Λ(ψ, f)(x) other-
wise, see [14, Example 1.3∗].

Embed (Y, d) isometrically into a Banach space (E, d). Next, take an ε > 0,
and let δ(ε) be as in the definition of uniform ANR of (Y, d). According to [17,
Lemma 4.1], there exists a locally finite open cover U of X and a continuous map
u : |Nn(U)| → C(I, E) such that

u(|σ|) ⊂ Bd

δ(ε)(Ψ(x)) for every σ ∈ Nn(U) and x ∈
⋂

σ.(8)

Here, N (U) is the nerve of U , i.e. the simplicial complex

N (U) = {σ ⊂ U :
⋂

σ 6= ∅}.

Also, Nn(U) is the n- skeleton of N (U) while |Nn(U)| is the polytope on Nn(U).

Now, as in [17, Theorem 1.2], we extend u to a continuous map v : |N (U)| → E

such that

v(|σ|) ⊂ conv(u(|σ ∩N n(U)|)) for every simplex σ ∈ N (U).(9)

Next, consider the continuous map Λ←(v) : |N (U)| × I → E. According to the
definition of Ψ, (8) and (9), we get that

Λ←(v)(|σ| × {0}) ⊂ Bd
δ(ε)(f(x, 0)), σ ∈ N (U) and x ∈

⋂

σ,(10)
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and

Λ←(v)(|σ| × {t}) ⊂ Bd
δ(ε)(g(x, t)), σ ∈ N (U), x ∈ A ∩ (

⋂

σ) and t ∈ I.(11)

Then, let r : Bd
δ(+∞)(Y ) → Y be the corresponding retraction. Thus, by (10) and

(11), we get a continuous map

q = r ◦ Λ←(v)
∣

∣

∣(|N (U)| × {0} ∪ |N (U)| ×A) : |N (U)| × {0} ∪ |N (U)| ×A → Y.

Hence, by Theorem 5.1, it can be extended to a continuous map p : |N (U)|× I →
Y . According to the properties of r (see (7)), the definition of Ψ, (10) and (11),
this implies that

Λ(p)(|σ|) ⊂ Bd

δ(ε)(Ψ(x)) for every σ ∈ N (U) and x ∈ (
⋂

σ)\Z.(12)

We accomplish the construction of the required hε just like in the proof of [17,
Theorem 1.2]. Namely, take an open cover {VU : U ∈ U} of X with FU = VU ⊂ U

for every U ∈ U . Next, to every x ∈ X we associate the simplex σ(x) = {U ∈ U :
x ∈ FU}. Finally, for every x ∈ X, set Hx =

⋃

{FU : U ∈ U and x /∈ FU}.

Now, for every s ∈ S = X\Z, we consider the set

Gs =
{

x ∈ X : Λ(p)(|σ(s)|) ⊂ Bd

ε (Ψ(x))
}

\Hs.

Thus, by (12), we get a neighbourhood Gs of s with

σ(x) ⊂ σ(s), for every x ∈ Gs.(13)

Hence, the set M = X\
⋃

{Gs : s ∈ S} is closed in X and M ⊂ Z. Therefore,
dim(M) ≤ n which implies the existence of an open cover {WU : U ∈ U} of X

such that

WU ⊂ VU for every U ∈ U ,

and

|{U ∈ U : x ∈ WU}| ≤ n + 1 for every x ∈ M .

Finally, take a partition of unity {ξU : U ∈ U} on X with X\WU ⊂ ξ←U (0), U ∈ U ,
and then define a continuous map ξ : X → |N (U)| by

ξ(x) =
∑

{ξU (x) · U : U ∈ U}, x ∈ X.

The map hε : X×I → Y , defined by hε = Λ←(Λ(p)◦ξ), is as required in (6.4).

Acknowledgement. The author is very grateful to the referee for his useful
comments.
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