ESTIMATES OF SPANS OF A SIMPLE CLOSED CURVE INVOLVING MESH

K.T. HALLENBECK
Communicated by Andrzej Lelek

Abstract. We show that the dual effectively monotone span of a simple closed curve X in the plane does not exceed the infimum of the set of positive numbers m such that a chain with mesh m covers X. We also include a short direct proof of a known inequality $\sigma_0(0) \leq \epsilon(X)$, where X is a continuum.

We begin with a brief review of the definitions introduced by A. Lelek in [1] and [2]. Let X be a nonempty connected metric space. The span $\sigma(X)$ of X is the least upper bound of the set of real numbers r, $r \geq 0$, that satisfy the following condition.

There exists a connected space Y and a pair of continuous functions $f, g : Y \to X$ such that

$$f(Y) = g(Y)$$

and $\text{dist}[f(y), g(y)] \geq r$ for every $y \in Y$.

Relaxing the requirement posed by equality (1) to the inclusion $f(Y) \subseteq g(Y)$ produces the definition of the semispan $\sigma_0(X)$ of X. Requiring that g be onto gives the definitions of the surjective span $\sigma^*(X)$ and the surjective semispan $\sigma_0^*(X)$.

It was pointed out in [2] that

$$0 \leq \sigma(X) \leq \sigma_0(X) \leq \text{diam}(X).$$

In this paper we concentrate on the case when X is a simple closed curve in the plane. Notice that in this case $\sigma^*(X) = \sigma(X)$ and $\sigma_0^*(X) = \sigma_0(X)$. We define the monotone span $\sigma_m(X)$ of X as follows.

This paper was supported in part by a Mini Grant from Widener University.
Definition 1. If X is a simple closed curve then

$$
\sigma_m(X) = \sup_{f,g} \inf_{t \in [0,1]} \|f(t) - g(t)\|
$$

where $f, g : [0,1] \to X$ are continuous on $[0,1]$, monotone on $[0,1)$, and $f([0,1]) = X = g([0,1])$.

Next we define the dual monotone span $\bar{\sigma}_m(X)$ of X.

Definition 2. If X is a simple closed curve then

$$
\bar{\sigma}_m(X) = \inf_{h,k} \sup_{t \in [0,1]} \|h(t) - t(k)\|
$$

where $h, k : [0,1] \to X$ are continuous on $[0,1]$, monotone on $[0,1)$, $h([0,1]) = X = k([0,1])$, $h(0) = k(0)$, there exists a point $t' \in (0,1)$ such that $h([0,t']) \cap k([0,t']) = \{h(0)\}$ and neither $h([0,t'])$ nor $k([0,t'])$ is a singleton.

Finally, we define the dual effectively monotone span $\bar{\sigma}_{em}(X)$.

Definition 3. If X is a simple closed curve then

$$
\bar{\sigma}_{em}(X) = \inf_{h,k} \sup_{t \in [0,1]} \|h(t) - t(k)\|
$$

where $h, k : [0,1] \to X$ are continuous, $h([0,1]) = X = k([0,1])$, $h(0) = k(0)$, there exists a point $t_0 \in (0,1)$ such that $h(t_0) = k(t_0) \neq h(0)$ and $h([0,t_0]) \cap k([0,t_0]) = \{h(0), h(t_0)\}$.

It follows from a more general result of A. Lelek [2, Th.2.1, p. 39] that when X is a continuum then $\sigma_0(X) \leq \epsilon(X)$.\footnote{Another proof, due to E. Duda, appeared in H. Fernandez’s Doctoral Dissertation, U. of Miami, 1998} We include this estimate with a different direct proof.

Theorem 1.1. Let X be a continuum and let $\epsilon(X)$ be the infimum of the set of positive numbers m such that a chain with mesh m covers X. Then $\sigma_0(X) \leq \epsilon(X)$.

Proof. Let Y be a connected space and let $f, g : Y \to X$ be continuous functions such that $g(Y) \supset f(Y)$. Let m be a number such that a chain C with mesh m covers X, and let C_1, C_2, \ldots, C_n denote the links in the chain C in their consecutive order. If there exist $y_0 \in Y$ and i, $1 \leq i \leq n$, such that $f(y_0), g(y_0) \in C_i$ then $\text{dist}\{f(y_0), g(y_0)\} \leq m$. In this case $\sigma_0(x) \leq m$, and the arbitrary choice of m implies that $\sigma_0(X) \leq \epsilon(X)$.\footnote{Another proof, due to E. Duda, appeared in H. Fernandez’s Doctoral Dissertation, U. of Miami, 1998}
Suppose now that for each \(i, 1 \leq i \leq n \), and every \(y \in Y \), if \(f(y) \in \hat{C}_i \) then \(g(y) \notin \hat{C}_i \). This property, along with the continuity of \(f \) and \(g \), implies that the sets
\[
A = \{ y \in Y : f(y) \in C_i, \ g(y) \in C_j, \ i < j \}
\]
and
\[
B = \{ y \in Y : f(y) \in C_i, \ g(y) \in C_j, \ i > j \}
\]
are open and disjoint, and \(A \cup B = Y \). Furthermore, \(A \neq \emptyset \) and \(B \neq \emptyset \). Indeed, suppose that \(B = \emptyset \) and let \(k \) be the smallest number such that \(g(Y) \cap C_k \neq \emptyset \). Clearly, \(k > 1 \). Let \(y_1 \in Y \) and let \(g(y_1) \in C_k \). Then \(f(y_1) \in C_i \cap (X \setminus \hat{C}_k) \) for some \(i, i < k \). This contradicts the assumption that \(g(Y) \supset f(Y) \). Hence, \(B \neq \emptyset \). Similarly, we argue that \(A \neq \emptyset \). It follows that, in this case, \(A \) and \(B \) provide a separation of \(Y \). This contradicts the assumption that \(Y \) is connected. Therefore, only the first considered case holds, i.e. there exists \(y_0 \in Y \) and \(i, 1 \leq i \leq n \), such that \(f(y_0), g(y_0) \in \hat{C}_i \) and, hence, \(\sigma_0(X) \leq \epsilon(X) \).

It turns out that the same bound from above, \(\epsilon(X) \), holds for the dual effectively monotone space of a simple closed curve \(X \). For a pair of two distinct points \(A, B \in X \) we denote the counterclockwise arc on \(X \) from \(A \) to \(B \) by \(AB^\sim \).

Theorem 1.2. Let \(X \) be a simple closed curve. Then \(\bar{\sigma}_{em}(X) \leq \epsilon(X) \).

Proof. We need only assume that \(X \) is a polygon. Let \(\{C_j\}_{j=1}^N \) be a chain of closed sets with mesh \(\delta \) such that \(X \subseteq \bigcup_{j=1}^N C_j \). We choose a point \(E \in X \cap C_1 \) and a point \(F \in X \cap C_N \). Let \(g \) be the mapping that defines \(X \), \(g : [0, 1] \rightarrow X, g(0) = g(1), 1 : 1 \) on \([0, 1]\). Without loss of generality we assume that \(g(0) = E \). Let \(t_F \) be the point in \((0, 1)\) such that \(g(t_F) = F \). Define two homeomorphisms on \([0, 1]\) in the following way:
\[
g_1 : \ [0, 1] \rightarrow EF^\sim, \ g_1(t) = g(t_F t), \\
g_2 : \ [0, 1] \rightarrow FE^\sim, \ g_2(t) = g(1 - (1 - t_F) t).
\]
Note that \(g_1(0) = g_2(0) = E \), \(g_1(1) = g_2(1) = F \).

We shall construct two mappings \(h, k \) such that \(h : [0, 1] \rightarrow EF^\sim, \ k : [0, 1] \rightarrow FE^\sim \) and \(\forall t \in [0, 1] \exists j, k (j, k) \in \{1, \ldots, N\} \ni h(t), k(t) \in C_j \). First we assume, without loss of generality, that \(\partial C_j \) is a Jordan curve for each link \(C_j \) in the chain \(\{C_j\}_{j=1}^N \), and that \(C_j \cap C_{j+1} = \partial C_j \cap \partial C_{j+1}, \ldots, N - 1 \), while \(\text{diam}(C_j \cap X) \leq \delta \). Assume also that \(E \in \partial C_1 \) and there is an arc \(L_0 \), \(\partial C_1 \supset L_0 \), such that \(L_0 \cap X = E \). Similarly, \(F \in \partial C_N \) and there is an arc \(L_N, \partial C_N \supset L_N \), such that \(L_N \cap X = F \). Let \(L_j = \partial C_j \cap \partial C_{j+1} \) for \(j = 1, \ldots, N - 1 \), let \(i = \sqrt{-1} \), and let \(G : [0, 1] \times [0, i] \rightarrow \)
Define the definition of h and f. Furthermore, due to Whittaker (see Theorem 3 in [4]) there exist two maps \bar{h} and \bar{f} on $[0,1]$. Let H_1 and H_2 be two homeomorphisms on $G^{-1}(E)$ and $G^{-1}(E^\sim)$, respectively, such that $H_1(G^{-1}(g_1(t))) = (t, f_1(t))$ and $H_2(G^{-1}(g_2(t))) = (t, f_2(t))$ for each $t \in [0,1]$.

We are now in a position to define the mappings h, k. For each $t \in [0,1]$ put

$$h(t) = G(H^{-1}_1(\bar{f}_1(t), f_1(\bar{f}_1(t)))),$$

$$k(t) = G(H^{-1}_2(\bar{f}_2(t), f_2(\bar{f}_2(t)))).$$

Note that $h(0) = k(0) = E$ since $H^{-1}_n(0,0) = G^{-1}(g_n(0)) = G^{-1}(E)$, $n = 1, 2$. Similarly, $h(1) = k(1) = F$ since $H^{-1}_n(1,1) = G^{-1}(g_n(1)) = G^{-1}(F)$, $n = 1, 2$. Furthermore, $h([0,1]) = EF^\sim$, $k([0,1]) = FE^\sim$, and $\forall t \in [0,1] \exists \exists s \in [0,1] : h(t), k(t) \in G([0,1] \times \{s_i\})$. Hence, $\forall t \in [0,1] \exists j, j \in \{1, \ldots, N\} : h(t), k(t) \in C_j$.

Finally, we define $h_1, k_1 : [0,1] \to X$ as follows:

$$h_1(t) = \begin{cases} h(2t), & \text{for } t \in [0,1/2] \\ h(2 - 2t), & \text{for } t \in [1/2,1] \end{cases}$$

$$k_2(t) = \begin{cases} k(2t), & \text{for } t \in [0,1/2] \\ k(2 - 2t), & \text{for } t \in [1/2,1] \end{cases}$$

It follows that $\forall t \in [0,1] h_1(t), k_1(t) \in C_j$ for the same j. Hence, $\forall t \in [0,1] ||h_1(t) - k_1(t)|| \leq \delta$. Since h_1 and k_1 satisfy the conditions imposed in the definition of $\overline{\sigma}_{em}$, this ends the proof of Theorem 1.2.

\qed
Note. The span of X is equal to $\epsilon(X)$ when X is the boundary of a convex region (see [3]).

References

Received February 25, 1997
Revised version received April 18, 2000

Department of Mathematics, Widener University, Chester, PA 19013

(Current address) 4733 Weatherhill Drive, Wilmington, DE 19808