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Abstract. We show that the dual effectively monotone span of a simple

closed curve X in the plane does not exceed the infimum of the set of positive

numbers m such that a chain with mesh m covers X. We also include a short

direct proof of a known inequality σ0(0) ≤ ε(X), where X is a continuum.

We begin with a brief review of the definitions introduced by A. Lelek in [1]
and [2]. Let X be a nonempty connected metric space. The span σ(X) of X is the
least upper bound of the set of real numbers r, r ≥ 0, that satisfy the following
condition.

There exists a connected space Y and a pair of continuous functions f, g : Y →
X such that

f(Y ) = g(Y )(1)

and dist[f(y), g(y)] ≥ r for every y ∈ Y.

Relaxing the requirement posed by equality (1) to the inclusion f(Y ) ⊆ g(Y )
produces the definition of the semispan σ0(X) of X. Requiring that g be onto
gives the definitions of the surjective span σ∗(X) and the surjective semispan
σ∗0(X).

It was pointed out in [2] that

0 ≤ σ(X) ≤ σ0(X) ≤ diam(X).

In this paper we concentrate on the case when X is a simple closed curve in
the plain. Notice that in this case σ∗(X) = σ(X) and σ∗0(X) = σ0(X). We define
the monotone span σm(X) of X as follows.
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Definition 1. If X is a simple closed curve then

σm(X) = sup
f,g

inf
t∈[0,1]

‖f(t)− g(t)‖ ,

where f, g : [0, 1] → X are continuous on [0, 1], monotone on [0, 1), and f([0, 1]) =
X = g([0, 1]).

Next we define the dual monotone span σ̄m(X) of X.

Definition 2. If X is a simple closed curve then

σ̄m(X) = inf
h,k

sup
t∈[0,1]

‖h(t)− t(k)‖ ;

where h, k : [0, 1] → X are continuous on [0, 1], monotone on [0, 1), h([0, 1]) =
X = k([0, 1]), h(0) = k(0), there exists a point t′ ∈ (0, 1) such that h([0, t′]) ∩
k([0, t′]) = {h(0)} and neither h([0, t′]) nor k([0, t′]) is a singleton.

Finally, we define the dual effectively monotone span σ̄em(X).

Definition 3. If X is a simple closed curve then

σem(X) = inf
h,k

sup
t∈[0,1]

‖h(t)− k(t)‖ ,

where h, k : [0, 1] → X are continuous, h([0, 1]) = X = k([0, 1]), h(0) = k(0),
there exists a point t0 ∈ (0, 1) such that h(t0) = k(t0) 6= h(0) and h([0, t0]) ∩
k([0, t0]) = {h(0), h(t0)}.

It follows from a more general result of A. Lelek [2, Th.2.1, p. 39] that when
X is a continuum then σ0(X) ≤ ε(X).1 We include this estimate with a different
direct proof.

Theorem 1.1. Let X be a continuum and let ε(X) be the infimum of the set of
positive numbers m such that a chain with mesh m covers X. Then σ0(X) ≤ ε(X).

Proof. Let Y be a connected space and let f, g : Y → X be continuous functions
such that g(Y ) ⊃ f(Y ). Let m be a number such that a chain C with mesh
m covers X, and let C1, C2, . . . , Cn denote the links in the chain C in their
consecutive order. If there exist y0 ∈ Y and i, 1 ≤ i ≤ n, such that f(y0), g(y0) ∈
C̄i then dist{f(y0), g(y0)} ≤ m. In this case σ0(x) ≤ m, and the arbitrary choice
of m implies that σ0(X) ≤ ε(X).

1Another proof, due to E. Duda, appeared in H. Fernandez’s Doctoral Dissertation, U. of

Miami, 1998
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Suppose now that for each i, 1 ≤ i ≤ n, and every y ∈ Y, if f(y) ∈ C̄i then
g(y) 6∈ C̄i. This property, along with the continuity of f and g, implies that the
sets

A = {y ∈ Y : f(y) ∈ Ci, g(y) ∈ Cj , i < j}
and

B = {y ∈ Y : f(y) ∈ Ci, g(y) ∈ Cj , i > j}
are open and disjoint, and A ∪ B = Y. Furthermore, A 6= ∅ and B 6= ∅. Indeed,
suppose that B = ∅ and let k be the smallest number such that g(Y ) ∩ Ck 6= ∅.
Clearly, k > 1. Let y1 ∈ Y and let g(y1) ∈ Ck. Then f(y1) ∈ Ci ∩ (X \ C̄k) for
some i, i < k. This contradicts the assumption that g(Y ) ⊃ f(Y ). Hence, B 6= ∅.
Similarly, we argue that A 6= ∅. It follows that, in this case, A and B provide a
separation of Y. This contradicts the assumption that Y is connected. Therefore,
only the first considered case holds, i.e. there exists y0 ∈ Y and i, 1 ≤ i ≤ n,

such that f(y0), g(y0) ∈ C̄i and, hence, σ0(X) ≤ ε(X).

It turns out that the same bound from above, ε(X), holds for the dual effectively
monotone space of a simple closed curve X. For a pair of two distinct points
A, B ∈ X we denote the counterclockwise arc on X from A to B by AB∼.

Theorem 1.2. Let X be a simple closed curve. Then σ̄em(X) ≤ ε(X).

Proof. We need only assume that X is a polygon. Let {Cj}N
j=1 be a chain of

closed sets with mesh δ such that X ⊆
⋃N

j=1 Cj . We choose a point E ∈ X∩C1 and
a point F ∈ X ∩CN . Let g be the mapping that defines X, g : [0, 1] → X, g(0) =
g(1), 1 : 1 on [0, 1). Without loss of generality we assume that g(0) = E. Let tF
be the point in (0, 1) such that g(tF ) = F. Define two homeomorphisms on [0, 1]
in the following way:

g1 : = [0, 1] → EF∼, g1(t) = g(tF t),

g2 : = [0, 1] → FE∼, g2(t) = g(1− (1− tF )t).

Note that g1(0) = g2(0) = E, g1(1) = g2(1) = F.

We shall construct two mappings h, k such that h : [0, 1] → EF∼, k : [0, 1] →
FE∼ and ∀t ∈ [0, 1]∃j, j ∈ (1, . . . , N) 3 h(t), k(t) ∈ Cj . First we assume, without
loss of generality, that ∂Cj is a Jordan curve for each link Cj in the chain {Cj}N

j=1,

and that Cj ∩Cj+1 = ∂Cj ∩ ∂Cj+1, . . . , N − 1, while diam(Cj ∩X) ≤ δ. Assume
also that E ∈ ∂C1 and there is an arc L0, ∂C1 ⊃ L0, such that L0 ∩ X = E.

Similarly, F ∈ ∂CN and there is an arc LN , ∂CN ⊃ LN , such that LN ∩X = F.

Let Lj = ∂Cj∩∂Cj+1 for j = 1, . . . , N−1, let i =
√
−1, and let G : [0, 1]×[0, i] →
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⋃N
j=1 Cj be a homeomorphism, mapping the unit square onto

⋃N
j=1 Cj , with the

following properties:

1) ∀j = 0, . . . N G([0, 1]× {ij/N}) = Lj

2) ∀j = 1, . . . N
⋃

t∈[(j−1)/N,j/N ] G([0, 1]× {ti}) = Cj

3) ∀t, s ∈ [0, 1] t 6= s ⇒ G([0, 1]× {ti}) ∩G([0, 1]× {si}) = ∅.
Define f1, f2 : [0, 1] → [0, 1] as follows:

∀t∈[0,1] f1(t) = Im G−1(g1(t)), f2(t) = Im G−1(g2(t)).

Notice that f1(0) = f2(0) = 0, f1(1) = f2(1) = 1 and f1, f2 are contin-
uous and piecewise weakly monotone. By the early version of the Mountain
Climbers Theorem due to Whittaker (see Theorem 3 in [4]) there exist two maps
f̄1, f̄2 : [0, 1] → [0, 1] such that f̄1(0) = f̄2(0) = 0, f̄1(1) = f̄2(1) = 1, and
f1(f̄1(t)) = f2(f̄2(t)) for each t ∈ [0, 1]. Let H1 and H2 be two homeomorphisms
on G−1(EF∼) and G1(FE∼), respectively, such that H1(G−1(g1(t))) = (t, f1(t))
and H2(G−1(g2(t))) = (t, f2(t)) for each t ∈ [0, 1].

We are now in a position to define the mappings h, k. For each t ∈ [0, 1] put

h(t) = G(H−1
1 (f̄1(t), f1(f̄1(t)))),

k(t) = G(H−1
2 (f̄2(t), f2(f̄2(t)))).

Note that h(0) = k(0) = E since H−1
n (0, 0) = G−1(gn(0)) = G−1(E), n = 1, 2.

Similarly, h(1) = k(1) = F since H−1
n (1, 1) = G−1(gn(1)) = G−1(F ), n = 1, 2.

Furthermore, h([0, 1]) = EF∼, k[(0, 1]) = FE∼, and ∀t ∈ [0, 1]∃s ∈ [0, 1] 3
h(t), k(t) ∈ G([0, 1]× {si}). Hence, ∀t ∈ [0, 1]∃j, j ∈ {1, . . . N} 3 h(t), k(t) ∈ Cj .

Finally, we define h1, k1 : [0, 1] → X as follows:

h1(t) =

{

h(2t), for t ∈ [0, 1/2]

h(2− 2t), for t ∈ [1/2, 1]

k2(t) =

{

k(2t), for t ∈ [0, 1/2]

k(2− 2t), for t ∈ [1/2, 1].

It follows that ∀t∈[0,1]h1(t), k1(t) ∈ Cj for the same j. Hence,
∀t∈[0,1] ‖h1(t)− k1(t)‖ ≤ δ. Since h1 and k1 satisfy the conditions imposed in
the definition of σem, this ends the proof of Theorem 1.2.



ESTIMATES OF SPANS OF A SIMPLE CLOSED CURVE INVOLVING MESH 745

Note. The span of X is equal to ε(X) when X is the boundary of a convex region
(see [3]).
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