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ABSTRACT. We show that the dual effectively monotone span of a simple
closed curve X in the plane does not exceed the infimum of the set of positive
numbers m such that a chain with mesh m covers X. We also include a short
direct proof of a known inequality o¢(0) < (X)), where X is a continuum.

We begin with a brief review of the definitions introduced by A. Lelek in [1]
and [2]. Let X be a nonempty connected metric space. The span o(X) of X is the
least upper bound of the set of real numbers r,r > 0, that satisfy the following
condition.

There exists a connected space Y and a pair of continuous functions f,g:Y —
X such that

(1) fY)=g(Y)

and dist[f(y),g(y)] > r for every y € Y.

Relaxing the requirement posed by equality (1) to the inclusion f(Y) C g(Y)
produces the definition of the semispan oo(X) of X. Requiring that g be onto
gives the definitions of the surjective span o*(X) and the surjective semispan
o (X).

It was pointed out in [2] that

0<o(X) <0p(X) < diam(X).

In this paper we concentrate on the case when X is a simple closed curve in
the plain. Notice that in this case 0*(X) = 0(X) and o§(X) = 0¢(X). We define
the monotone span o,,(X) of X as follows.
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Definition 1. If X is a simple closed curve then
om(X) =sup inf |f(t)—g(),
f’g tE[O,l]

where f, ¢ :[0,1] — X are continuous on [0, 1], monotone on [0, 1), and f([0,1]) =

= g([0,1]).
Next we define the dual monotone span ,,(X) of X.

Definition 2. If X is a simple closed curve then

om(X) =inf sup [|h(t) —t(k)];
h.k tef0,1)

where h,k : [0,1] — X are continuous on [0, 1], monotone on [0,1), h([0,1]) =
= k([0,1]), h(0) = k(0), there exists a point ' € (0,1) such that h([0,¢']) N
k([0,t']) = {h(0)} and neither h([0,#']) nor k([0,']) is a singleton.

Finally, we define the dual effectively monotone span Gen, (X).

Definition 3. If X is a simple closed curve then

Tem(X) = inf sup [[a(t) —k(1)],
hk tef0,1]
where h,k : [0,1] — X are continuous, h([0,1]) = X = k([0,1]), h(0) = k(0),
there exists a point ¢y € (0,1) such that h(ty) = ( 0) # h(0) and A([0,to]) N

k([0 0]) = {h(0), h(to)}-

It follows from a more general result of A. Lelek [2, Th.2.1, p. 39] that when
X is a continuum then oo(X) < €(X).! We include this estimate with a different
direct proof.

Theorem 1.1. Let X be a continuum and let e(X) be the infimum of the set of
positive numbers m such that a chain with mesh m covers X. Then oo(X) < e(X).

PROOF. Let Y be a connected space and let f,g : Y — X be continuous functions
such that ¢g(Y) D f(Y). Let m be a number such that a chain C' with mesh
m covers X, and let C1,C5, ... ,C, denote the links in the chain C' in their
consecutive order. If there exist yg € Y and ¢, 1 <4 < n, such that f(yo),g(yo) €
C; then dist{f(y0),g(y0)} < m. In this case oo(z) < m, and the arbitrary choice
of m implies that oo(X) < ¢(X).

L Another proof, due to E. Duda, appeared in H. Fernandez’s Doctoral Dissertation, U. of
Miami, 1998
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Suppose now that for each i,1 < i < n, and every y € Y, if f(y) € C; then
g(y) € C;. This property, along with the continuity of f and g, implies that the
sets

A={yeY:[fly)eCi gly) €Cj, i <j}
and

B={yeY:[f(y) el gly) € Cj,i>j}
are open and disjoint, and AU B = Y. Furthermore, A # () and B # (). Indeed,
suppose that B = () and let k be the smallest number such that g(Y) N Cy # 0.
Clearly, k > 1. Let y; € Y and let g(y1) € Cx. Then f(y1) € C; N (X \ Cy) for
some %,¢ < k. This contradicts the assumption that g(Y') D f(Y). Hence, B # 0.
Similarly, we argue that A # (). It follows that, in this case, A and B provide a
separation of Y. This contradicts the assumption that Y is connected. Therefore,

only the first considered case holds, i.e. there exists yo € Y and i, 1 < i < n,
such that f(yo), g(vo) € C; and, hence, 0¢(X) < €(X). O

It turns out that the same bound from above, €(X), holds for the dual effectively
monotone space of a simple closed curve X. For a pair of two distinct points
A, B € X we denote the counterclockwise arc on X from A to B by AB™.

Theorem 1.2. Let X be a simple closed curve. Then Gem(X) < e(X).

PROOF. We need only assume that X is a polygon. Let {C} }évzl be a chain of
closed sets with mesh ¢ such that X C Uj\le C;. We choose a point ¥ € XNC; and
a point F' € X NCy. Let g be the mapping that defines X, ¢:[0,1] — X, ¢(0) =
g(1),1: 1 on [0,1). Without loss of generality we assume that g(0) = E. Let tp
be the point in (0,1) such that g(tp) = F. Define two homeomorphisms on [0, 1]
in the following way:

g1: = [0,1] = EF™, g1(t) = g(trt),
ga: = [0,1] = FE~, go(t) = g(1 — (1 —tp)t).

Note that g1(0) = g2(0) = E, g1(1) = g2(1) = F.

We shall construct two mappings h, k such that h: [0,1] — EF~, k:[0,1] —
FE~andVt € [0,1]35,7 € (1,... ,N) 3 h(t), k(t) € C;. First we assume, without
loss of generality, that OC; is a Jordan curve for each link C; in the chain {C} }é\':l,
and that C; NCj11 = 0C;NOCj41,... ,N —1, while diam(C; N X) < 4. Assume
also that E € dC and there is an arc Lo, 0C; D Lg, such that Lo N X = E.
Similarly, F' € 0Cy and there is an arc Ly,0CyN D Ly, such that Ly N X = F.

Let L; =0C;N0C 41 forj=1,... ,N—1,leti=+/—1,and let G : [0,1] x[0,4] —
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U;V:1 C; be a homeomorphism, mapping the unit square onto Ujvzl C;, with the
following properties:

1) ¥j=0,...N G([0,1] x {ij/N}) =
2 Vji=1,...N Userj—1yv.j/w G0, 1] x {ti}) = C
3) Vi, s € [0,1] t£s= G([0,1] x {ti}) N G([0,1] x {si}) = 0.

Define fi, fo : [0,1] — [0,1] as follows:

Ve fi(t) = Tm GTH(gi(t)), f2(t) = Tm G (ga(t)).

Notice that fi(0) = f2(0) = 0, fi(1) = f2(1) = 1 and fi, fo are contin-
uous and piecewise weakly monotone. By the early version of the Mountain
Climbers Theorem due to Whittaker (see Theorem 3 in [4]) there exist two maps
f1,f:2 : [0,1] —i [O, 1] such that le( ) fQ( ) = O fl( ) = fg(l) = 1, and
f1(f1(t)) = f2(f2(t)) for each t € [0,1]. Let Hy and Hs be two homeomorphisms
on G~YH(EF~) and G'(FE™), respectively, such that Hi (G~ 1(g1(t))) = (¢, f1(t))
and Hay(G71(g2(t))) = (t, f2(t)) for each t € [0, 1].

We are now in a position to define the mappings h, k. For each ¢ € [0, 1] put

h(t) = GUH{ (fi(1), L(F (1)),
k(t) = G(Hy (f(t), 2(f2(t).
Note that h(0) = k(0) = E since H,, 1(0,0) = G~1(g,(0)) = G"YE), n=1,2
= G (gn(1))

Similarly, h(1) = k(1) = F since H,, (1,1) =

Furthermore, h([0,1]) = EF~, k[(0,1]) = FE™~, and Vt €

h(t), k(t) € G(]0,1] x {si}). Hence vVt €[0,1]37,5 € {1,... N} 3 h(t), k(t) € C;.
Finally, we define hq,k; : [0,1] — X as follows:

ha(®) = {h(Qt), for t € [0,1/2]
h(2—2t), forte[l1/2,1]
ka(t) {k(Qt), for t € [0,1/2]
k(2—-2t), forte[l/2,1].

It follows that Vep1h1(t), ki(t) € C; for the same j. Hence,
Viepo,11 lIh1(t) — k1(t)]| < 0. Since hy and ky satisfy the conditions imposed in
the definition of &.,,, this ends the proof of Theorem 1.2.

O
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Note. The span of X is equal to €(X) when X is the boundary of a convex region
(see [3]).

REFERENCES

(1] A. Lelek, Disjoint mappings and the span of spaces, Fund. Maths. 55 (1964), 199-214.

2] , On the surjective span and semispan of connected metric spaces, Colloq. Math.
37 (1977), 35-45.

[3] K. Tkaczynska, The span and semispan of some simple closed curves, Proc. Amer. Math.
Soc., vol.ITI, no.1 (1991), 247-253.

[4] J.V. Whittaker, A mountain-climbing problem, Canad. J. Math. 18 (1966), 873-882.

Received February 25, 1997
Revised version received April 18, 2000

DEPARTMENT OF MATHEMATICS, WIDENER UNIVERSITY, CHESTER, PA 19013

(Current address) 4733 WEATHERHILL DRIVE, WILMINGTON, DE 19808



