
Houston Journal of Mathematics
c© 2000 University of Houston

Volume 26, No. 4, 2000

ON DOUBLE-DERIVED SETS IN TOPOLOGICAL SPACES
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Abstract. We characterize topological spaces which have a subset with

non-closed double-derived set. As a corollary we obtain that the double-

derived set of an arbitrary subset of a T0 topological space is closed. This

answers in the negative a question asked by A.Lelek in Houston Problem

Book (1995).

In [1, Problem 174] A.Lelek asked whether there is a T0 topological space X

and a subset A ⊂ X such that the double-derived set (Ad)d is not closed. This
problem also appeared in the Problem book of the Open Problem Seminar held
at Department of Mathematical Analysis at Charles University ([2, Problem 28]).
We present here a short negative solution.

Let us first recall some definitions.

Definition 1. A topological space X is called a T0 space, if for any pair of distinct
points x, y ∈ X there exists an open set containing exactly one of the points x, y.

Definition 2. If X is a topological space and A ⊂ X an arbitrary subset, then
the derived set Ad is the set of all x ∈ X which belong to A \ {x}.

Definition 3. A topological space X is called indiscrete if ∅ and X are the only
open sets in X.

Let us remark that in any T1-space X (X is T1, if for any two distinct points
x, y ∈ X there is an open set U such that x ∈ U and y /∈ U) the derived set of
an arbitrary set is necessarily closed. For T0 spaces the first derived set need not
be closed. Consider, for example, the set R of real numbers with the topology
generated by {(−∞, a) : a ∈ R}. Then the derived set of A = {0} is Ad = (0,∞)
which is not closed.
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On the other hand, if X is the two-point indiscrete space and A a one-point
subset of X, then clearly none of the iterated derived sets of A is closed. In view
of these remarks, the question of A.Lelek seems to be natural. The answer is a
consequence of the following theorem which characterizes topological spaces in
which there is a subset with non-closed double derived set.

Theorem. Let X be topological space. The following assertions are equivalent.

1. There is a subset A ⊂ X such that the double-derived set (Ad)d is not closed
in X.

2. There is a subset A ⊂ X such that none of the iterated derived sets Ad,
(Ad)d, ((Ad)d)d, . . . is closed.

3. X contains a copy of two-point indiscrete space, as a subset of the form
F ∩G with F closed and G open in X.

As a corollary we get the answer to the mentioned question of A.Lelek.

Corollary. Let X be a T0 topological space and A ⊂ X an arbitrary subset. Then
the double derived set (Ad)d is closed in X.

Proof of Theorem. 3 ⇒ 2 Let {a, b} = F ∩G be a copy of two-point indiscrete
space with F closed and G open in X. Put A = {a}. Then it is clear that in the
sequence Ad ∩G, (Ad)d ∩G, ((Ad)d)d ∩G, . . . the odd members are equal to {b},
and the even ones to {a}. Hence none of the iterated derived sets is closed in X.

2 ⇒ 1 This is trivial.
1 ⇒ 3 Suppose that (Ad)d is not closed. Pick a point a ∈ (Ad)d \ (Ad)d. As

a /∈ (Ad)d, there is an open set U containing a such that

U ∩Ad ⊂ {a}(1)

Since a belongs to the closure of (Ad)d, there is a point b ∈ U ∩ (Ad)d. Clearly
b 6= a. As U is a neighborhood of b and b ∈ (Ad)d, we obtain that U ∩ Ad 6= ∅.
By (1) we get

a ∈ Ad(2)

Now suppose that b ∈ U ∩ (Ad)d is arbitrary. If there is an open set V containing
b and not containing a, then U ∩ V ∩ Ad 6= ∅, as U ∩ V is a neighborhood of b.
But it follows that (U ∩Ad) \ {a} 6= ∅, which contradicts (1). Hence we get

(∀b ∈ U ∩ (Ad)d)(∀V 3 b, V open)(a ∈ V )(3)
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As b /∈ Ad (by (1)), we obtain the following.

(∀b ∈ U ∩ (Ad)d)(∃Vb open)(b ∈ Vb & Vb ∩A ⊂ {b})(4)

Due to (3), the set Vb is a neighborhood of a, and hence, by (2), Vb ∩ A 6= ∅.
Hence, by (4) we deduce

U ∩ (Ad)d ⊂ A(5)

If there are two distinct points b, c ∈ (Ad)d, then Vb ∩ Vc is a neighborhood of a

(by (3)), and hence there is some d ∈ A∩ Vb ∩ Vc, due to (2). But it follows from
the choice of Vb and Vc (cf. (4)) that d = b = c, a contradiction. Therefore

there is exactly one b ∈ (Ad)d ∩ U(6)

If there is an open set W such that a ∈ W and b /∈ W , then W ∩ U is a neigh-
borhood of a, and hence there is some c ∈ (Ad)d ∩ U ∩W . This c is necessarily
different from b, which contradicts (6). So such a W does not exist. Together
with (3) this yields that

{a, b} is a copy of the two-point indiscrete space.(7)

It remains to prove that the set {a, b} is of the form F ∩G with F closed and G

open in X. Put G = U ∩ Vb and F = {a, b}. Then clearly {a, b} ⊂ F ∩ G. Let
us prove the inverse inclusion. Let x ∈ (F ∩G) \ {a, b}. By (1) we have x /∈ Ad,
and so there is an open set W containing x such that A∩W ⊂ {x}, in particular
b /∈ W by (5). It follows from (7) that a /∈ W as well, hence W ∩ {a, b} = ∅. In
particular, x /∈ F , a contradiction. This completes the proof.
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