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SPECIAL UNIONS OF UNICOHERENT CONTINUA
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Communicated by Andrzej Lelek

Abstract. It is proved that a Hausdorff continuum is unicoherent if it is

the union of two unicoherent continua whose intersection is connected and

locally connected.

1. Introduction and First Definitions

A separable metric space X is said to be acyclic if every continuous map from
X into S1 is homotopic to a constant map. Classical results of Eilenberg assert
that a metric continuum is acyclic, and hence unicoherent, if it is the union of two
acyclic continua whose intersection is connected; the fact is seen as an amalgam
of (7.3), (6.22), and (5.2) in Chapter XI of [Wh]. It follows from this theorem
and the theory of Peano continua that a metric continuum is unicoherent if it
is the union of two locally connected unicoherent continua whose intersection
is connected ((7.6) in Chapter XI of [Wh]). Special types of unicoherence are
preserved under similar unions, as in [Ow], even when Eilenberg’s homotopy
theorems are unavailable. Such is the case in the present paper, where it is shown
that a Hausdorff continuum P is unicoherent if it is the union of unicoherent
continua J and K such that J ∩K is connected and locally connected. Acyclic
graphs play an important part in the proof as nerves of covers (tools also used in
[St]). Our proof is sketched in the next paragraph for a metric continuum (P, ρ).

If such a continuum P is not unicoherent then it is the union of continua
P−1 and P1 with P−1 ∩ P1 = A | B. Choose ε > 0 so that ρ(a, b) ≥ ε for all
a ∈ A, b ∈ B. By unicoherence of J and K, the locally connected continuum J∩K

is seen to be a separating subcontinuum of P that intersects each component of
P−1, each component of P1, and each component of P−1 ∩ P1. Let V = J ∩ K,
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and express V as the union of a finite collection of continua, V = {V1, V2, . . . , Vs},
with ρ-diameter(Vj) < ε/2 for 1 ≤ j ≤ s. For each i ∈ {−1, 1}, let V(Pi) = {Vj ∈
V : Vj ∩ Pi 6= ∅} and define compacta

Ji = (J ∩ Pi) ∪
⋃

V(Pi)
Ki = (K ∩ Pi) ∪

⋃

V(Pi)

Then J = J−1 ∪ J1 and K = K−1 ∪ K1. Also, the sets P ′
−1 = J−1 ∪ K−1 and

P ′
1 = J1 ∪K1 are continua containing P−1 and P1, respectively, and P ′

−1 ∩ P ′
1 is

still not connected. Let ΣJ = {S : S is a component of J−1 or of J1}. Boundary
bumping gives |ΣJ | ≤ |V(P−1)|+ |V(P1)|. There is a connected graph associated
with ΣJ having one vertex for each element of ΣJ and one edge for each pair
of distinct intersecting elements of ΣJ. This graph, the nerve of ΣJ , is denoted
T[ ]. Since J is unicoherent, T[ ] is acyclic, i. e., T[ ] is a tree. Similarly define
ΣK = {S : S is a component of K−1 or of K1}, and the nerve T〈 〉 of ΣK is again
a tree. Also, if ΣV = {S : S is a component of

⋃

V(P−1) or of
⋃

V(P1)}, then
the nerve T( ) of ΣV is connected, though not necessarily a tree. The proof is
finished when boundary-bumping of components in ΣJ and ΣK, together with a
graph-theoretic result relating T[ ], T〈 〉 and T( ), force the conclusion that P ′

1∩P ′
−1

is connected, contradicting the previously cited disconnectedness of this set.
For most fundamental definitions the reader is referred to [Ho]. A compactum

is a nonempty compact topological space, and a continuum is a connected com-
pactum. In this paper, only Hausdorff continua are considered. P always denotes
a Hausdorff continuum. We let C(P ) denote the set of all subcontinua of P .
P is said to be unicoherent if M ∩ N is connected whenever M , N ∈ C(P ) and
M∪N = P. Given sets A and B, the symbol A\B denotes the set of all elements of
A that are not elements of B. We let ClP (A), or just Cl(A) when P is understood
by context, denote the closure of a set A ⊆ P. BdP (A) and IntP (A) denote the
boundary and interior of A in P, and the subscript P is again frequently omitted.
If A and B are nonempty separated subsets of P (i.e., Cl(A) ∩B and A ∩ Cl(B)
are empty), we write A ∪B = A |B .

The cardinality of a collection Ω ⊆ C(P ) is denoted by |Ω| . Throughout this
paper the subscripting convention for any collection {Ωi : i ∈ I} is that Ωi = Ωj

if and only if i = j. For finite collections one thus has |{Ω1, ...,Ωw}| = w. For
a nonvoid Ω ⊆ C(P ) and A ⊆ P, we define

Ω∗ =
⋃

Ω, Ω(A) = {H ∈ Ω : H ∩A 6= ∅} , and Ω(A)∗ =
⋃

Ω(A).

∅∗ is defined to be ∅. The symbols ⊂ and ⊃ denote proper inclusion and contain-
ment, respectively. We say that a subcollection Ω of C(P )) covers B irreducibly
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if Ω∗ = B and Φ∗ 6= B for each Φ ⊂ Ω. One observes that Ω covers Ω∗ irreducibly
if and only if each member of Ω contains at least one point of Ω∗ that no other
member of Ω contains.

Lemma 1.1. If Ω (⊆ C(P )) covers Ω∗ irreducibly and Ψ, Ω1, Ω2, . . . ,Ωw ⊆ Ω,

then
Ω∗1 ⊆ Ω∗2 ⇐⇒ Ω1 ⊆ Ω2 ,

Ω∗1 = Ω∗2 ⇐⇒ Ω1 = Ω2 , and
Ω∗1 ∪ . . . ∪ Ω∗w = Ψ∗ ⇐⇒ Ω1 ∪ . . . ∪ Ωw = Ψ.

(1)

Proof. The first line follows from the observation made just preceding the
Lemma. The second line follows from two applications of the first, one in each
direction of containment. The third line follows from the second and the fact that
Ω∗1 ∪ . . . ∪ Ω∗w = (Ω1 ∪ . . . ∪ Ωw)∗.

2. Pseudogrilles and P-decompositions

Definition 2.1. P is a pseudogrille for P provided that

(a): P ⊆ C(P ),
(b): P covers P irreducibly, and
(c): for each M ∈ C(P ), the set P(M)∗ is closed in P (or, equivalently, by

(a) and (b), P(M)∗ is a subcontinuum of P containing M).

Example 2.2. P = {{x} : x ∈ P}, P = {P}, or P = any upper semicontin-
uous decomposition of P into continua is a pseudogrille for P. (One can apply
complementation in Theorem 3−32 of [Ho].)

Example 2.3. Let P = [0, 1] × [0, 1] and, for any fixed positive integer n, let
Pn = {[ j−1

n , j
n ] × [k−1

n , k
n ] : 1 ≤ j, k ≤ n}. In particular, for later comment, we

express P4 as {G1, G2, ..., G16}, where G1, G2, ..., G16 describes a spiral pattern
with G1 = [0, 1/4]× [3/4, 1], G2 = [0, 1/4]× [1/2, 3/4], and so forth.

The term pseudogrille was chosen because of the similarity such collections bear to
the grille decompositions defined in [Mo]. Clearly, every finite irreducible covering
of the Hausdorff continuum P by subcontinua is a pseudogrille for P . In the next
Proposition 2P denotes the topological space of all nonempty closed subsets of
P with the Vietoris topology (see [Mi]), and C(P ) is given the relative topology
from 2P .

Proposition 2.4. Suppose P is a closed subspace of C(P ), and P covers P ir-
reducibly. Then P is a pseudogrille for P.
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Proof. By hypothesis, (a) and (b) of Definition 2.1 hold. To see that (c) also
holds, suppose M ∈ C(P ). Then M ∈ 2P , and {A ∈ 2P : A∩M 6= ∅} is closed in
2P by 2.2.2 of [Mi]. Now, P is closed in C(P ) and C(P ) is closed in 2P by 4.13.5
of [Mi]. Thus P is closed in 2P . Therefore, the collection P(M) = P ∩ {A ∈ 2P :
A ∩M 6= ∅} is closed in 2P . Then, by 2.5.2 of [Mi], P(M)∗ is closed in P. Since
M was any member of C(P ), we conclude that (c) of Definition 2.1 does in fact
hold, along with (a) and (b). Thus P is a pseudogrille for P.

For the balance of this paper, P denotes an arbitrary pseudogrille
for an arbitrary Hausdorff continuum P. We now give an alternate form of
the ∗ notation for subcollections of P.

Definition 2.5. For any A ⊆ P, A? is defined to be A∗.

Our use of the ? notation in place of the ∗ notation is intended to emphasize
when the collection A is known to be a subcollection of P. To clarify matters
further, each of the script lettersA, B, C, . . . , Z will be used only to denote a
subcollection of P.

Definition 2.6. If H ∈ C(P ) and H = H? for some H ⊆ P, we say that H is a
P-continuum. More specifically, if Z is any subcollection of P, H ∈ C(P ), and
H = H? for some H ⊆ Z, we say that H is a Z-continuum.

Example 2.7. In Example 2.3 with P = P4, the set G2 ∪ G3 ∪ G5 is a P-
continuum.

Some relevant notes follow. (1) For each P-continuum H there is, by Lemma
1.1 and (b) of Definition 2.1, exactly one collection H ⊆ P such that H = H?.

(2) Ordinarily, the form H? will be used in place of H when we refer to a P-
continuum. (3) Since P ⊆ C(P ), each G ∈ P is a P-continuum equal to {G}?.
(4) If M ∈ C(P ) then P(M)? is a P-continuum containing M, by (c) in the
definition of a pseudogrille. (5) The letter G is customarily used to denote an
element of P.

Definition 2.8. A compactum Z ⊆ P such that Z = Z? for some Z ⊆ P is
called a P-compactum.

Again by Lemma 1.1, Z is uniquely determined by Z. Note also that each P-
continuum is a connected P-compactum, and vice versa.

Lemma 2.9. If Z? is a P-compactum and G ∈ P, then G ⊆ Z? ⇐⇒ G ∈ Z.
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Proof. Apply the first line of Lemma 1.1 with Ω = P, Ω1 = {G} and Ω2 =
Z.

Lemma 2.10. If Z? is a P-compactum and C is a component of Z? then C is
the Z-continuum Z(C)?.

Proof. C is a continuum, being a component of a compactum, so it suffices
to show that C = Z(C)?. First, suppose p ∈ Z(C)?. Then there exists G ∈
Z(C) with p ∈ G. Since G ∈ Z(C) we have G ∩ C 6= ∅. Therefore, G ∪ C is a
subcontinuum of Z?. Then, since C is a component of Z?, we have G ∪ C = C.

Thus p ∈ G ⊆ C. Hence, as p was an arbitrary point of Z(C), we have Z(C)? ⊆ C.

For the reverse inclusion, suppose that p ∈ C. Since C ⊆ Z? we have p ∈ Z?. So
there exists G ∈ Z with p ∈ G. Thus, as p ∈ G∩C, G∩C 6= ∅. Hence G ∈ Z(C).
Therefore, as p ∈ G and G ⊆ Z(C)?, it follows that p ∈ Z(C)?. This proves that
C ⊆ Z(C)?. Thus C = Z(C)?, as required.

Of course, the Z-continuum Z(C)? is also a P-continuum, since Z ⊆ P.

Definition 2.11. A quasichain (or a quasichain of P-continua) is a finite nonvoid
collection of P-continua, Ω = {H?

1, ...,H?
w}, such that

(a): Ω∗ is connected (or, equivalently, is a P-continuum), and
(b): Ω covers Ω∗ irreducibly (i.e., H?

i *
⋃

j 6=iH?
j for each i, 1 ≤ i ≤ w).

Example 2.12. In Example 2.3 with P = P4, let H0 = {Gi : 1 ≤ i ≤ 8},
H1 = {G7, G8, G9}, H2 = {G8, G9, G10}, H3 = {G8, G9, G10, G11, G12, G1, G2},
H4 = {G11, G12, G1, G2}, and H5 = {G2, G3, G4, G5, G6, G8}. Then the follow-
ing are quasichains: Ω1 = {H?

0,H?
3}, Ω2 = {H?

0,H?
2,H?

4}, Ω3 = {H?
0,H?

1,H?
4},

Ω4 = {H?
1,H?

2,H?
4,H?

5}, and Ω5 = {H?
1,H?

3,H?
5}. However, {H?

0,H?
1,H?

3} is not
a quasichain.

The equivalence mentioned in the first part of Definition 2.11 follows from the
equality (H1 ∪ H2 ∪ ... ∪ Hw)? = H?

1 ∪ H?
2 ∪ ... ∪ H?

w. We note that a quasichain
is a kind of weak chain or pseudochain, as these are defined in [Na] and [Le]. See
Lemma 8.13 in [Na].

Definition 2.13. A quasichain Ω = {H∗1, ...,H∗w} is said to have order one (or
to be of order one) if H∗i ∩H∗j ∩H∗k = ∅ whenever 1 ≤ i < j < k ≤ w.

Definition 2.14. A P-decomposition of a P-continuum H? is a quasichain of
order one, Υ = {H?

1,H?
2, ...,H?

w}, such that (a) w ≥ 2, (b) H = H1∪H2∪ ...∪Hw,
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and (c) if G
′ ∈ Hi and G

′′ ∈ Hj , 1 ≤ i, j ≤ w, with G
′ ∩ G

′′ 6= ∅, then either
G
′ ∈ Hj or G

′′ ∈ Hi.

Example 2.15. In Example 2.12, if we let H = {G1, G2, ..., G12}, then Υ1 =
{H?

0,H?
3}, Υ2 = {H?

0,H?
2,H?

4}, and Υ3 = {H?
1,H?

2,H?
4,H?

5} are P-decomposi-
tions of the P-continuum H?. But {H?

0,H?
1,H?

4} is not a P-decomposition of
H? (since G9 ∈ H1\H4 and G11 ∈ H4\H1 and G9 ∩ G11 6= ∅), and neither
is {H?

1,H?
3,H?

5}, since this quasichain does not have order one.

Example 2.16. Let M and N be proper subcontinua of a continuum P. Let P =
{{x} : x ∈ P}, H1 = {{x} : x ∈ M}, and H2 = {{x} : x ∈ N}. Then {H?

1,H?
2} =

{M, N} is a P-decomposition of P.

The condition that a P-decomposition have order one implies that a metrizable
continuum P cannot have P-decompositions of arbitrarily small mesh unless P is
one-dimensional and locally connected. This fact, which we will not use, follows
from Theorem 1.6.12 in [En].

Lemma 2.17. Condition (b) in Definition 2.14 is equivalent to the condition
(b′) Υ∗ = H?.

Proof. If Υ∗ = H? then Υ∗ = H? = H?
1∪H?

2∪...∪H?
w = (H1∪H2∪...∪Hw)?, and

we can apply the last part of Lemma 1.1 to conclude that H = H1∪H2∪ ...∪Hw.

These equations also guarantee the other half of the equivalence.

Lemma 2.18. Let Υ = {H?
1,H?

2, ...,H?
w} be a P-decomposition of the P-contin-

uum H?. Then H?
i ∩H?

j = (Hi ∩Hj)? whenever 1 ≤ i, j ≤ w.

Proof. The inclusion (Hi ∩ Hj)? ⊆ H?
i ∩ H?

j follows from Hi ∩ Hj ⊆ Hi and
Hi ∩Hj ⊆ Hj . For the reverse inclusion, suppose x ∈ H?

i ∩H?
j . Then there exist

G
′ ∈ Hi and G

′′ ∈ Hj so that x ∈ G
′ ∩G

′′
. Thus G

′ ∩G
′′ 6= ∅, and by condition

(c) in Definition 2.14 we have either G
′ ∈ Hj or G

′′ ∈ Hi. In the first case,
x ∈ G

′ ∈ Hi ∩ Hj and hence x ∈ (Hi ∩ Hj)?, while in the second case we have
x ∈ G

′′ ∈ Hi ∩ Hj , and so x ∈ (Hi ∩ Hj)? again. Thus H?
i ∩ H?

j ⊆ (Hi ∩ Hj)?.

Hence H?
i ∩H?

j = (Hi ∩Hj)?.

Lemma 2.19. Suppose Υ = {H?
1,H?

2, ...,H?
w} is a P-decomposition of the P-

continuum H?. Let W1, . . . , Wm be m ≥ 2 disjoint nonempty sets whose union
is {1, 2, . . . , w}. For 1 ≤ i ≤ m let HWi =

⋃

r∈Wi
Hr, and assume that every

H?
Wi

is connected. Then the collection Ψ = {H?
W1

,H?
W2

, . . . ,H?
Wm

} is also a P-
decomposition of H?.
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Proof. H?
W1

, . . . ,H?
Wm

are P-continua whose union is H?
1 ∪ H?

2 ∪ ... ∪ H?
w =

Υ∗ = H?. Let M = {1, 2, . . . , m} and W = {1, 2, . . . , w}. Note that for each set
M ′ ⊆ M we have

⋃

i∈M ′

H?
Wi

=
⋃

i∈M ′

⋃

r∈Wi

H?
r =

⋃

{H?
r : r ∈

⋃

i∈M ′

Wi}.

Therefore, as W is the disjoint union of the nonempty sets W1, . . . , Wm and as Υ
covers H? irreducibly (Υ is a P-decomposition of H?), for sets M ′ ⊆ M one has

M ′ = M ⇐⇒
⋃

i∈M ′

Wi = W ⇐⇒
⋃

i∈M ′

H?
Wi

= H?.

Thus Ψ also covers H? irreducibly. So Ψ is a quasichain, and |Ψ| = m ≥ 2. Now
suppose that

H?
Wi
∩H?

Wj
∩H?

Wk
6= ∅ for some i, j, k ∈ M.

Then there exist ri ∈ Wi, rj ∈ Wj , and rk ∈ Wk with Hri ⊆ HWi , Hrj ⊆
HWj

, Hrk
⊆ HWk

, and

H?
ri
∩H?

rj
∩H?

rk
6= ∅.

Since Υ has order one (Υ is a P-decomposition ofH?), |{ri , rj , rk}| ≤ 2. Without
loss of generality we can assume ri = rj . Hence, Wi ∩Wj 6= ∅. Then, since the
sets W1, . . . , Wm are disjoint, i = j. Thus, the collection Ψ also has order one.
Now, to conclude that Ψ is a P-decomposition of H? it only remains to establish
that property (c) of Definition 2.14 holds for Ψ. So, suppose that G

′ ∈ HWi and
G
′′ ∈ HWj with G

′ ∩G
′′ 6= ∅. We must show that either G

′ ∈ HWj or G
′′ ∈ HWi .

There exist r ∈ Wi and s ∈ Wj such that G′ ∈ Hr ⊆ HWi and G
′′ ∈ Hs ⊆ HWj .

Then, since Υ is a P-decomposition of H?, it follows that either G
′ ∈ Hs or

G
′′ ∈ Hr. Hence, either G

′ ∈ HWj or G
′′ ∈ HWi , as required. This completes the

proof.

3. P-unicoherence and Chains

Definition 3.1. A P-continuum H? is said to be P-unicoherent if H?
1 ∩ H?

2 is
connected whenever {H?

1,H?
2} is a two-element P-decomposition of H?.

Considering Examples 2.12 and 2.15, we find that the P-continuum H? is not
P-unicoherent since, e. g., Υ1 = {H?

0,H?
3} is a two-element P-decomposition of

H? and H?
0 ∩H?

3 = (G1 ∪G2) | G8.
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Proposition 3.2. If P is a pseudogrille for P and H? is a unicoherent P-continuum,

then H? is P-unicoherent.

Proof. Let {H?
1,H?

2} be any two-element P-decomposition of H?. Then H?
1 and

H?
2 are P-continua, and hence are continua, whose union is H?. Thus, as H? is

unicoherent, H?
1 ∩H?

2 is connected

Proposition 3.3. Let H be a subcontinuum of P and P = {{x} : x ∈ P}. Then
H is unicoherent if and only if H is P-unicoherent.

Proof. For the sufficiency of the condition apply Proposition 3.2. For the neces-
sity, suppose H is P-unicoherent and H = M∪N, where M and N are subcontinua
of P. If M = H or N = H then M ∩N = H is indeed connected. On the other
hand, if M and N are proper subcontinua of H let H1 = {{x} : x ∈ M} and
H2 = {{x} : x ∈ N}. Then {H?

1,H?
2} = {M, N} is a two-element P-decomposition

of H, so that H?
1 ∩H?

2 = M ∩N is connected by the P-unicoherence of H.

Proposition 3.4. A P-continuum H? is P-unicoherent if and only if H?
1 ∩ H?

2

is a P-continuum equal to (H1 ∩ H2)? whenever {H?
1,H?

2} is a two-element P-
decomposition of H?.

Proof. Apply Lemma 2.18 and the definition of P-unicoherence.

Types of chains defined in [Bi], [Le] and [Di] are now introduced. Use is also
made of the terminology introduced in the last part of Definition 2.11.

Definition 3.5. A circular chain (or a circular chain of P-continua) is a qua-
sichain Θ which can be expressed as Θ = {H?

1,H?
2, ...,H?

w}, with w ≥ 3 and with
H?

i ∩H?
j 6= ∅ ⇐⇒ |i− j| ≤ 1 or {i, j} = {1, w}.

Definition 3.6. A treechain (or a treechain of P-continua) is a quasichain that
contains no circular chain.

Example 3.7. With respect to Example 2.15, Υ1 is a treechain, while Υ2 and
Υ3 are not.

Lemma 3.8. Let Υ be a treechain of P-continua. Then there does not exist a
finite sequence H1, H2, H3 , . . . , Hm, of distinct elements of Υ such that m ≥ 3,

H1 ∩Hm 6= ∅, and Hi ∩Hi+1 6= ∅ for 1 ≤ i < m.
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Proof. Suppose that such a finite sequence does exist. Then there exist i, j ∈
{1, 2, 3, . . . , m} such that (i) j − i ≥ 2, and (ii) Hi ∩Hj 6= ∅. (We could choose
i = 1 and j = m.) Hence there exist i, j ∈ {1, 2, 3, . . . , m} satisfying (i) and (ii)
where j− i is minimal. For this i and j, let Θ = {Hi, Hi+1, Hi+2, . . . , Hj}. Then,
by the minimality of the difference j − i, for all r, s ∈ {i, i + 1, i + 2, . . . , j} we
have

Hr ∩Hs 6= ∅ ⇐⇒ |r − s| ≤ 1 or {r, s} = {i, j}.

Hence Θ is a circular chain. But, as Θ ⊆ Υ, this contradicts the fact that Υ is a
treechain.

The next two Lemmas are key to proving Lemma 6.1, which shows that the
nerves of the coverings ΣJ and ΣK, described in the Introduction and in Theorem
6.3, are trees.

Lemma 3.9. A P-continuum H? is P-unicoherent if and only if every P-
decomposition {H?

1,H?
2, ...,H?

w} of H? is a treechain where, for 1 ≤ i, j ≤ w,

H?
i ∩H?

j is either empty or a P-continuum equal to (Hi ∩Hj)?.

Proof. Let the given condition hold, and suppose that {H?
1,H?

2} is any two-
element P-decomposition of H?. Since H?

1 and H?
2 are continua whose union is

the continuum H?, the set H?
1 ∩H?

2 is nonempty, and hence is a P-continuum by
the given condition. Thus H? is P-unicoherent.

For the converse, let H? be a P-unicoherent P-continuum. The argument is
by induction on w, the cardinality of the P-decomposition {H?

1,H?
2, ...,H?

w}. If
w = 2 then {H?

1,H?
2} is indeed a treechain and H?

1 ∩ H?
2 is a P-continuum equal

to (H1 ∩ H2)? by Proposition 3.4. So assume the conclusions hold for each P-
decomposition ofH? of cardinality at most w, and let Υ = {H?

1,H?
2, ...,H?

w,H?
w+1}

be a P-decomposition of H? of cardinality w + 1 ≥ 3. By Lemma 2.18 we have
H?

i ∩H?
j = (Hi ∩Hj)? for 1 ≤ i, j ≤ w + 1.

Now, suppose there existed m, n ∈ {1, . . . , w, w + 1} where H?
m ∩ H?

n is not
connected. Then H?

m ∪ H?
n is connected. Also, since w + 1 ≥ 3 and Υ covers

Υ∗ = H? irreducibly, H?
m ∪H?

n is a proper subcontinuum of the continuum H? =
⋃

1≤j≤w+1H?
j . Then there exists k ∈ {1, . . . , w, w + 1}\{m, n} such that H?

k ∩
(H?

m ∪ H?
n) 6= ∅. Furthermore, we can assume H?

k ∩ H?
n 6= ∅, k = w, n = w + 1,

and m = 1. Thus,

H?
w ∩H?

w+1 6= ∅, and H?
1 ∩H?

w+1 is not connected.
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We have H?
1 ∩ H?

w+1 = A |B , where sets A and B are compacta. For each i ∈
{1, . . . , w−1} let Wi = {i}, and let Ww = {w, w+1}. DefineHWi

=
⋃

r∈Wi
Hr for

1 ≤ i ≤ w. Then, by Lemma 2.19, {H?
W1

,H?
W2

, ...,H?
Ww
} is a P-decomposition of

H? of cardinality w. By the induction hypothesis, every H?
Wi
∩H?

Wj
is connected.

Thus

H?
W1

∩H?
Ww

is connected.

Also,

H?
W1

∩H?
Ww

= H?
1 ∩ (H?

w ∪H?
w+1) = (H?

1 ∩H?
w) ∪ (H?

1 ∩H?
w+1).(2)

Since Υ (being a P-decomposition of H?) has order one, the closed sets (H?
1∩H?

w)
and (H?

1 ∩ H?
w+1) are disjoint. Therefore, as H?

1 ∩ H?
w+1 = A |B , the closed sets

H?
1∩H?

w and B are disjoint. Moreover, by (2), H?
W1
∩H?

Ww
= ((H?

1∩H?
w)∪A) |B .

But this contradicts the connectedness of H?
W1

∩ H?
Ww

. The contradiction shows
that if m, n ∈ {1, . . . , w, w + 1} then H?

m ∩H?
n is connected.

Finally, suppose that Υ is not a treechain. Then there is a circular chain
Θ ⊆ Υ. Since |Θ| ≥ 3, one can assume Θ = {H?

m,H?
m+1,H?

m+2, ...,H?
w+1} for

some m ∈ {1, . . . , w − 1}. One can further assume (see Definition 3.5) that for
m ≤ j, k ≤ w + 1 we have H?

j ∩ H?
k 6= ∅ ⇔ |j − k| ≤ 1 or {j, k} = {m, w + 1}.

Hence,

Θ(H?
m) = {H?

m,H?
m+1 ,H?

w+1}.(3)

For each i ∈ {1, . . . , m} let Wi = {i}. Let Wm+1 = {m + 1, m + 2, . . . , w + 1}
and define HWi =

⋃

r∈Wi
Hr for 1 ≤ i ≤ m + 1. H?

Wm+1
is connected since

H?
j ∩ H?

j+1 6= ∅ for m ≤ j ≤ w. By Lemma 2.19, {H?
W1

, ...,H?
Wm

,H?
Wm+1

} is a
P-decomposition of H? of cardinality m+1 ≤ w. Hence, the induction hypothesis
gives that every intersection H?

Wi
∩H?

Wj
is connected. Thus

H?
Wm

∩H?
Wm+1

is connected.

Also, by (3),

H?
Wm

∩H?
Wm+1

= H?
m ∩

⋃

m+1≤r≤w+1

H?
r = (H?

m ∩H?
m+1) ∪ (H?

m ∩H?
w+1).(4)

Since Υ has order one, we have (H?
m ∩ H?

m+1) ∩ (H?
m ∩ H?

w+1) = ∅. Then, by
(4) and (3), H?

Wm
∩H?

Wm+1
= (H?

m ∩H?
m+1) | (H?

m ∩H?
w+1). This contradicts the

connectedness of H?
Wm

∩H?
Wm+1

. The contradiction shows Υ to be a treechain.

Lemma 3.10. Let H? be a P-continuum and {P?
−1,P?

1} be a P-decomposition of
P with H? * P?

1 and H? * P?
−1. Let Hi = H ∩ Pi for each i = −1, 1. Assume
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that H?
−1 is a compactum with finitely many components, H?

−1,1, . . . ,H?
−1,m, and

that H?
1 is a compactum with finitely many components, H?

1,1, . . . ,H?
1,n. Then

Υ = Υ−1 ∪Υ1 is a P-decomposition of H?, where

Υ−1 = {H?
−1,j : 1 ≤ j ≤ m and H?

−1,j * H?
1,k for 1 ≤ k ≤ n}

Υ1 = {H?
1,k : 1 ≤ k ≤ n and H?

1,k * H?
−1,j for 1 ≤ j ≤ m}.

Proof. Since P = P?, (b) of Definition 2.14 gives P−1 ∪ P1 = P. Thus,

H?
−1 ∪H?

1 = (H−1 ∪H1)? = ((H ∩ P−1) ∪ (H ∩ P1))? =
(H∩(P−1 ∪ P1))? = (H ∩ P)? = H?, a P-continuum.

(5)

By Lemma 2.10, each H?
−1,j is an H−1-continuum and each H?

1,k is an H1-
continuum. We claim that

H?
−1 ∩H?

1 = (H−1 ∩H1)? is a P-compactum.(6)

For, as H?
−1 and H?

1 are P-compacta whose union is a P-continuum, H?
−1∩H?

1 is
nonempty and compact. Thus H?

−1∩H?
1 is a compactum. Since H−1∩H1 ⊆ H−1

,H1 we have (H−1 ∩ H1)? ⊆ H?
−1 ∩ H?

1. For the reverse inclusion, suppose that
p ∈ H?

−1 ∩ H?
1. Choose G′ ∈ H−1 and G′′ ∈ H1 with p ∈ G′∩ G′′. Then

since G′∩ G′′ 6= ∅, G′ ∈ H−1 ⊆ P−1, G′′ ∈ H1 ⊆ P1, and {P?
−1,P?

1} is a P-
decomposition of P, one has either G′ ∈ P1 or G′′ ∈ P−1 (by (c) in Definition
2.14). Thus, either G′ ∈ H−1 ∩ P1 = (P−1 ∩ H) ∩ P1 = H−1 ∩ H1 or else G′′ ∈
H1 ∩P−1 = (P1 ∩H)∩P−1 = H1 ∩H−1. Consequently, either G′ ⊆ (H−1 ∩H1)?

or G′′ ⊆ (H1∩H−1)?. In either case, since p ∈ G′∩G′′, we have p ∈ (H1∩H−1)?.

Thus H?
−1 ∩ H?

1 ⊆ (H1 ∩ H−1)?. Therefore, H?
−1 ∩ H?

1 = (H−1 ∩ H1)?, and (6)
holds. The following will also be proved.

If 1 ≤ j ≤ m, 1 ≤ k ≤ n, and H?
−1,j ⊆ H?

1,k, then H?
1,k ∈ Υ1.(7)

For otherwise there exists l, 1 ≤ l ≤ m, with H?
−1,j ⊆ H?

1,k ⊆ H?
−1,l. Then

the components H?
−1,j and H?

−1,l of H?
−1 are equal to each other and to H?

1,k.

Furthermore, as H? = H?
−1 ∪ H?

1 by (5), we have

H? = H?
1,k ∪

⋃

k′ 6=k

H?
1,k′ ∪

⋃

j′ 6=j

H?
−1,j′ .

Also, H?
1,k′ ∩H?

1,k = ∅ whenever k′ 6= k, and H?
−1,j′ ∩H?

1,k = H?
−1,j′ ∩H?

−1,j = ∅
whenever j′ 6= j. Then, since H?

−1,j = H?
1,k, H?

1,k and
⋃

k′ 6=k H?
1,k′ ∪

⋃

j′ 6=j H?
−1,j′

are disjoint compact sets whose union is the continuum H?. This implies that
⋃

k′ 6=k H?
1,k′ ∪

⋃

j′ 6=j H?
−1,j′ = ∅, and hence that H? = H?

1,k = H?
1. Thus, by

Lemma 1.1, H = H1 = P1∩H. Hence H ⊆ P1 and H? ⊆ P?
1 . But this contradicts
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the hypothesis H? * P?
1 . We conclude that (7) must hold. Analogous to (7), one

has

If 1 ≤ j ≤ m, 1 ≤ k ≤ n, and H?
1,k ⊆ H?

−1,j , then H?
−1,j ∈ Υ−1.(8)

From (7) and (8) there follows Υ∗−1 ∪Υ∗1 =
⋃

1≤j≤mH?
−1,j ∪

⋃

1≤k≤nH?
1,k. Thus,

as Υ = Υ−1 ∪Υ1,

Υ∗ = Υ∗−1 ∪Υ∗1 =
⋃

1≤j≤m

H?
−1,j ∪

⋃

1≤k≤n

H?
1,k = H?

−1 ∪H?
1 = H?.

That is, Υ covers H?. Moreover, we claim that

Υ covers H? irreducibly.

For if, say, H?
1,k ∈ Υ1, then for all j, 1 ≤ j ≤ m, we have H?

1,k * H?
−1,j . Then

H?
1,k * Υ∗−1, since Υ∗−1 is a disjoint union of some of the finitely many closed

components H?
−1,j . Thus, as it is also true that H?

1,k intersects no member of
Υ1 apart from itself, we have H?

1,k * (Υ1\{H?
1,k})∗ ∪ Υ∗−1 = (Υ\{H?

1,k})∗. By
a symmetric argument, if H?

−1,,j ∈ Υ−1 then H?
−1,j * (Υ\{H?

−1,j})∗. We have
thus shown that Υ covers H? (= Υ∗) irreducibly. Hence Υ is a quasichain. Also,
as Υ = Υ−1 ∪ Υ1 and each Υi is a collection of disjoint sets, Υ has order one.
Furthermore, |Υ| > 1, as otherwise Υ = Υi for some i ∈ {−1, 1} and then
H? = Υ∗ = Υ∗i ⊆ H?

i ⊆ P?
i , again contradicting the hypothesis H? * P?

1 ,P?
−1.

Thus, (a) of Definition 2.14 holds. Since H? = Υ∗, Lemma 2.17 shows that (b)
of Definition 2.14 holds. To show that Υ is a P-decomposition of H? it only
remains to show that (c) of Definition 2.14 holds. So suppose there exist sets
M?,N ? ∈ Υ = Υ−1 ∪ Υ1 and G′ ∈ M and G′′ ∈ N with G′ ∩ G′′ 6= ∅. Notice
that M?,N ?, G′ and G′′ are all continua. We need to prove that

G′ ∈ N or G′′ ∈M.(9)

Now if M? = N ? then M = N (by Lemma 1.1) and G′ ∈ M = N , so (9) holds.
On the other hand, suppose M? 6= N ?. Then since M?,N ? ∈ Υ−1 ∪ Υ1 and
∅ 6= G′ ∩G′′ ⊆ M? ∩ N ?, and since each Υi is a collection of disjoint sets, there
exist j, k so that {M?,N ?} = {H?

−1,j ,H?
1,k}. Without loss of generality we can

assume

M? = H?
−1,j and N ? = H?

1,k.(10)

Then, by Lemma 1.1,

G′ ∈M = H−1,j ⊆ H−1 ⊆ P−1 and G′′ ∈ N = H1,k ⊆ H1 ⊆ P1.(11)
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Moreover, as G′ ∩ G′′ 6= ∅ and (by hypothesis) {P?
−1,P?

1} is a P-decomposition
of P, it follows from (c) of Definition 2.14 for this P-decomposition that either
G′ ∈ P1 or G′′ ∈ P−1. Suppose G′ ∈ P1. Then G′ ∈ H−1 ∩ P1 ⊆ H ∩ P1 = H1.

Hence G′ ⊆ H?
1. Since G′ is connected, there is one component H?

1,k′ of H?
1 with

G′ ⊆ H?
1,k′ . Thus, as G′′ ⊆ H?

1,k (by (11)), we have ∅ 6= G′ ∩G′′ ⊆ H?
1,k′ ∩ H?

1,k.

Thus the components H?
1,k′ and H?

1,k are identical, and hence G′ ⊆ H?
1,k. Then,

by Lemma 2.9 and (11), G′ ∈ H1,k = N , and so (9) holds if G′ ∈ P1. If G′′ ∈ P−1

a dual argument gives that G′′ ∈ M, and hence (9) holds again. This completes
the proof that (c) of Definition 2.14 holds for Υ, so that, as noted above, Υ is a
P-decomposition of H?.

4. An Approximation Technique

In this section it is shown that the unicoherence of a continuum P is equivalent
to the P-unicoherence of P for arbitrarily fine pseudogrilles P.

Proposition 4.1. Let a Hausdorff continuum P be the union of proper subcon-
tinua Y and Z where Y ∩Z is not connected. Then there are open neighborhoods
OY of Y and OZ of Z such that Y * OZ , Z * OY , and R ∩ S is not connected
for all sets R and S satisfying Y ⊆ R ⊆ OY and Z ⊆ S ⊆ OZ .

Proof. We have Y ∩ Z = E |F . Here, E and F are disjoint compacta whose
union is Y ∩ Z. By the normality of P (Theorem 2-3 in [Ho]), there are disjoint
open neighborhoods UE of E and UF of F in P. Since Y is a continuum meeting
both of the disjoint open sets UE and UF , Y \(UE∪UF ) is a compactum. Similarly
Z\(UE∪UF ) is a compactum. Also, the compacta Y \(UE∪UF ) and Z\(UE∪UF )
are disjoint, because Y ∩ Z = E |F ⊆ UE ∪ UF . Again, as P is normal, there
are disjoint open neighborhoods WY of Y \(UE ∪ UF ) and WZ of Z\(UE ∪ UF ).
Define

OY = WY ∪ UE ∪ UF and OZ = WZ ∪ UE ∪ UF .

Note that Y ⊆ OY and Z ⊆ OZ . Also, if R and S are any sets with Y ⊆ R ⊆ OY

and Z ⊆ S ⊆ OZ , we have

E ∪ F = Y ∩ Z ⊆ R ∩ S ⊆ OY ∩OZ = UE ∪ UF = UE |UF .

Hence,

R ∩ S ⊆ UE |UF .
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Then, since ∅ 6= E ⊆ R ∩ S ∩ UE and ∅ 6= F ⊆ R ∩ S ∩ UF , the set R ∩ S is
necessarily disconnected. That is,

R ∩ S is not connected whenever Y ⊆ R ⊆ OY and Z ⊆ S ⊆ OZ .(12)

To complete the proof it suffices to show that Y * OZ and Z * OY . We suppose
Z ⊆ OY . Let R = P and S = Z. Then Y ⊆ R = P = Y ∪ Z ⊆ OY and
Z = S ⊆ OZ , so that R ∩ S is not connected, by (12). But in this case R ∩ S is
just the continuum Z. The contradiction shows that Z * OY . A similar argument
gives that Y * OZ .

Proposition 4.2. A Hausdorff continuum P is unicoherent if and only if
(*) every three-element open cover = of P has a refinement P such that P is a
pseudogrille for P and P is P-unicoherent.

Proof. If P is unicoherent and = is any three-element open cover of P then the
discrete pseudogrille P = {{x} : x ∈ P} has the desired properties. Conversely,
suppose that P satisfies (*) but is not unicoherent. We will derive a contradiction
to Proposition 4.1. Since P is not unicoherent there are proper subcontinua Y

and Z of P such that P = Y ∪Z and Y ∩Z is not connected. Let OY and OZ be
as guaranteed by Proposition 4.1. Thus,

R ∩ S is not connected whenever Y ⊆ R ⊆ OY and Z ⊆ S ⊆ OZ .(13)

Note also that Y \(OY ∩OZ) is nonvoid since Y * OZ (Proposition 4.1). Hence,
as Y ∩ Z ⊆ OY ∩ OZ , the sets Y \(OY ∩ OZ) and Z are disjoint compacta. By
the normality of P there exists an open set UY such that Y \(OY ∩ OZ) ⊆ UY

and UY ∩ Z = ∅. Let VY = UY ∩OY . Since Y ⊆ OY (Proposition 4.1) we have

∅ 6= Y \(OY ∩OZ) ⊆ VY ⊆ OY and VY ∩ Z = ∅.(14)

Similarly, there is an open set VZ with

∅ 6= Z\(OY ∩OZ) ⊆ VZ ⊆ OZ and VZ ∩ Y = ∅.(15)

Let = = {VY , OY ∩OZ , VZ}. From (14) and (15) and P = Y ∪Z, we find that =
is a three-element open cover of P. Thus, by hypothesis, there exists a refinement
P of = such that

P is a pseudogrille for P and P is P-unicoherent.

We will show that {P(Y )?,P(Z)?} is a P-decomposition of P by proving (16)-
(19) below. Note that if G ∈ P and G ∩ Y 6= ∅ then, since VZ ∩ Y = ∅ by (15),



SPECIAL UNIONS OF UNICOHERENT CONTINUA 847

we have G * VZ . Hence, as P is a refinement of =, if G ∈ P and G ∩ Y 6= ∅ then
either G ⊆ VY ⊆ OY or G ⊆ OY ∩OZ ⊆ OY . Thus,

Y ⊆ P(Y )? ⊆ OY , andP(Y )? 6= P.(16)

The second part of (16) follows from Z * OY (Proposition 4.1). Likewise,

Z ⊆ P(Z)? ⊆ OZ , andP(Z)? 6= P.(17)

Furthermore, as P is a pseudogrille for P = Y ∪ Z and Y, Z ∈ C(P ),

P(Y )? and P(Z)? are P-continua whose union is P.(18)

Now suppose there exists GY ∈ P(Y ) and GZ ∈ P(Z) with GY ∩GZ 6= ∅. Then
GY ∪ GZ is a continuum intersecting both Y and Z. Then, as P = Y ∪ Z, it
follows that the continuum GY ∪GZ is the union of the compacta (GY ∪GZ)∩Y

and (GY ∪GZ) ∩ Z. Hence,

∅ 6= ((GY ∪GZ) ∩ Y ) ∩ ((GY ∪GZ) ∩ Z) = (GY ∪GZ) ∩ Y ∩ Z.

Choose p ∈ (GY ∪GZ) ∩ Y ∩ Z. If p ∈ GY then GY ∈ P(Y ) ∩ P(Z), whereas if
p ∈ GZ then GZ ∈ P(Y ) ∩ P(Z). Hence, either GY ∈ P(Z) or GZ ∈ P(Y ). We
have shown:

If GY ∈ P(Y ), GZ ∈ P(Z), and GY ∩GZ 6= ∅,
then GY ∈ P(Z) or GZ ∈ P(Y ).

(19)

From (16), (17), (18) and (19) we conclude that {P(Y )?,P(Z)?} is a P-
decomposition of P? = P. Thus, as P is P-unicoherent, P(Y )? ∩ P(Z)? is con-
nected. However, in view of (16) and (17), this is a contradiction of (13). The
contradiction shows that P must in fact be unicoherent if it has the property (*)
given in the statement.

A reading of the last Proposition’s statement and the first sentence of its proof
indicates that the following corollary has been proved.

Corollary 4.3. A Hausdorff continuum P is unicoherent if and only if
(*) every open cover = of P has a refinement P such that P is a pseudogrille for
P and P is P-unicoherent.

Proposition 4.4. A metric continuum (P, ρ) is unicoherent if and only if (**)
for every ε > 0 there exists a pseudogrille P for P such that P is P-unicoherent
and mesh(P) < ε. (mesh(P) ≡ sup{ρ-diameter(G) : G ∈ P}.)
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Proof. If P is unicoherent then the pseudogrille P = {{x} : x ∈ P} can always
be chosen in (**). That is, P is P-unicoherent (Proposition 3.3) and mesh(P) < ε.

For the converse we suppose that (**) holds and apply Proposition 4.2. Let = be
an arbitrary three-element open cover of P. We want to produce a pseudogrille
P for P such that P is P-unicoherent and P is a refinement of =. By Theorem
1−32 in [Ho], the cover = has a Lebesgue number ε > 0, i. e., if S is any
subset of P with ρ-diameter(S) < ε then S is contained in some element of =.

By (**) there exists a pseudogrille P for P such that P is P-unicoherent and
mesh(P) < ε. Each member of P is a subset of P with ρ-diameter < ε, and
hence is contained in some member of =. Thus, P is a refinement of =. Since =
was an arbitrary three-element open cover of P we conclude from Proposition 4.2
that P is unicoherent.

5. Graph-theoretic Tools

A graph-theoretic result is now proven to prepare the main result of the paper.
Those acquainted with Graph Theory will recognize in the following definition
a type of bipartite graph, i.e., a graph whose vertices admit a two-coloring. In
the next section such a graph will be the nerve of a finite covering, ΣJ, of a
P-continuum J = J ?. (The terms bipartite, two-coloring and nerve are defined
in [Wi] and [En].) Each element of ΣJ will be a component of (J ∩ P−1)? or of
(J ∩ P1)?, where {P?

−1,P?
1} is a two-element P-decomposition of P.

Recall that a partition of a nonempty set T is a collection of disjoint nonempty
sets whose union is T. The partition member that contains the element m of T

could be denoted by (m). The members of the partition are simply the equivalence
classes of an equivalence relation associated with the partition. (Two elements of
T are equivalent if and only if they belong to the same member of the partition.)
V (G) and E(G) denote the sets of vertices and edges, respectively, of a finite
graph G. Throughout we let T−1 and T 1 be nonempty finite sets of negative
and positive integers, respectively, and let T = T−1 ∪ T 1. A partition of T will
be said to be sign-preserving if each partition member (m) is a subset either of
T−1 or of T 1. By a signed graph T( ) defined on T we mean a finite graph whose
vertices are the members (m), m ∈ T, of a sign-preserving partition of T and
whose edges never join vertices of the same sign, i. e., if (m)(n) ∈ E(T( )) then
either (m) ⊆ T−1 and (n) ⊆ T 1 or (m) ⊆ T 1 and (n) ⊆ T−1. The phrase defined
on T is usually omitted.

Note that (m)(n) = (n)(m). That is to say, we are not discussing directed
graphs. No loop can be an edge of a signed graph, i. e., (m)(m) is never an edge
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of T( ). Neither are multiple edges joining the same pair of vertices allowed. It
is thus the case that edges (m)(n) and (m′)(n′) of T( ) are equal if and only if
{(m), (n)} = {(m′), (n′)}.

A walk in T( ) is a finite sequence of vertices of T( ),

(m1), (m2), . . . , (mt)

such that t ≥ 2 and (mr)(mr+1) ∈ E(T( )) for 1 ≤ r < t. The vertices (m1) and
(mt) are called the end-vertices of the walk, and the integer t − 1 is the walk’s
length. If the vertices in the sequence are distinct, the walk is called a path. T( )

is said to be connected if every two of its vertices are the end-vertices of some
walk in T( ). Given distinct vertices in a connected signed graph T( ), consider a
walk (m1), (m2), . . . , (mt) in T( ) of minimal length such that (m1) = (m) and
(mt) = (m′). This walk is necessarily a path with end-vertices (m) and (m′),
since if (mr) = (ms) for some r < s then by deleting (mr), . . . , (ms−1) one would
obtain a walk of smaller length with the same end-vertices, (m) and (m′). Thus:

If (m) and (m′) are distinct vertices in the connected signed graph

T( ), then there is a path in T( ) with end-vertices (m) and (m′).

A circuit in T( ) is a walk (m1), (m2), . . . , (mt) such that t ≥ 5, (m1) = (mt), and
(m1), (m2), . . . , (mt−1) is a path. A connected signed graph having no circuits is
called a signed tree. The idea of the next Lemma is simple.

Lemma 5.1. If (m1), (m2), . . . , (mt) is a walk in the signed tree T( ) such that
(m1) = (mr) ⇐⇒ r ∈ {1, t}, then (m2) = (mt−1).

Proof. Otherwise there exists a walk (m1), (m2), . . . , (mt) in T( ) of minimal
length with (m2) 6= (mt−1) and with (m1) = (mr) ⇐⇒ r ∈ {1, t}. Then t 6=
1, 3. Also, t is odd, since T( ) is a signed graph and (m1) = (mt). Thus t ≥ 5
and, by the minimality of length of the walk (m1), (m2), . . . , (mt), the vertices
(m2), . . . , (mt−1) are distinct. Also, as (m1) = (mr) ⇐⇒ r ∈ {1, t}, the vertices
(m1), . . . , (mt−1) are distinct. Hence (m1), (m2), . . . , (mt) is a circuit in the
signed tree T( ), which is impossible.

In the following Lemma a connected signed graph T( ) and signed trees T[ ] and
T〈 〉, all defined on the same underlying set T , are combined with an equivalence
relation ∼ on E(T( )). For any subset S of T , we let [S] denote the set

⋃

m∈S [m]
and 〈S〉 denote the set

⋃

m∈S〈m〉.
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Lemma 5.2. (Lemma of Folding-knives) Let T[ ] and T〈 〉 be signed trees and
T( ) be a connected signed graph on T = T−1 ∪ T 1. Suppose that (m) = {m} for
each m ∈ T. Let ∼ be an equivalence relation on E(T( )). Then ∼ has just one
equivalence class if all the following hold.

(1) [m][n] ∈ E(T[ ]) and 〈m〉〈n〉 ∈ E(T〈 〉) whenever m, n ∈ T and (m)(n) ∈
E(T( )).

(2) If m, n, m′, n′ ∈ T , if (m)(n), (m′)(n′) ∈ E(T( )), and if either [m][n] =
[m′][n′] or 〈m〉〈n〉 = 〈m′〉〈n′〉, then (m)(n) ∼ (m′)(n′).

(3a) If i ∈ {−1, 1} and ∅ 6= S ⊂ T i with [S] 6= T i, then there exists k ∈ [S]
with 〈k〉 * [S].

(3b) If i ∈ {−1, 1} and ∅ 6= S ⊂ T i with 〈S〉 6= T i, then there exists k ∈
〈S〉 with [k] * 〈S〉.

Proof. The proof proceeds by induction on
∣

∣V (T[ ])
∣

∣ +
∣

∣V (T〈 〉)
∣

∣ . Choose m0 ∈
T 1and n0 ∈ T−1. Since [m] 6= [n] and 〈m〉 6= 〈n〉 whenever m ∈ T i, n ∈ T−i, the
first case to consider is when

∣

∣V (T[ ])
∣

∣ +
∣

∣V (T〈 〉)
∣

∣ = 4, i. e., when T 1 = [m0] =
〈m0〉, T−1 = [n0] = 〈n0〉, and

V (T[ ]) = {[m0], [n0]}, E(T[ ]) = {[m0][n0]}
V (T〈 〉) = {〈m0〉, 〈n0〉}, E(T〈 〉) = {〈m0〉〈n0〉}

The connected signed graph T( ) has at least the two vertices (m0) and (n0),
and hence has at least one edge. Thus, there exist m′ ∈ T 1 and n′ ∈ T−1 with
(m′)(n′) ∈ E(T( )). By (1), [m′][n′] ∈ E(T[ ]). Then, since m′ ∈ T 1 = [m0] and
n′ ∈ T−1 = [n0], it follows that [m′][n′] = [m0][n0]. Moreover, whenever m ∈ T 1

and n ∈ T−1, we have [m][n] ∈ E(T[ ]), and therefore [m][n] = [m0][n0]. Thus, if
m, n, m′, n′ ∈ T and (m)(n), (m′)(n′) ∈ E(T( )) then [m][n] ∈ E(T[ ]), [m′][n′] ∈
E(T[ ]), and [m][n] = [m0][n0] = [m′][n′]. Hence, by (2), (m)(n) ∼ (m′)(n′).
Therefore, ∼ has just one equivalence class in this case.

Now suppose ∼ has only one equivalence class when all the hypotheses of
Lemma 5.2 hold and

∣

∣V (T[ ])
∣

∣ +
∣

∣V (T〈 〉)
∣

∣ ≤ w, where w is some integer ≥ 4.

Assume, then, that T( ) is a connected signed graph on a set T = T−1 ∪ T 1 with
(m) = {m} for each m ∈ T , that

T[ ] and T〈 〉 are signed trees on T with
∣

∣V (T[ ])
∣

∣ +
∣

∣V (T〈 〉)
∣

∣ = w + 1,
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that ∼ is an equivalence relation on E(T( )), and that (1), (2), (3a) and (3b) hold.
To show ∼ has only one equivalence class we first establish the following.

There exist n1, n2, n
′
2, n3 ∈ T such that (n1)(n2) ∼ (n′2)(n3) and

either 〈n2〉 = 〈n′2〉 and 〈n1〉 6= 〈n3〉 or [n2] = [n′2] and [n1] 6= [n3].
(20)

To prove (20), let Π( ) denote the collection of all paths (m1), (m2), . . . , (mt) in
T( ) such that either 〈m1〉 = 〈mt〉 and [m1] 6= [mt] or [m1] = [mt] and 〈m1〉 6=
〈mt〉. We claim Π( ) 6= ∅. For, since

∣

∣V (T[ ])
∣

∣ +
∣

∣V (T〈 〉)
∣

∣ > 4, there exists i ∈
{−1, 1} and j ∈ T i such that either [j] 6= T i or 〈j〉 6= T i. Suppose first that
[j] 6= T i for this i. By (3a), with S = {j}, there exists k ∈ [j] with 〈k〉 * [j]. One
can then find k′ ∈ 〈k〉 with k′ /∈ [j]. Thus [k′] 6= [j] = [k]. Hence

〈k′〉 = 〈k〉 and [k′] 6= [k].

Then k′ 6= k, and (k′) = {k′} 6= {k} = (k). Let R = (m1), (m2), . . . , (mt) be
a path in the connected signed graph T( ) with end-vertices (m1) = (k′) and
(mt) = (k). Thus, m1 = k′, mt = k, and we have R ∈ Π( ). So Π( ) 6= ∅ if [j] 6= T i.

Similarly, in case that 〈j〉 6= T i, one can use (3b) to show Π( ) 6= ∅. Since Π( ) 6= ∅,
we can choose a path

(m1), (m2), . . . , (mt) = Q ∈ Π( )

of minimal length. Also, we assume, without loss of generality, that

〈m1〉 = 〈mt〉 and [m1] 6= [mt].(21)

Now m1 6= mt, so (m1) 6= (mt). Also, since T( ) is a signed graph and (m1)(m2) ∈
E(T( )), m1 and m2 must have opposite signs. Thus, as T〈 〉 is also a signed graph,
〈m1〉 6= 〈m2〉. Therefore, since 〈m1〉 = 〈mt〉 and t ≥ 2, one has t ≥ 3. We now
aim to use Lemma 5.1, and claim for this purpose that

〈mr〉 6= 〈m1〉 for 1 < r < t.(22)

To see this, fix r ∈ {2, . . . , t − 1}, let R′ = (mr), (mr+1), . . . , (mt) and let
R′′ = (m1), (m2), . . . , (mr). Then R′, R′′ /∈ Π( ), since the lengths of these paths
are less than the length of Q. Now, as R′′ /∈ Π( ), if 〈mr〉 = 〈m1〉 then [mr] = [m1].
But then, by (21), [mr] = [m1] 6= [mt] and 〈mr〉 = 〈m1〉 = 〈mt〉, which says that
R′ ∈ Π( ). Since this is not the case, we must have 〈mr〉 6= 〈m1〉. So (22) holds.
By (22) and (21), W = 〈m1〉, 〈m2〉, 〈m3〉, . . . , 〈mt〉 is a walk in the signed tree
T〈 〉 such that 〈m1〉 = 〈mr〉 ⇔ r ∈ {1, t}. Thus, as a signed tree is connected by
definition, it follows from Lemma 5.1 that

〈m2〉 = 〈mt−1〉.
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Define

n1 = m1, n2 = m2, n′2 = mt−1, n3 = mt.

Then (n1)(n2) = (m1)(m2) ∈ E(T( )) and (n′2)(n3) = (mt−1)(mt) ∈ E(T( )).
Furthermore, 〈n1〉〈n2〉 = 〈m1〉〈m2〉 = 〈mt〉〈mt−1〉 = 〈n3〉〈n′2〉 = 〈n′2〉〈n3〉. Then
by (2) we have (n1)(n2) ∼ (n′2)(n3), which is the first part of (20). Now, as
noted earlier, t ≥ 3. If t = 3 then n2 = n′2, [n2] = [n′2] and, by (21), [n1] 6= [n3].
Thus (20) holds in its entirety should t equal 3. So suppose t > 3. Consider the
path Z = (m2), (m3), (m4), . . . , (mt−1). Since Z has length less than that of Q,

Z is not an element of Π( ). Thus, as 〈m2〉 = 〈mt−1〉 and Z /∈ Π( ), one has
[m2] = [mt−1]. Hence [n2] = [n′2] again, and [n1] 6= [n3] again by (21). This
completes the proof of (20).

We now apply (20) together with the inductive hypothesis to show that ∼ has
exactly one equivalence class. By the symmetry of hypotheses, we can and shall
assume:

There exist n1, n2, n
′
2, n3 ∈ T such that (n1)(n2) ∼ (n′2)(n3),

[n2] = [n′2] and [n1] 6= [n3].
(23)

Thus, by (1), [n1][n2] and [n′2][n3] are distinct edges of T[ ] sharing the common
vertex [n2] = [n′2]. Hence

[n1], [n3] ⊆ T i for some i ∈ {−1, 1}.(24)

Consider the partition of T whose members, denoted by [[m]] for m ∈ T, are
defined by

[[m]] =
{

[n1] ∪ [n3] if m ∈ [n1] ∪ [n3]
[m] otherwise

We define a quotient graph T[[ ]] of T[ ] as follows:

V (T[[ ]]) = {[[m]] : m ∈ T}

E(T[[ ]]) = {[[m]][[n]] : m, n ∈ T and [m][n] ∈ E(T[ ])}

To understand T[[ ]] note first that the natural map given by [m] 7→ [[m]] maps
only the distinct vertices [n1] and [n3] of T[ ] to [[n1]] = [[n3]], and is one-to-one
on V (T[ ])\{[n1], [n3]}. Likewise, the canonical map

[m][n] 7→ [[m]][[n]] maps only the distinct edges [n1][n2] and [n3][n2] to
[[n1]][[n2]] = [[n3]][[n2]], and is one-to-one on E(T[ ])\{[n1][n2], [n3][n2]}.

(25)
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The identification represents the folding together of the incident edges [n1][n2] and
[n3][n2] of the tree T[ ]. From these considerations, including (24), we conclude
that T[[ ]] is a connected signed graph with

∣

∣V (T[[ ]])
∣

∣ =
∣

∣V (T[ ])
∣

∣− 1 and
∣

∣E(T[[ ]])
∣

∣ =
∣

∣E(T[ ])
∣

∣− 1.

Since T[ ] is a tree, Theorem 9A of [Wi] tells us that
∣

∣E(T[ ])
∣

∣ =
∣

∣V (T[ ])
∣

∣− 1.

Then
∣

∣V (T[[ ]])
∣

∣ +
∣

∣V (T〈 〉)
∣

∣ =
∣

∣V (T[ ])
∣

∣ − 1 +
∣

∣V (T〈 〉)
∣

∣ = w, and
∣

∣E(T[[ ]])
∣

∣ =
∣

∣E(T[ ])
∣

∣− 1 = (
∣

∣V (T[ ])
∣

∣− 1)− 1 =
∣

∣V (T[ ])
∣

∣− 2 =
∣

∣V (T[[ ]])
∣

∣− 1. Thus,
∣

∣V (T[[ ]])
∣

∣ +
∣

∣V (T〈 〉)
∣

∣ = w and T[[ ]] is a signed tree.(26)

We claim that the following hold.

(1′) [[m]][[n]] ∈ E(T[[ ]]) and 〈m〉〈n〉 ∈ E(T〈 〉) whenever m, n ∈ T and (m)(n) ∈
E(T( )).

(2′) If m, n, m′, n′ ∈ T , (m)(n), (m′)(n′) ∈ E(T( )), and if either [[m]][[n]] =
[[m′]][[n′]] or 〈m〉〈n〉 = 〈m′〉〈n′〉, then (m)(n) ∼ (m′)(n′).

(3a′) If i ∈ {−1, 1} and ∅ 6= S ⊂ T i with [[S]] 6= T i, then there exists k ∈ [[S]]
with 〈k〉 * [[S]].

(3b′) If i ∈ {−1, 1} and ∅ 6= S ⊂ T i with 〈S〉 6= T i, then there exists k ∈ 〈S〉
with [[k]] * 〈S〉.

To prove (1′), suppose that m, n ∈ T and (m)(n) ∈ E(T( )). Then, by (1),
[m][n] ∈ E(T[ ]) and 〈m〉〈n〉 ∈ E(T〈 〉). Thus, by the definition of E(T[[ ]]),
[[m]][[n]] ∈ E(T[[ ]]).

To prove (2′), suppose m, n, m′, n′ ∈ T and (m)(n), (m′)(n′) ∈ E(T( )). If
〈m〉〈n〉 = 〈m′〉〈n′〉 then (m)(n) ∼ (m′)(n′) by (2). So assume [[m]][[n]] =
[[m′]][[n′]]. If [m][n] = [m′][n′] then (m)(n) ∼ (m′)(n′) by (2). On the other
hand, if [m][n] 6= [m′][n′] then one has {[m][n], [m′][n′]} = {[n1][n2], [n3][n2]} =
{[n1][n2], [n′2][n3]}, by (25) and (23). Here, it is no loss of generality to assume
that

m ∈ [n1], n ∈ [n2], m′ ∈ [n′2], n′ ∈ [n3].

Then [m][n] = [n1][n2] and [m′][n′] = [n′2][n3], so that, by (2), (m)(n) ∼ (n1)(n2)
and (m′)(n′) ∼ (n′2)(n3). Also, by (23), (n1)(n2) ∼ (n′2)(n3). Hence, by the
transitivity and symmetry of ∼, we have (m)(n) ∼ (m′)(n′).
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To prove (3a′), suppose that i ∈ {−1, 1}, ∅ 6= S ⊂ T i and [[S]] 6= T i. Let
S′ = [[S]] =

⋃

m∈S [[m]]. Then ∅ 6= S′ ⊂ T i. Also, each partition member [[m]]
is a union of sets of the form [n] (some n ∈ T i). Hence, S′ = [[S]] is a union
of partition elements [n]. Thus, [S′] = S′ = [[S]]. We have ∅ 6= S′ ⊂ T i and
[S′] = [[S]] 6= T i. By (3a), there exists k ∈ [S′] = [[S]] with 〈k〉 * [S′] = [[S]].
This is (3a′).

Next, suppose i ∈ {−1, 1}, ∅ 6= S ⊂ T i and 〈S〉 6= T i. By (3b) there exists
k ∈ 〈S〉 with [k] * 〈S〉. Then, as [k] ⊆ [[k]], we have [[k]] * 〈S〉. This is (3b′).

Now, in view of (1′), (2′), (3a′), (3b′) and (26), the induction hypothesis guar-
antees that ∼ has exactly one equivalence class, as required.

6. Special Unions of Unicoherent Continua

Lemma 6.1. Suppose {P?
−1,P?

1} is a P-decomposition of P. Let H? be a P-
continuum such that (H ∩ Pi)? = H? ∩ Pi

? 6= ∅ for each i ∈ {−1, 1}. Let ΣH? =
{A? : A? is a component of (H∩P−1)? or of (H∩P1)?}, and suppose T = T−1∪T 1,

where T−1 and T 1 are finite nonempty sets of negative and positive integers,
respectively. Let σ : T −→ ΣH? be a surjection such that σ(m) is a component of
(H∩Pi)? if and only if m ∈ T i. Define dme = σ−1(σ(m)) for each m ∈ T. Define

V (Tde) = {dme : m ∈ T}
E(Tde) = {dme dne : σ(m) 6= σ(n) and σ(m) ∩ σ(n) 6= ∅}

(No distinction is made between dme dne and dne dme .) Then Tde is a connected
signed graph. Also, if H? is P-unicoherent then Tde is a signed tree and σ(m) ∩
σ(n) is a connected subset of P?

−1 ∩ P?
1 for all m ∈ T−1, n ∈ T 1.

Proof. The hypothesis that σ(m) is a component of (H ∩ Pi)? if and only if
m ∈ T i, for each i ∈ {−1, 1}, implies that dme = σ−1(σ(m)) ⊆ T i whenever
i ∈ {−1, 1} and m ∈ T i. Therefore, V (Tde) is a sign-preserving partition of
T. Moreover, as the components of (H ∩ P−1)? are pairwise disjoint and the
components of (H∩P1)? are pairwise disjoint, σ(m)∩ σ(n) = ∅ whenever m and
n have the same sign and σ(m) 6= σ(n). Thus dme dne /∈ E(Tde) if m and n have
the same sign. Therefore, Tde is a signed graph defined on T.

Since (H ∩ Pi)? ≡ H? ∩ Pi
? is a P-compactum, Lemma 2.10 guarantees that

each element of ΣH? is a subcontinuum of H?. Also, the collection ΣH? is finite
since σ is a function from the finite set T onto ΣH?. Now suppose m, n ∈ T with
dme , dne ∈ V (Tde) and dme 6= dne . Then σ(m) and σ(n) are distinct elements
of ΣH?. Moreover, since H? is connected and H? =

⋃

{A? : A? ∈ ΣH?} , there
exist (see 8.12 in [Na]) elements A?

1, A?
2, . . . ,A?

d of ΣH? such that σ(m) = A?
1 6=
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A?
d = σ(n), and A?

c ∩ A?
c+1 6= ∅ for 1 ≤ c < d. Furthermore, we can assume

that A?
c 6= A?

c+1 for 1 ≤ c < d. By the surjectivity of σ, T contains integers
m = l1, l2, . . . , ld = n such that σ(lc) = A?

c for 1 ≤ c ≤ d. Then,

σ(lc) 6= σ(lc+1) and σ(lc) ∩ σ(lc+1) 6= ∅ for 1 ≤ c < d.

Thus, dl1e , dl2e , . . . , dlde is a walk in Tde with end-vertices dl1e = dme and dlde =
dne . Hence, as dme , dne were arbitrary distinct vertices of Tde, Tde is a connected
signed graph.

For the rest of the proof assume that H? is P-unicoherent. Let

Υ−1 = {σ(n) : n ∈ T 1 and σ(n) * σ(m) for all m ∈ T−1},
Υ1 = {σ(m) : m ∈ T−1 and σ(m) * σ(n) for all n ∈ T 1}, and
Υ = Υ−1 ∪Υ1.

To show that Tde is a treechain we argue by contradiction, as follows. Suppose Tde
had a circuit dm1e , dm2e , dm3e , dm4e , . . . , dmwe . Thus, w ≥ 5, dm1e = dmwe ,

and dmre 6= dmse for 1 ≤ r < s < w. Hence,

the continua σ(m1), σ(m2), σ(m3), σ(m4), . . . , σ(mw−1) are distinct.(27)

Now, for 1 ≤ r < w, dmre = σ−1(σ(mr)) and, by the definition of a circuit in
Tde, dmre dmr+1e ∈ E(Tde). Thus,

σ(mr) 6= σ(mr+1) and σ(mr) ∩ σ(mr+1) 6= ∅ for 1 ≤ r < w.(28)

Note that σ(m1) = σ(mw), since σ−1(σ(m1)) = dm1e = dmwe = σ−1(σ(mw)).
Then, by the second part of (28) with r = w − 1, we have

σ(m1) = σ(mw) and σ(mw−1) ∩ σ(m1) 6= ∅.(29)

Without loss of generality it can be assumed that

dmre ⊆ T−1 ⇐⇒ r = 1, 3, 5, . . . , w

dmre ⊆ T 1 ⇐⇒ r = 2, 4, . . . , w − 1.

So if r is even then m1 and mr have opposite signs, and hence σ(m1) 6= σ(mr).
Thus, as σ(m1) = σ(mw),

w is odd and w ≥ 5.

Since H? is a P-continuum and (H ∩ P−1)? has distinct components σ(m1) and
σ(m3), H? 6= (H∩P−1)?. HenceH 6= H∩P−1. ThusH * P−1, and, by Lemma 1.1,
H? * P?

−1. Similarly, as σ(m2) and σ(m4) are distinct components of (H∩P1)?,
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we have H? * P?
1 . Since σ is a surjection, H? * P?

−1 , H? * P?
1 , and H? is

P-unicoherent, Lemmas 3.10 and 3.9 guarantee that

Υ is a P-decomposition of H? and a treechain.

The components σ(m1), σ(m3), . . . , σ(mw−2) of (H∩P−1)? all belong to Υ1 since,
by (28), (29) and (27), each one intersects at least two components of (H∩P1)?.

Likewise, the components σ(m2), σ(m4), . . . , σ(mw−1) of (H ∩ P1)? all belong
to Υ−1. Then,

{σ(m1), σ(m2), . . . , σ(mw−1)} ⊆ Υ−1 ∪Υ1 = Υ.

We have seen that σ(m1), σ(m2), . . . , σ(mw−1) are distinct members of the
treechain Υ with w ≥ 5, that σ(m1)∩σ(mw−1) 6= ∅, and that σ(mr)∩σ(mr+1) 6= ∅
for 1 ≤ r < w. However, this contradicts Lemma 3.8. The contradiction shows
that Tde in fact has no circuit. Thus, as Tde has already been seen to be a con-
nected signed graph, Tde is a signed tree.

Now suppose m ∈ T−1 and n ∈ T 1. Then σ(m) ∩ σ(n) ⊆ (H ∩ P−1)? ∩ (H ∩
P1)? ⊆ P?

−1 ∩ P?
1 . We must show that σ(m) ∩ σ(n) is connected, and to do so it

can be assumed that ∅ 6= σ(m) ∩ σ(n), σ(m) * σ(n), and σ(n) * σ(m). Hence,
σ(n) 6= H? 6= σ(m). Since σ(m) is a component of (H ∩ P−1)? distinct from
H?, one has (H ∩ P−1)? 6= H?. So H * P−1 and, by Lemma 1.1, H? * P?

−1.

Similarly, as σ(n) is a component of (H ∩ P1)? distinct from H?, one obtains
H? * P?

1 . Then Lemmas 3.10 and 3.9 again give

Υ is a P-decomposition of H? and a treechain.

Since σ(n) is a component of (H∩P1)? that intersects but fails to contain σ(m),
σ(m) is not a subset of any component of (H ∩ P1)?. Consequently, σ(m) ∈ Υ1.

Similarly, one obtains σ(n) ∈ Υ−1. Hence σ(m), σ(n) ∈ Υ and, by Lemma 3.9,
σ(m) ∩ σ(n) is connected.

Lemma 6.2. Let K be a closed subset of a Hausdorff compactum Q and let L

be a continuum in Q that intersects both K and Q\K. Then each component of
L ∩K intersects BdQ(K).

Proof. Let C be any component of L ∩K. L ∩K is a nonempty proper closed
subset of the continuum L. Note that BdL(L ∩ K) ⊆ BdQ(L ∩ K). Also, C ∩
BdL(L∩K) 6= ∅ by Theorem 3, page 173, of [Ku]. Choose x ∈ C ∩BdL(L∩K).
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Then x /∈ IntL(L ∩K) and

x ∈ C ∩BdQ(L ∩K) = C ∩ (L ∩K)\IntQ(L ∩K).

We have x /∈ IntQ(K), as otherwise L∩IntQ(K) is a subset of L∩K that contains
x and is open in L, contrary to x /∈ IntL(L ∩ K). Thus, x ∈ K\IntQ(K) =
BdQ(K). Therefore, x ∈ C ∩BdQ (K). So C intersects BdQ(K).

Theorem 6.3. Suppose the Hausdorff continuum P is the union of unicoher-
ent continua J and K. If J ∩ K is connected and locally connected, then P is
unicoherent.

Proof. We can assume without loss of generality that J and K are proper sub-
continua of P, so

K\J = P\J 6= ∅ 6= P\K = J\K.(30)

Since J ∪ K = P and J and K are closed, Bd(J) = J\Int(J) ⊆ J ∩ K and
Bd(K) = K\Int(K) ⊆ J ∩K. Let V = J ∩K. Then

J ∩K = V is a locally connected continuum with BdP (J) ∪BdP (K) ⊆ V.

We apply Proposition 4.2. Let = be any three-element open cover of P. For
each x ∈ V there exists O(x) ∈ = with x ∈ O(x). Then V ∩ O(x) is an open
neighborhood ofx in V . Since V is a locally connected Hausdorff compactum, one
can find a connected relatively open set V (x) ⊆ V with x ∈ V (x) ⊆ Cl(V (x)) ⊆
V ∩ O(x). Since V is compact there exist finitely many elements of V , x1, . . . , xs,

such that the collection of continua

V = {Cl(V (x1)), . . . , Cl(V (xs))}

covers V irreducibly. Define

P(J\K) = {{x} : x ∈ J\K} , P(K\J) = {{x} : x ∈ K\J} ,
J = V ∪ P(J\K) , K = V ∪ P(K\J),

and P = J ∪ K.

Then

P(J\K)? = J\K , V? = V , P(K\J)? = K\J ,
J ? = J , K? = K, and P? = P.

Note that the nonempty sets V, J\K and K\J are pairwise disjoint, and P
is the union of the nonempty disjoint collections V,P(J\K) and P(K\J). By
construction, P is a refinement of =. Moreover, P ⊂ C(P ) and P covers P

irreducibly. Also, for each M ∈ C(P ) the set P(M)? is the union of M and all



858 BOB PIERCE

those elements of V that intersect M , and hence is a closed set. Thus, P is a
pseudogrille for P. Now, to complete the proof of Theorem 6.3 (by Proposition
4.2) it suffices to show that P is P-unicoherent.

Let {P?
−1,P?

1} be a two-element P-decomposition of P. It must be proven that
P?
−1 ∩ P?

1 is connected. (We note that, although the proof given here is a direct
argument based upon Proposition 4.2, P?

−1 and P?
1 portray the sets P ′

−1 and P ′
1

described in the first part of the Introduction. Also, the roles of Ji and Ki are
played byJ ?

i and K?
i , while V(P−1) and V(P1) are the collections V−1 ∪ . . .∪V−u

and V1 ∪ . . . ∪ Vv, respectively.)
Since {P?

−1,P?
1} is a P-decomposition of P = P?, one has P−1 ∪ P1 = P.

Thus, P−1 ∪P1 is the union of the nonempty disjoint collections V, P(J\K) and
P(K\J). For each i ∈ {−1, 1}, let

Ji = J ∩ Pi and Ki = K ∩ Pi.

Note that for each x ∈ J ∩ P?
1 there exists Gx ∈ P1\P(K\J) with x ∈ Gx. Thus

x ∈ Gx ∈ P1 ∩ (V ∪P(J\K)) = P1 ∩J . Consequently, J ∩P?
1 ⊆ (P1 ∩J )? = J ?

1 .

Also, J ?
1 = (J ∩ P1)? ⊆ J ? ∩ P?

1 = J ∩ P?
1 . So J ?

1 = J ∩ P?
1 . By repeating this

reasoning for J ?
−1, K?

−1 andK?
1, one obtains J ?

i = J ∩ P?
i and K?

i = K ∩ P?
i for

each i ∈ {−1, 1}.

J ?
i = J ∩ P?

i and K?
i = K ∩ P?

i for each i ∈ {−1, 1}.(31)

These equalities can be written as (J ∩Pi)? = J ?∩P?
i and (K∩Pi)? = K?∩P?

i ,

and hence represent hypotheses to be used in two settings of Lemma 6.1 in Case
2 below. It also follows from the definitions of V and P that (V ∩Pi)? = V? ∩P?

i

for each i, which will allow a third application of Lemma 6.1. The proof of the
connectedness of P?

−1 ∩ P?
1 breaks into two cases.

Case 1 J−1 = ∅ or J1 = ∅ or K−1 = ∅ or K1 = ∅.

We prove P?
−1∩P?

1 is connected when J1 = ∅, the proof in each of the other three
subcases being analogous.

Since J ⊆ P = P−1 ∪ P1 and J ∩ P1 = J1 = ∅, one has J ⊆ P−1. Moreover,
V ⊆ J ⊆ P−1. Therefore, as V = J ∩K ⊆ K,

V = V? ⊆ P?
−1 ∩K.
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Since J ∩ P1 = ∅, we have P1 ⊆ P\J = P\(V ∪ P(J\K)) = P(K\J). Thus
P?

1 ⊆ P(K\J)? ⊆ K, and

P?
1 ∩ P?

−1 = (P?
1 ∩K) ∩ P?

−1 = P?
1 ∩ (P?

−1 ∩K).(32)

Also,

K = P ∩K = (P?
1 ∪ P?

−1) ∩K = P?
1 ∪ (P?

−1 ∩K).(33)

By (30) there exists x ∈ J\K. Since P(J\K) ∩ P1 ⊆ J ∩ P1 = ∅, we have
P(J\K)∩P1 = ∅. Thus {x} ∈ P(J\K)\P1 ⊆ P(J\K)∩P−1. Hence x ∈ (J\K)∩
P?
−1. We have x ∈ (P\K)∩P?

−1 and V ⊆ P?
−1∩K. So the subcontinuum P?

−1 of P

intersects both P\K and K. By Lemma 6.2, each component of P?
−1∩K intersects

BdP (K). Therefore, as BdP (K) ⊆ V , each component of P?
−1 ∩K intersects V .

Hence, as the continuum V is a subset of P?
−1 ∩K, P?

−1 ∩K is a subcontinuum
of K. Then by (33) K is the union of its subcontinua P?

1 and P?
−1 ∩K. Thus, by

the assumed unicoherence of K, the set P?
1 ∩ (P?

−1 ∩K) is connected. Therefore,
by (32), P?

−1 ∩ P?
1 is connected.

Case 2 J−1 6= ∅ and J1 6= ∅ and K−1 6= ∅ and K1 6= ∅.

In Case 2 , boundary-bumping gives the following.

Suppose i ∈ {−1, 1} and A is any component of J ?
i or K?

i .

Then A ∩ V 6= ∅ and A is a Pi-continuum, A?, with A ∩ V 6= ∅.(34)

For example, let A be any component of J ?
1 . A is nonempty and, by (31), A is

a component of J ∩ P?
1 . To see that A ∩ V is nonempty we first suppose that

P?
1 ⊆ J . Then J ∩ P?

1 = P?
1 is connected, and hence A = P?

1 . Moreover, K1 6= ∅,
so ∅ 6= K?

1 = K∩P?
1 = K∩A = K∩ (A∩J) = A∩V . Suppose next that P?

1 * J.

Then the subcontinuum P?
1 of P intersects both P\J and J. By Lemma 6.2, each

component of J ∩ P?
1 intersects BdP (J). Therefore, as BdP (J) ∪ BdP (K) ⊆ V,

each component of J ∩P?
1 intersects V . Hence, A∩ V 6= ∅ . We have shown that

if A is any component of J ?
1 then A ∩ V 6= ∅. By Lemma 2.10, A = A? for some

A ⊆ J1 = P1 ∩ J . That is, A is the P1-continuum A?. Then, since A ∩ V 6= ∅
there exists G ∈ A with G ∩ V 6= ∅. We have

G ∈ A ⊆ J1 = P1 ∩ J = P1 ∩ (V ∪ P(J\K)).
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But G /∈ P(J\K) since G ∩ V 6= ∅. Thus, G ∈ A ∩ V. ThereforeA ∩ V 6= ∅, as
required. Analogous reasoning for components of J ?

−1, K?
1, and K?

−1 establishes
(34).

Define Z = P−1 ∩ P1. By Lemma 2.18,

Z? = (P−1 ∩ P1)? = P?
−1 ∩ P?

1 .

By Lemma 2.10,

C = Z(C)? (a P-continuum) for each component C of Z?.

Moreover, we claim that

Z(C) ∩ V 6= ∅ for each component C of Z?.(35)

For if not then there is a component C = Z(C)? of Z? with Z(C) ⊆ P\V =
P(J\K) ∪ P(K\J). Then the P-continuum Z(C)? is contained in the union of
the disjoint open sets P(J\K)? = J\K = P\K and P(K\J)? = K\J = P\J.

Hence, either Z(C)? ⊆ J\K or Z(C)? ⊆ K\J. Without loss of generality we
assume Z(C)? ⊆ J\K. Thus Z(C)? does not intersect the continuum V = J ∩K,

and Z(C)? is a component of the Hausdorff compactum Z?∩J . Then, by Theorem
2−15 in [Ho], (Z? ∩ J)\V contains a set Y that is open in Z? ∩ J, has empty
boundary in Z? ∩J, and contains Z(C)?. Since Y has empty boundary in Z? ∩J,

Y is closed as well as open in Z? ∩ J . Note that

Y = ((Z? ∩ J) ∪ V )\((Z? ∩ J)\Y ) ∪ V ).

Now Y and (Z? ∩ J)\Y are closed in the closed subset Z? ∩ J of (Z? ∩ J) ∪ V ,
so Y and (Z? ∩ J)\Y are closed subsets of (Z? ∩ J) ∪ V. Also, V is closed in
(Z? ∩ J) ∪ V. So ((Z? ∩ J)\Y ) ∪ V is a closed subset of (Z? ∩ J) ∪ V. Therefore,
Y = ((Z? ∩ J) ∪ V )\((Z? ∩ J)\Y ) ∪ V ) is open in (Z? ∩ J) ∪ V. To sum up,
∅ 6= Z(C)? ⊆ Y, Y ∩ V = ∅, and Y is closed and open in (Z? ∩ J) ∪ V. Thus,

(Z? ∩ J) ∪ V is not connected.

Now let R be the compactum (J ∩ P?
−1) ∪ V. By (31) and (34), each component

of J ∩P?
−1 is a continuum that intersects the continuum V. Thus, R is connected.

Hence R is a continuum. Similarly, the compactum S = (J ∩ P?
1 ) ∪ V is a

continuum. Note that R ∪ S = V ∪ (J ∩ (P?
−1 ∪ P?

1 )) = J. Then, by the assumed
unicoherence of J, R∩S is connected. But R∩S = (P?

−1∩P?
1∩J)∪V = (Z?∩J)∪V,

which is not connected. This contradiction establishes (35).
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Let C be a component of Z?. By (35), Z(C)∩V is nonempty, so Z∩V = P−1∩
P1 ∩ V is nonempty. Observe then that for each i ∈ {−1, 1}, since 0 < |V ∩ Pi| ≤
|V| < ∞, the P-compactum (V ∩ Pi)? has finitely many components, each one
a union of elements of V. Let V?

−1, . . . ,V?
−u be the components of (V ∩ P−1)?

and V?
1 , . . . ,V?

v be the components of (V ∩ P1)?. Let T−1 = {−1, . . . ,−u},
T 1 = {1, . . . , v}, and T = T−1 ∪ T 1. By Lemma 2.10,

Vm ⊆ V ∩ P1 for each m ∈ T 1 and Vn ⊆ V ∩ P−1 for each n ∈ T−1.

Now suppose V?
m = V?

n for some m ∈ T 1 and n ∈ T−1. Then Vm = Vn ⊆ V
by Lemma 1.1, and we claim that Vm = Vn = V. For if Vm = Vn 6= V then,
since V? is a continuum and |V| < ∞, there exists G ∈ V\Vm = V\Vn such that
∅ 6= G ∩ V?

m = G ∩ V?
n. Also, by Lemma 2.9, G * V?

m = V?
n. Moreover, G /∈ P−1,

as otherwise V?
n ∪ G is a connected subset of (V ∩ P−1)? properly containing

the component V?
n of (V ∩ P−1)?. Likewise, G /∈ P1, else V?

m ∪ G is a connected
subset of (V ∩ P1)? properly containing the component V?

m of (V ∩ P1)?. But
G ∈ P = P−1 ∪ P1. This contradiction shows that Vm = Vn = V. Thus, V ⊆
P−1 ∩ P1 = Z. Hence, by (35), each component C = Z(C)? of Z? contains the
continuum V? = V. Thus Z? = P?

−1∩P?
1 is connected if V?

m = V?
n for some m ∈ T 1

and n ∈ T−1. Therefore, for the balance of the proof we can and will assume that

V?
m 6= V?

n whenever m ∈ T 1 and n ∈ T−1.(36)

Recalling (34) and (31), let ΣJ ? = {A? : A? is a component of J ?
−1 or of J ?

1 }.
For each i ∈ {−1, 1} and m ∈ T i, the set V?

m is a component of (V ∩ Pi)?, and
since V ⊆ J , V?

m is contained in some component of (J ∩ Pi)? = J ?
i . For each

i ∈ {−1, 1} and m ∈ T i let σJ(m) be the component of J ?
i that contains V?

m.

We claim the map σJ : T −→ ΣJ ? is a surjection. For suppose i ∈ {−1, 1} and
A? is a component of J ?

i . By (34)A? is a Pi-continuum, so A ⊆ Pi, and there
exists G ∈ V ∩ A. Thus, G ∈ V ∩ Pi. Let V?

m be the component of (V ∩ Pi)?

that contains G. Then σJ(m) = A?. Hence σJ is a surjective map. It will next
be shown that

σJ(r) is a component of J ?
i if and only if r ∈ T i, for i ∈ {−1, 1}.(37)

For otherwise there exist i ∈ {−1, 1} and r ∈ T−i so that σJ(r) is a component of
J ?

i = (J ∩Pi)?. By definition of σJ , and as r ∈ T−i, σJ(r) is also the component
A? of J ?

−i = (J ∩ P−i)? that contains V?
r . Thus A? is a component of (J ∩ Pi)?
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and a component of (J ∩ P−i)?. Then Lemma 2.10 gives

Vr ⊆ A ⊆ (J ∩ P−i) ∩ (J ∩ Pi) ⊆ P−1 ∩ P1.

Now, by (36), either V1 6= V or V−1 6= V. Assume first that V1 6= V. By Lemma
1.1, V?

1 6= V?. Then, since V?
1 is a component of (V ∩ P1)? not equal to the

connected set V?, we have V 6= V ∩ P1. So V * P1. Thus Vr 6= V. Similarly, if
V−1 6= V a symmetric argument gives V * P−1 and, again, Vr 6= V. So Vr ⊂ V
and 0 < |Vr| < |V| < ∞. Moreover, V? and each G ∈ V are continua. Hence there
exists G ∈ V\Vr with ∅ 6= G∩V?

r . By Lemma 2.9, G * V?
r . Then, as r ∈ T−i and

V?
r is a component of (P−i ∩V)? that intersects but does not contain the element

G of V, we have G ∈ P\P−i. Thus, as A ⊆ P−1 ∩P1, we have G /∈ A. Therefore,
by Lemma 2.9, G * A?. But ∅ 6= G ∩ V?

r ⊆ G ∩ A? and G ∈ V\P−i ⊆ J ∩ Pi.
Then, as A? is a component of (J ∩ Pi)? that intersects G and G ∈ J ∩ Pi, one
has G ⊆ A?. This is a contradiction. The contradiction shows that (37) holds.
Next, let [m] = σ−1

J (σJ(m)) for each m ∈ T. Define

V (T[ ]) = {[m] : m ∈ T}
E(T[ ]) = {[m] [n] : σJ(m) 6= σJ(n) and σJ(m) ∩ σJ(n) 6= ∅}

No distinction is made between [m] [n] and [n] [m] .Then, since J = J ? is unico-
herent, Lemma 6.1 says that T[ ] is a signed tree on T and

σJ(m) ∩ σJ(n) is a connected subset of Z? for all m ∈ T 1, n ∈ T−1.(38)

Similarly, we let ΣK? = {B? : B? is a component of K?
−1 or of K?

1}. For each
i ∈ {−1, 1} and m ∈ T i let σK(m) be the component of K?

i that contains V?
m.

Then σK : T −→ ΣK? is a surjection by (34), and by a proof symmetric to that
of (37) we have

σK(r) is a component of K?
i if and only if r ∈ T i, for i ∈ {−1, 1}.(39)

Let 〈m〉 = σ−1
K (σK(m)) for each m ∈ T, and define

V (T〈 〉) = {〈m〉 : m ∈ T}
E(T〈 〉) = {〈m〉〈n〉 : σK(m) 6= σK(n) and σK(m) ∩ σK(n) 6= ∅}

No distinction is made between 〈m〉〈n〉 and 〈n〉〈m〉. Again by Lemma 6.1, T〈 〉 is
a signed tree on T and

σK(m) ∩ σK(n) is a connected subset of Z? for all m ∈ T 1, n ∈ T−1.(40)

A third connected signed graph, T( ), is defined on T as follows. Let (m) = {m}
for each m ∈ T. Let ΣV? = {V?

m : −u ≤ m ≤ −1} ∪ {V?
n : 1 ≤ n ≤ v}. Define
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V (T( )) = {(m) : m ∈ T}
E(T( )) = {(m)(n) : m ∈ T i, n ∈ T−i for i = −1 or 1, and V?

m ∩ V?
n 6= ∅}

No distinction is made between (m)(n) and (n)(m). For each m ∈ T let σV (m) =
V?

m. By (36) and the definition of the components V?
m, the map σV : T −→ ΣV?

is a bijection, and σV (m) is a component of (Pi∩V)? if and only if m ∈ T i. Thus
σ−1

V (σV (m)) = {m} = (m) for each m ∈ T. Also, V? = V is a P-continuum, and
by the various definitions we have (V ∩ Pi)? = V? ∩ P?

i for each i. Therefore,
by Lemma 6.1, T( ) is a connected signed graph on T . We prove the following
assertion.

If A? ∈ ΣJ ? and B? ∈ ΣK? then A? ∩ B? = (A ∩ B ∩ V)?.(41)

Clearly (A∩B∩V)? ⊆ A?∩B?. For the reverse inclusion assume i, j ∈ {−1, 1} and
x ∈ A? ∩B?, where A? is a component of J ?

i = (J ∩Pi)? and B? is a component
of K?

j = (K ∩ Pj)?. We want to show that x ∈ (A ∩ B ∩ V)?. By Lemma 2.10,
A ⊆ J ∩ Pi and B ⊆ K ∩ Pj . Select G′ ∈ A and G′′ ∈ B with x ∈ G′ ∩G′′. Then
we have x ∈ A? ∩ B? ⊆ J ? ∩ K? = J ∩K = V. Hence

G′, G′′ ∈ P\(P(J\K) ∪ P(K\J)) = V = J ∩ K.

Then, since x ∈ G′∩G′′, G′ ∈ A ⊆ Pi and G′′ ∈ B ⊆ Pj , it follows from condition
(c) of Definition 2.14 (as applied to the P-decomposition {P?

−1,P?
1} of P ) that

either G′′ ∈ Pi or G′ ∈ Pj . If G′′ ∈ Pi then x ∈ G′′ ∈ J ∩ Pi. Then, as x lies
in the component A? of (J ∩ Pi)?, we have G′′ ⊆ A?. Hence, by Lemma 2.9,
G′′ ∈ A. This yields x ∈ G′′ ∈ A∩B∩V, and x ∈ (A∩B∩V)?, as desired. On the
other hand, if G′ ∈ Pj then a symmetric argument yields x ∈ G′ ∈ A∩B∩V, and
again x ∈ (A∩ B ∩ V)?. This shows that A? ∩ B? ⊆ (A∩ B ∩ V)?, and completes
the proof of (41). We now claim that

If m ∈ T−1 and n ∈ T 1 then V?
m ∩ V?

n = (Vm ∩ Vn)?,
and this set is contained in some component of Z?.

(42)

Clearly, (Vm ∩ Vn)? ⊆ V?
m ∩ V?

n. For the opposite inclusion assume p ∈ V?
m ∩ V?

n.

Then there exist G′ ∈ Vm ⊆ P−1 ∩ V and G′′ ∈ Vn ⊆ P1 ∩ V with p ∈ G′ ∩ G′′.

Moreover, as {P?
−1,P?

1} is a P-decomposition of P? = P, we have (by (c) of
Definition 2.14) either G′ ∈ P1 or G′′ ∈ P−1. Suppose that G′ ∈ P1. Thus,
p ∈ G′ ∈ P1 ∩ P−1 ∩ V. Then, because V?

m is the component of (P−1 ∩ V)?

containing p and V?
n is the component of (P1 ∩ V)? containing p, there follows

G′ ∈ Vm and G′ ∈ Vn. Therefore, p ∈ G′ ⊆ (Vm ∩ Vn)? if G′ ∈ P1. Similarly, p ∈
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G′′ ⊆ (Vm ∩ Vn)? if G′′ ∈ P−1. Hence, as p was an arbitrary element of V?
m ∩ V?

n,

we have V?
m ∩ V?

n ⊆ (Vm ∩ Vn)?. Thus (Vm ∩ Vn)? = V?
m ∩ V?

n. For the second
conclusion of (42), note that σJ(m) ∩ σJ(n) is a connected subset of Z? by (38).
Then, as V?

m∩V?
n ⊆ σJ(m)∩σJ(n) ⊆ Z?, V?

m∩V?
n is contained in some component

of Z?.
Define a binary relation ∼ on E(T( )) by

(m)(n) ∼ (m′)(n′) ⇐⇒ there is a component C of Z? with
(V?

m ∩ V?
n) ∪ (V?

m′ ∩ V?
n′) ⊆ C.

Clearly, ∼ is symmetric. By (42), ∼ is reflexive. Suppose (m)(n) ∼ (m′)(n′) and
(m′)(n′) ∼ (m′′)(n′′). Since (m)(n), (m′)(n′), and (m′′)(n′′) all belong to E(T( )),
we have m 6= n and V?

m ∩ V?
n 6= ∅, m′ 6= n′ and V?

m′ ∩ V?
n′ 6= ∅, and m′′ 6= n′′ and

V?
m′∩V?

n′ 6= ∅. There are components C and C ′ of Z? with (V?
m∩V?

n)∪(V?
m′∩V?

n′) ⊆
C and (V?

m′ ∩ V?
n′) ∪ (V?

m′′ ∩ V?
n′′) ⊆ C ′. Since the nonempty set V?

m′ ∩ V?
n′ is

contained in C ∩ C ′, we have C = C ′. Therefore, (V?
m ∩ V?

n) ∪ (V?
m′′ ∩ V?

n′′) ⊆ C.

Thus (m)(n) ∼ (m′′)(n′′). Hence ∼ is transitive as well as symmetric and reflexive,
and so ∼ is an equivalence relation on E(T( )). It will follow from the Folding-
knives Lemma (Lemma 5.2) that ∼ has just one equivalence class if it can be
shown that hypotheses (1), (2), (3a) and (3b) of that Lemma hold.

To prove that (1) of Lemma 5.2 holds, suppose (m)(n) ∈ E(T( )). Then m ∈
T i, n ∈ T−i for some i ∈ {−1, 1}, and V?

m ∩ V?
n 6= ∅. By (37) we have σJ(m) 6=

σJ(n), and by (39) we have σK(m) 6= σK(n). Also, V?
m ⊆ σJ(m) ∩ σK(m) and

V?
n ⊆ σJ(n) ∩ σK(n). Thus, ∅ 6= V?

m ∩ V?
n ⊆ σJ(m) ∩ σJ(n), and ∅ 6= V?

m ∩ V?
n ⊆

σK(m) ∩ σK(n). Hence, [m][n] ∈ E(T[ ]) and 〈m〉〈n〉 ∈ E(T〈 〉).
To prove (2) holds, let m, n, m′, n′ ∈ T and (m)(n), (m′)(n′) ∈ E(T( )). Assume

first that [m][n] = [m′][n′]. Without loss of generality suppose that m, m′ ∈ T 1

and n, n′ ∈ T−1, so [m] = [m′] and [n] = [n′]. We have σJ(m) = σJ(m′) since
m ∈ [m] = [m′] = σ−1

J (σJ(m′)), and σJ(n) = σJ(n′) since n ∈ [n] = [n′] =
σ−1

J (σJ(n′)). Hence

(V?
m ∩ V?

n) ∪ (V?
m′ ∩ V?

n′) ⊆ (σJ(m) ∩ σJ(n)) ∪ (σJ(m′) ∩ σJ(n′) ) =
σJ(m) ∩ σJ(n).

Also, by (38), σJ(m) ∩ σJ(n) is a connected subset of Z?. Thus, there is a
component C of Z? with (V?

m ∩ V?
n) ∪ (V?

m′ ∩ V?
n′) ⊆ C. That is to say, (m)(n) ∼

(m′)(n′). Now, if 〈m〉〈n〉 = 〈m′〉〈n′〉 then a symmetric argument using (40) shows
again that (m)(n) ∼ (m′)(n′). This completes the proof that (2) holds.

We now prove that (3a) and (3b) hold. Suppose that i ∈ {−1, 1} and ∅ 6=
S′ ⊂ T i with [S′] =

⋃

s∈S′ [s] 6= T i. Assume there does not exist k ∈ [S′] with
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〈k〉 * [S′]. (We will derive a contradiction.) Let S = [S′]. Then, since S is a union
of equivalence classes of the form [m′] (some m′ ∈ S′), we have [S] = S. So

∅ 6= [S] = S = [S′] ⊂ T i,

and there does not exist k ∈ S with 〈k〉 * S. Thus, 〈m〉 ⊆ S for all m ∈ S. Hence,

∅ 6= 〈S〉 =
⋃

m∈S

〈m〉 = S = [S] ⊂ T i.(43)

Since the maps σJ : T −→ ΣJ and σK : T −→ ΣK are surjections, lines (37) and
(39) yield

⋃

m∈T i

σJ(m) = (J ∩ Pi)? and
⋃

m∈T i

σK(m) = (K ∩ Pi)?.

The following also holds.

If m ∈ S and m0 ∈ T i\S then σJ(m) ∩ σJ(m0) = ∅.(44)

For, [m] ⊆ [S] = S. Consequently, m0 ∈ T i\S ⊆ T i\[m] = T i\σ−1
J (σJ(m)). So

σJ(m0) 6= σJ(m). Moreover, m ∈ S ⊂ T i. Since m, m0 ∈ T i and σJ(m0) and
σJ(m) are distinct components of (J ∩Pi)?, we have σJ(m)∩σJ(m0) = ∅. Thus,
(44) holds. Now, the same reasoning (and the symmetry in (43)) can be applied
to show that

If m ∈ S and m0 ∈ T i\S then σK(m) ∩ σK(m0) = ∅.(45)

Define

Ai =
⋃

m∈S

(σJ(m) ∪ σK(m)) and Bi =
⋃

m0∈T i\S

(σJ(m0) ∪ σK(m0)).

Notice that σJ(m) ∪ σK(m) is a closed subset of P?
i for every m ∈ T i. We have

∅ 6= S ⊂ T i. Then S and T i\S are nonempty subsets of the finite set T i. Therefore
Ai and Bi are nonempty closed subsets of P?

i . Thus, Ai ∪ Bi =
⋃

m∈T i σJ(m) ∪
⋃

m∈T i σK(m) = (J ∩ Pi)? ∪ (K ∩ Pi)? = ((J ∪ K) ∩ Pi)? = (P ∩ Pi)? =
P?

i , which is a P-continuum (as {P?
−1,P?

−1} is a P-decomposition of P ). So
Ai ∩ Bi 6= ∅. Consequently, one can select m ∈ S and m0 ∈ T i\S so that the set
(σJ(m)∩ σJ(m0))∪ (σJ(m)∩ σK(m0))∪ (σJ(m0)∩ σK(m))∪ (σK(m)∩ σK(m0))
is nonempty. Then, by (44) and (45),

(σJ(m) ∩ σK(m0)) ∪ (σJ(m0) ∩ σK(m)) 6= ∅.(46)

Now, suppose σJ(m)∩σK(m0) 6= ∅. Since m, m0 ∈ T i, σJ(m) is some component
A? of (J ∩Pi)? and σK(m0) is some component B? of (K∩Pi)?. Thus, ∅ 6= σJ(m)∩
σK(m0) = (A∩B∩V)?, by (41). Select G′ ∈ V∩A∩B. SinceA ⊆ J∩Pi (by Lemma
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2.10), G′ ∈ V ∩ Pi. Let V?
m′ be the component of (V ∩ Pi)? containing G′. Now

m, m0, m′ ∈ T i and G′ ⊆ A? ∩ B? = σJ(m) ∩ σK(m0). Hence, σJ(m′) = σJ(m)
and σK(m′) = σK(m0). Therefore, m′ ∈ σ−1

J (σJ(m))∩σ−1
K (σK(m0)) = [m]∩〈m0〉.

But [m] ⊆ [S] = 〈S〉 since m ∈ S, and 〈m0〉 ⊆ T i\〈S〉 since m0 ∈ T i\〈S〉. (For
if m1 ∈ 〈m0〉 ∩ 〈S〉 = 〈m0〉 ∩ S, then m0 ∈ 〈m1〉 ⊆ 〈S〉 = S, contrary to the
choice of m0.) So m′ ∈ [m] ∩ 〈m0〉 ⊆ 〈S〉 ∩ (T i\〈S〉). This contradiction yields
σJ(m) ∩ σK(m0) = ∅. Similarly, σJ(m0) ∩ σK(m) = ∅. This contradiction of (46)
shows that (3a) holds. Property (3b) can be established in the same manner as
(3a).

We now conclude from Lemma 5.2 that ∼ has only one equivalence class. To
finish the proof that P?

−1 ∩P?
1 is connected in this case (Case 2), suppose that C

and C ′ are components of P?
−1 ∩P?

1 . By Lemma 2.18, C and C ′ are components
of Z? = (P−1 ∩P1)?. Then, from (35), Z(C)∩ V 6= ∅ and Z(C ′)∩ V 6= ∅. Choose
G ∈ Z(C) ∩ V and G′ ∈ Z(C ′) ∩ V. By Lemma 2.10,

G ⊆ C and G′ ⊆ C ′.

Also, G, G′ ∈ Z ∩ V = P−1 ∩P1 ∩ V. Let

V?
m be the component of (P−1 ∩ V)? that contains G,

V?
n be the component of (P1 ∩ V)? that contains G,

V?
m′ be the component of (P−1 ∩ V)? that contains G′,

V?
n′ be the component of (P1 ∩ V)? that contains G′.

Then V?
m∩V?

n 6= ∅, so (m)(n) ∈ E(T( )). Similarly, V?
m′∩V?

n′ 6= ∅, so that (m′)(n′) ∈
E(T( )). Since ∼ has one equivalence class, (m)(n) ∼ (m′)(n′). Thus there is
a component C ′′ of P?

−1 ∩P?
1 with (V?

m ∩ V?
n) ∪ (V?

m′ ∩ V?
n′) ⊆ C ′′. Therefore,

G ∪ G′ ⊆ C ′′. So G ⊆ C ∩ C ′′ and G′ ⊆ C ′ ∩ C ′′. Consequently, C ∩ C ′′ 6= ∅ 6=
C ′ ∩ C ′′. Hence C = C ′′ = C ′. Thus P?

−1 ∩P?
1 is connected, as required. This

completes the proof of Theorem 6.3.

A natural conjecture related to Theorem 6.3 is the following.

Conjecture 6.4. There exists a non-unicoherent Hausdorff continuum that is
the union of two unicoherent continua having a connected intersection.

While such a continuum has eluded the grasp of this author, instances have
in fact been given by Charles Hagopian, Alejandro Illanes, et al. The referee has
kindly provided the following simple variant of their examples. In the complex
plane let T = {z : |z| = 1}, A′ = {z : 1 < |z| ≤ 2}, A = T ∪ A′, and let S be the
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following union of two disjoint spirals in A′:

S = {(1 + e−θ)eiθ : 0 ≤ θ < ∞} ∪ {−(1 + e−θ)eiθ : 0 ≤ θ < ∞}

Denote by U1 and U2 the two components of A′\S. It can be shown that A\U1

and A\U2 are unicoherent continua whose union is the annulus A and whose
intersection is the continuum T ∪ S.

Thanks are due the Graph Theory seminar at West Virginia University (1992)
for attending an early befuddled presentation of Lemma 5.2. The author grate-
fully acknowledges the assistance of Professor Andrew Lelek and the referee for
several suggestions and corrections in clarifying the text. Assistance was provided
by The Department of Mathematics and Computer Science at The University of
Wisconsin, Superior, and by St. Cloud State University. This paper was writ-
ten in honor of Raymond F. Dickman, Jr., and Samuel Eilenberg, preeminent
investigators in the study of acyclicity and related properties of continua, and
in memory of Robert E. Dahlin, Professor of Mathematics at The University of
Wisconsin, Superior.
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