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ALGEBRAIC CURVATURE TENSORS FOR INDEFINITE
METRICS WHOSE SKEW-SYMMETRIC CURVATURE

OPERATOR HAS CONSTANT JORDAN NORMAL FORM

PETER B. GILKEY AND TAN ZHANG

Abstract. We classify the connected pseudo-Riemannian manifolds of sig-

nature (p, q) with q ≥ 5 so that at each point of M the skew-symmetric

curvature operator has constant rank 2 and constant Jordan normal form

on the set of spacelike 2 planes and so that the skew-symmetric curvature

operator is not nilpotent for at least one point of M .

1. Introduction

Let (M, g) be a smooth connected pseudo-Riemannian manifold of signature
(p, q). Let ∇ be the Levi-Civita connection on TM . The Riemann curvature
operator and the associated curvature tensor are defined by:

gR(x, y) := ∇x∇y −∇y∇x −∇[x,y] and
gR(x, y, z, w) := g(gR(x, y)z, w).

We have the following symmetries
gR(x, y, z, w) = gR(z, w, x, y) = −gR(y, x, z, w), and
gR(x, y, z, w) + gR(y, z, x, w) + gR(z, x, y, w) = 0.

Let V be a vector space with an inner product (·, ·) of signature (p, q). We
say that a 4 tensor R ∈ ⊗4V ∗ is an algebraic curvature tensor if it satisfies the
symmetries given above; the associated curvature operator is then defined by
R(x, y, z, w) = (R(x, y)z, w). We say that (M, g) is a geometrical realization of an
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algebraic curvature tensor R at a point P of M if there exists an isometry Θ from
TP M to V so that gR(x, y, z, w) = R(Θx,Θy, Θz, Θw) for all x, y, z, w ∈ TP M .
Every algebraic curvature tensor has such a geometrical realization. Conversely,
it is often useful to study problems in geometry by first passing to the purely
algebraic setting and then drawing geometrical conclusions from results obtained
algebraically.

Let R be an algebraic curvature tensor on a vector space V of signature (p, q).
Let {e1, e2} be an oriented basis for a non-degenerate oriented 2 plane π ⊂ V .
Let

R(π) := |(e1, e1)(e2, e2)− (e1, e2)2|−1/2R(e1, e2)

be the associated skew-symmetric curvature operator; R(π) depends on the ori-
entation of π but is independent of the particular oriented basis chosen. In this
paper, we will examine the geometric consequences which follow from assuming
that the skew-symmetric curvature operator has certain algebraic properties.

We say that a vector v ∈ V is spacelike if (v, v) > 0, timelike if (v, v) < 0, and
null if (v, v) = 0. We say that a 2 plane π is spacelike if the induced metric on π

has signature (0, 2), timelike if the induced metric has signature (2, 0), and mixed
if the induced metric has signature (1, 1). Otherwise π is said to be degenerate.

The simplest invariant of a linear map is the rank. We say that an algebraic
curvature tensor R has spacelike rank r if rank (R(π)) = r for every oriented
spacelike 2 plane π. The notions of timelike and mixed rank r are defined similarly.
If rank (R(π)) is not constant on the set of oriented spacelike 2 planes, then we
say R does not have constant spacelike rank. In §2, we shall construct algebraic
curvature tensors which have spacelike rank 2 but which do not have constant
timelike or constant mixed rank.

The following result of Gilkey, Leahy and Sadofsky [5] and of Zhang [9] uses
results from Adams [1] and Borel [2] to bound the rank:

Theorem 1.1. Let R be an algebraic curvature tensor on a vector space V of
signature (p, q) which has spacelike rank r.

(1) Let p = 0. Let q ≥ 5 and q 6= 7, 8. Then r ≤ 2.

(2) Let p = 1. Let q = 5 or q ≥ 9. Then r ≤ 2.

(3) Let p = 2. Let q ≥ 10. Then r ≤ 4. Furthermore, if neither q nor q + 2
are powers of 2, then r ≤ 2.
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Let V be a vector space of signature (p, q) and let φ be a self-adjoint linear
map of V . We define a 4 tensor and associated endomorphism:

Rφ(x, y, z, w) := (φy, z)(φx, w)− (φx, z)(φy, w) and

Rφ(x, y)z := (φy, z)φx− (φx, z)φy.

The tensor Rφ is an algebraic curvature tensor and the set of tensors arising in
this fashion spans the space of all algebraic curvature tensors [4]. Such tensors
arise as the curvature tensors of hypersurfaces in flat space - see Lemma 3.1.

These tensors play a crucial role in the classification of the algebraic curvature
tensors of rank 2. We refer to [5, 6] for the proof of the following result:

Theorem 1.2. Let R be an algebraic curvature tensor on a vector space V of
signature (p, q) where q ≥ 5. Then R has spacelike rank 2 if and only if R = ±Rφ

where φ is a self-adjoint map of V whose kernel contains no spacelike vectors.

The spectrum (i.e. the eigenvalues counted with multiplicity) is also a useful
invariant of a linear map. We say that an algebraic curvature tensor is spacelike
IP if the eigenvalues of R(π) are the same for any two oriented spacelike 2 planes;
the notions of timelike and mixed IP are defined similarly. (The notation ‘IP’ is
chosen as the fundamental classification results in dimension 4 are due to Ivanov
and Petrova [7] - see also related work in [8]). One can use analytic continuation
to see that the notions of spacelike, timelike, and mixed IP coincide so we shall
simply say that R is IP if any of these three equivalent conditions holds. Two
linear maps T and T̃ of V are said to be Jordan equivalent if any of the following
three equivalent conditions are satisfied:

(1) There exist bases B = {e1, ..., em} and B̃ = {ẽ1, ..., ẽm} for V so that the
matrix representation of T with respect to the basis B is equal to the
matrix representation of T̃ with respect to the basis B̃.

(2) There exists an isomorphism Θ of V so T = ΘT̃Θ−1, i.e. T and T̃ are
conjugate.

(3) The real Jordan normal forms of T and T̃ are equal.

In the positive definite setting, the spectrum of a skew-symmetric linear map
determines the conjugacy class of the map. This is not, however, the case in the
indefinite setting. We say that R is spacelike Jordan IP if the Jordan normal form
of R(·) is the same for any two oriented spacelike 2 planes; the notions of timelike
and mixed Jordan IP are defined similarly. We note that if R is spacelike Jordan
IP, then R has spacelike rank r for some r.
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The Jordan form of a linear map determines the spectrum. Thus if R is space-
like Jordan IP, then R is spacelike IP and hence IP. In §2, we construct algebraic
curvature tensors which are IP but which are not spacelike, timelike, or mixed
Jordan IP. We will also construct algebraic curvature tensors which are spacelike
Jordan IP but not timelike or mixed Jordan IP; thus these notions are distinct.

Let φ be a linear map of a vector space V of signature (p, q). If (φv, φw) = (v, w)
for all v, w ∈ V , then φ is an isometry. If (φv, φw) = −(v, w) for all v, w ∈ V ,
then φ is a para-isometry; para-isometries exist if and only if p = q, i.e. if we are
in the balanced setting. Suppose that φ is self-adjoint. Then φ is an isometry if
and only if φ2 = id ; φ is a para-isometry if and only if φ2 = −id .

We say that R is spacelike rank 2 Jordan IP if R has spacelike rank 2 and if R

is spacelike Jordan IP, the notions of timelike rank 2 Jordan IP and mixed rank
2 Jordan IP are defined similarly. We have the following classification result for
such tensors [6]:

Theorem 1.3. Let R be an algebraic curvature tensor on a vector space of sig-
nature (p, q) where q ≥ 5. Then R is a spacelike rank 2 Jordan IP algebraic
curvature tensor if and only if exactly one of the following three conditions is
satisfied:

(1) R = CRφ where φ is a self-adjoint isometry, and where C 6= 0.

(2) R = CRφ where φ is a self-adjoint para-isometry, and where C 6= 0.

(3) R = ±Rφ where φ is self-adjoint, where φ2 = 0, and where ker φ contains
no spacelike vectors.

Remark 1.4. The map φ in Theorem 1.3 is uniquely defined up to sign; the
constant C in assertions (1) and (2) is uniquely determined. The tensors CRφ in
assertions (1) and (2) where φ2 = ±id are also timelike and mixed rank 2 Jordan
IP. The tensor in assertion (3) is nilpotent; if φ2 = 0, then Rφ(x, y)2 = 0 for all
(x, y). This tensor is timelike rank 2 Jordan IP if and only if ker φ contains no
timelike vectors; it is not constant mixed rank.

We say that a pseudo-Riemannian manifold (M, g) is spacelike rank r Jordan IP
if gR is spacelike rank r Jordan IP at every point of M ; the Jordan form is allowed
to vary with the point but the rank is assumed to be constant. The notions of
timelike rank r Jordan IP and mixed rank r Jordan IP are defined similarly. In
§3, we will construct two families of spacelike, timelike, and mixed rank 2 Jordan
IP pseudo-Riemannian manifolds. Lemma 3.2 deals with the pseudo-spheres and
Lemma 3.3 deals with warped products of a manifold with constant sectional
curvature with an interval I ⊂ R.
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The following is the main result of this paper; it generalizes previously known
results [3, 5, 7] from the Riemannian to the pseudo-Riemannian setting.

Theorem 1.5. Let (M, g) be a connected spacelike rank 2 Jordan IP pseudo-
Riemannian manifold of signature (p, q) where q ≥ 5. Assume that gR is not
nilpotent for at least one point P of M .

(1) For each point P ∈ M , we have gRP = C(P )Rφ(P ) where φ(P ) is self-
adjoint map of TP M so that φ(P )2 = id ; gRP is never nilpotent.

(2) If φ = ±id , then (M, g) has constant sectional curvature and is locally
isometric to one of the manifolds constructed in Lemma 3.2.

(3) If φ 6= ±id , then (M, g) is locally isometric to one of the warped product
manifolds constructed in Lemma 3.3.

We shall prove Theorem 1.5 in §4. The classification of spacelike rank 2 Jordan
IP pseudo-Riemannian manifolds with nilpotent algebraic curvature tensors is
incomplete and in §5, we present some preliminary results on this case.

2. Examples of algebraic curvature tensors

We begin this section with a technical observation.

Lemma 2.1. Let V be a vector space with an inner product of signature (p, q).
Let {v1, ..., vk} be a set of linearly independent elements of V . Then there exist
elements {w1, ..., wk} of V so that (vi, wj) = δij.

Proof. We use the inner product to define a linear map ψ : V → V ∗ by the
identity ψ(w)(v) = (v, w). If w 6= 0, then there exists v so (w, v) 6= 0 and thus
ψ is injective. Since dim V = dim V ∗, ψ is a linear isomorphism. Let {v1, ..., vk}
be a set of linearly independent elements of V . We extend this set to a basis
{v1, ..., vp+q} for V to assume without loss of generality that k = p + q. Let
{v1, ..., vp+q} be the associated dual basis for V ∗; this means if v ∈ V , then
v =

∑

i vi(v)vi. The desired elements wj of V are then defined by wj = ψ−1(vj)
since vi(vj) = δij . ut

Let V be a vector space of signature (p, q). We can choose a normalized or-
thonormal basis B for V of the form:

B := {e−1 , ..., e−p , e+
1 , ..., e+

q } so

V − := span {e−1 , ..., e−p } and(1)

V + := span {e+
1 , ..., e+

q }(2)
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are maximal orthogonal timelike and spacelike subspaces. Let R = Rφ where φ

is a self-adjoint linear map. Let π be a non-degenerate 2 plane. By Lemma 2.1:

rank (Rφ(π)) = 2 if ker φ ∩ π = {0} and

rank (Rφ(π)) = 0 if ker φ ∩ π 6= {0}.

We use this observation to show that the notions of constant spacelike, timelike,
and mixed rank are distinct notions.

Lemma 2.2. Let V have signature (p, q) where p ≥ 2 and q ≥ 2.

(1) There exists an algebraic curvature tensor R on V which has spacelike
rank 2 but which does not have constant timelike or mixed rank.

(2) There exists an algebraic curvature tensor R on V which has timelike rank
2 but which does not have constant spacelike or mixed rank.

(3) There exists an algebraic curvature tensor R on V which has spacelike
and timelike rank 2 but which does not have constant mixed rank.

Proof. Let B be a normalized basis for V . Let φ be orthogonal projection on
V +;

φ(e−i ) = 0 and φ(e+
i ) = e+

i .

As ker φ = V − is timelike, ker φ contains no spacelike vectors and rank Rφ(π) = 2
for any spacelike 2 plane. Thus R has spacelike rank 2. We define:

π1 := span {2e−1 + e+
1 , 2e−2 + e+

2 }, π̃1 := span {e−1 , e−2 },
π2 := span {2e−1 + e+

1 , e+
2 }, π̃2 := span {e−1 , e+

2 }.

The planes π1 and π̃1 are timelike and the planes π2 and π̃2 are mixed. We show
that R does not have constant timelike or mixed rank by noting:

ker φ ∩ πi 6= {0} and kerφ ∩ π̃i = {0} for i = 1, 2.

Assertion (1) now follows; we interchange the roles of + and − to prove assertion
(2) similarly.

To prove assertion (3), we define a self-adjoint linear map φ̃ of V by setting:

φ̃(e−1 ) = e−1 + e+
1 , φ̃(e−i ) = e−i for i > 1

φ̃(e+
1 ) = −e−1 − e+

1 , φ̃(e+
j ) = e+

j for j > 1.

Then ker φ̃ = span {e−1 + e+
1 }. Since ker φ̃ is totally isotropic, ker φ̃ contains no

spacelike vectors and no timelike vectors so Rφ̃ has constant spacelike and timelike
rank 2. We define mixed 2 planes

π1 := span {e−1 , e+
1 } and π2 := span {e−2 , e+

2 }.
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Since ker φ̃ ∩ π1 6= {0} and ker φ̃ ∩ π2 = {0}, Rφ̃ does not have constant mixed
rank. Assertion (3) now follows. ut

Let R be an algebraic curvature tensor of constant spacelike rank r on a vector
space of signature (p, q). In Theorem 1.1, we noted that r = 2 in many cases if
p = 0, p = 1, or p = 2. There are, however, examples where r = 4 if p ≥ q.

Lemma 2.3. Let V be a vector space of signature (p, q) where p ≥ q ≥ 2.

(1) If p = q, then there exists an algebraic curvature tensor R on V which has
constant spacelike and timelike rank 4, and which does not have constant
mixed rank.

(2) If p > q, then there exists an algebraic curvature tensor R on V which
has constant spacelike rank 4, and which does not have constant timelike
or mixed rank 4.

Proof. Let B be a normalized basis for V . We suppose that p ≥ q and define a
linear self-adjoint map φ of V by setting:

φ(e−i ) = −e+
i for 1 ≤ i ≤ q,

φ(e−i ) = 0 for q < i ≤ p, and

φ(e+
j ) = e−j for 1 ≤ j ≤ q.

Expand any vector v ∈ V in the form v =
∑

i cie
−
i +

∑

j dje
+
j . Then

(v, v) = −
∑

i c2
i +

∑

j d2
j and (φv, φv) =

∑

i≤q c2
i −

∑

j d2
j .

Thus if v is spacelike, φv is timelike. Furthermore, if p = q, then φ is a para-
isometry. Let R := Rid + Rφ. Then

R(x, y)z = (y, z)x− (x, z)y + (φy, z)φx− (φx, z)φy.

If {x, y} spans a spacelike 2 plane π, then {φx, φy} spans a timelike 2 plane φπ.
Thus {x, y, φx, φy} is a linearly independent set and we may use Lemma 2.1 to see
that R has spacelike rank 4. If p = q, then the roles of + and − are symmetric so
R also has timelike rank 4. If p > q, then ker φ contains a timelike vector and the
same argument used to prove Lemma 2.2 shows R does not have constant timelike
rank. Let π1 := span {e−1 , e+

1 } and π2 := span {e−1 , e+
2 } be mixed 2 planes. We

show that R does not have mixed rank 4 by noting that:

rank Rφ(π1) ≤ 2 and rank Rφ(π2) = 4.

ut

We omit the proof of the following result as the proof is straightforward.
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Lemma 2.4. Let V be a vector space of signature (p, q).

(1) If T is a linear map of V with T 2 = 0, 0 is the only eigenvalue of T .

(2) If T1 and T2 are linear maps of V with T 2
1 = T 2

2 = 0, then T1 is Jordan
equivalent to T2 if and only if rank (T1) = rank (T2).

We use Lemma 2.4 to show that the concepts IP, spacelike Jordan IP, and
timelike Jordan IP are inequivalent.

Lemma 2.5. Let V have signature (p, q) where p ≥ 3 and q ≥ 3.

(1) There exists an algebraic curvature tensor R on V which is IP, not space-
like Jordan IP, not timelike Jordan IP, and not mixed Jordan IP.

(2) If p = q, then there exists an algebraic curvature tensor R on V which is
spacelike Jordan IP, timelike Jordan IP, and not mixed Jordan IP.

(3) If p > q, then there exists an algebraic curvature tensor R on V which is
spacelike Jordan IP, not timelike Jordan IP, and not mixed Jordan IP.

Proof. Let B be a normalized basis for V . For k ≤ q, we define:

φk(e−i ) = e−i + e+
i for i ≤ k, φk(e−i ) = 0 for i > k,

φk(e+
i ) = −e−i − e+

i , for i ≤ k, φk(e+
i ) = 0 for i > k.

Then φk is self-adjoint and range φk is totally isotropic, i.e. the metric is trivial
on range φk. Since (φku, φkv) = 0 for all u, v ∈ V , we have Rφk

(x, y)2 = 0 for any
x, y ∈ V . Since Rφk

(π) is nilpotent, we apply Lemma 2.4 to see that 0 is the only
eigenvalue of Rφk

and hence R is IP. We set k = 2 to prove assertion (1). Let

π1 := span {e−1 , e−2 }, π2 := span {e+
1 , e+

2 }, π3 := span {e−1 , e+
2 },

π̃1 := span {e−1 , e−3 }, π̃2 := span {e+
1 , e+

3 }, π̃3 := span {e−1 , e+
3 }.

We have {π1, π̃1} are timelike, {π2, π̃2} are spacelike, and {π3, π̃3} are mixed 2
planes. For 1 ≤ i ≤ 3, we apply Lemma 2.1 to prove assertion (1) by observing:

πi ∩ ker φ2 = {0} so rank Rφ2(πi) = 2

π̃i ∩ ker φ2 6= {0} so rank Rφ2(π̃i) < 2.

Suppose p ≥ q. We set k = q to prove assertions (2) and (3). Since ker φq

contains no spacelike vectors, rank Rφq (π) = 2 for any spacelike 2 plane so by
Lemma 2.4, Rφq is spacelike Jordan IP. Since ker φq contains no timelike vectors
if and only if p = q, Rφq is timelike Jordan IP if and only if p = q. We study
π1 := span {e−1 , e+

2 } and π2 := span {e−1 , e+
1 } to see Rφq is never mixed Jordan

IP. ut
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3. IP Manifolds

Let V be a vector space of signature (r, s), let M be a simply connected smooth
manifold of dimension m = r + s− 1, and let F : M → R(r,s) be an immersion of
M . We assume the induced metric g on M is non-degenerate; (M, g) is said to be
a non-degenerate hypersurface. Let ν be a unit normal along M . If (ν, ν) = +1,
then (M, g) has signature (r, s − 1). If (ν, ν) = −1, then (M, g) has signature
(r − 1, s). We define the second fundamental form L and shape operator S by:

L(x, y) := (xyF, ν) and (Sx, y) := L(x, y).

The following is well known so we omit the proof in the interests of brevity.

Lemma 3.1. Let V be a vector space of signature (r, s), let (M, g) be a non-
degenerate hypersurface in V , let ν be a unit normal along M , and let S be the
associated shape operator. Then gR = (ν, ν)RS.

We say that a pseudo-Riemannian manifold (M, g) has constant sectional cur-
vature κ if gR = κRid . Let V be a vector space of signature (r, s). For % > 0,
let S±(r, s; %) be the pseudo-spheres of spacelike and timelike vectors of length
±%−1:

S±(r, s; %) := {v ∈ V : (v, v) = ±%−2}.
The following result is well known so we omit the proof in the interests of brevity.

Lemma 3.2. Let % > 0. Then S±(r, s; %) has constant sectional curvature ±%

and is a rank 2 spacelike, timelike, and mixed Jordan IP pseudo-Riemannian
manifold. Any pseudo-Riemannian manifold of constant sectional curvature is
either flat or is locally isometric to one of these manifolds.

It is also possible to construct examples of rank 2 spacelike Jordan IP pseudo-
Riemannian manifolds by taking twisted products. We introduce the following
notational conventions. Let % > 0, let ε = ±1, and let δ = ±1 be given. Let

M := I × Sδ(r, s; %), f(t) := εκt2 + At + B,

ds2
M := εdt2 + f(t)d2

Sδ(r,s;%), C(t) := f−2{fκ− 1
4εf2

t },

φ := −id on TSδ(r, s; %), φ(∂t) := ∂t.

Choose {κ, A, B} so fκ− 1
4εf2

t 6= 0 or equivalently so that A2−4εκB 6= 0. Choose
the interval I so f(t) 6= 0 on I.

Lemma 3.3. We have that (M, gM ) is a rank 2 spacelike, timelike, and mixed
Jordan IP pseudo-Riemannian manifold with gR = CRφ.
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Proof. Let m = r + s. Fix P ∈ S := Sδ(r, s; %). Choose local coordinates
x = (x1, ..., xm−1) for S which are centered at P . We let x0 = t to define local
coordinates (x0, ..., xm−1) on M . We let indices a, b, c, and d range from 1 to
m − 1 and index the local coordinate frame for S. We let indices i, j, k, and `

range from 0 to m − 1 and index the full local coordinate frame for M . Let gij

and g̃ab denote the components of the metric tensors on M and S relative to this
local coordinate frame. We normalize the coordinates on S so that ∂ag̃bc(P ) = 0.
We have gab = fg̃ab, g0a = 0, and g00 = ε. Let ft := ∂tf and ftt = ∂2

t f . Let Γ
and Γ̃ be the Christoffel symbols:

Γijk = 1
2{∂jgik + ∂igjk − ∂kgij}, Γ̃abc = 1

2{∂bg̃ac + ∂ag̃bc − ∂cg̃ab},
Γ0ab = Γa0b = 1

2ftg̃ab, Γab0 = − 1
2ftg̃ab, Γabc = f Γ̃abc,

Γ0a
b = Γa0

b ≡ 1
2f−1ftg̃a

b, Γab
0 = − 1

2εftg̃ab, Γab
c = Γ̃ab

c;

the Christoffel symbols where 0 appears twice or three times vanish. Thus:

Rijk
l = ∂iΓjk

l − ∂jΓik
l +

∑

n Γin
lΓjk

n −
∑

n Γjn
lΓik

n,

Rabc
d ≡ {∂aΓ̃bc

d − ∂bΓ̃ac
d}+ Γa0

dΓbc
0 − Γb0

dΓac
0

≡ R̃abc
d − 1

4εf2
t f−1{g̃a

dg̃bc − g̃acg̃b
d} mod O(|x|),

Rabcd ≡ (fκ− 1
4εf2

t ){g̃adg̃bc − g̃acg̃bd}
≡ f−2(fκ− 1

4εf2
t ) {gadgbc − gacgbd} mod O(|x|).

Since S is a symmetric space, there is an isometry of S fixing P which acts as
−1 on TP S. This extends to an isometry of S. Thus R0abc = 0 for any a, b, and
c. Let a 6= b. The isotropy group of isometries of S fixing P acts on TP M as
O(p, q). Thus we can find an isometry of S which sends ea → ea and eb → −eb.
This implies R0ab0 = 0. We compute the remaining curvature:

R0aa
0 ≡ ∂0Γaa

0 − Γab
0Γ0a

b ≡ − 1
2εfttg̃aa + 1

4εf−1f2
t g̃abg̃a

b

R0aa0 ≡ f−2ε{− 1
2fftt + 1

4f2
t }{gaag00 − g0aga0}.

We wish to find C(t) and φ so that gR = CRφ. If

(fκ− 1
4εf2

t ) = ε{− 1
2fftt + 1

4f2
t },

then we may take φ = id ; the resulting metric then has constant sectional curva-
ture. Since this does not give rise to a new family of metrics, we define instead:

φ(∂t) = ∂t, and φ(∂a) = −∂a.

To ensure that R = CRφ, we solve the equation:

(fκ− 1
4εf2

t ) = −ε{− 1
2fftt + 1

4f2
t } i.e. κ = 1

2εftt.
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This implies that the warping function is quadratic so f(t) = εκt2 + At + B. ut

4. The proof of Theorem 1.5

Throughout this section, we will let (M, g) be a connected pseudo-Riemannian
manifold of signature (p, q) with q ≥ 5 and dimension m := p + q which is rank 2
spacelike Jordan IP. We use Theorem 1.3 to express gRP = C(P )Rφ(P ) where φ

is self-adjoint and C 6= 0. We suppose for the moment that gR is never nilpotent
so that we can normalize φ so φ2 = ±id . The maps P → C(P ) and P → φ(P )
can then be chosen to be smooth, at least locally. To have a unified notation, we
complexify the tangent bundle and extend φ, (·, ·), and the curvature tensor gR

to be complex multi-linear. Let:

φ̃ :=
{

φ if φ2 = id ,√
−1φ if φ2 = −id .

Since φ̃2 = id , the eigenvalues of φ̃ are ±1 and φ̃ is diagonalizable. Let

F± := {X ∈ TM ⊗ C : φ̃X = ±X} and ν± := dimF±.

If ν− = 0 or ν+ = 0, then φ̃ = φ = ±id and (M, g) has constant sectional
curvature and assertion (2) of Theorem 1.5 holds. Thus, we suppose ν− ≥ 1 and
ν+ ≥ 1. Let u± ∈ F±. As (u+, u−) = (φ̃u+, u−) = (u+, φ̃u−) = −(u+, u−), F−
and F+ are non-degenerate orthogonal complex distributions. As we are working
over C, we can find a local orthonormal frame B := {e1, ..., em} for TM ⊗ C so

F− = span {e1, ..., eν−}, F+ = span {eν−+1, ..., em}, and (ei, ej) = δij .

Let Roman indices a, b, etc. range from 1 to ν− and index the frame for F−, let
Greek indices α, β, etc. range from ν−+1 to m and index the frame for F+, and
let Roman indices i, j, etc. range from 1 to m and index the frame for TM ⊗C.
Let φ̃ij;k be the components of ∇φ̃ relative to such a normalized basis.

Lemma 4.1. Let (M, g) be a connected pseudo-Riemannian manifold of signature
(p, q) with q ≥ 5 so that gRP = C(P )Rφ(P ) where φ(P )2 = ±id and C(P ) 6= 0.
Assume that ν+ ≥ 1 and ν− ≥ 1.

(1) We have φ̃ij;k = φ̃ji;k, φ̃ab;k = 0, φ̃αβ;k = 0, and φ̃aα;i = −2Γiaα.

(2) If i, j, and k are distinct indices, then φ̃ij;k = φ̃ik;j.

(3) The only non-zero components of ∇φ̃ are φ̃aα;a = φ̃αa;a = −2Γaaα and
φ̃aα;α = φ̃αa;α = −2Γαaα.
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Proof. We adapt arguments from [5] to prove this result. As the frame is or-
thonormal, Γkij = −Γkji. Let εi := (φei, ei) = ±1; εa = −1 and εα = +1. We
prove assertion (1) by computing:

φ̃ij;k = (∇ek
φ̃ei − φ̃∇ek

ei, ej) = (∇ek
φ̃ei, ej)− (∇ek

ei, φ̃ej)

= (εi − εj)(∇ek
ei, ej) = (εi − εj)Γkij .

Let gRijkl;n be the components of ∇gR. With our normalizations, we can express:

gRijkl = εC{φ̃ilφ̃jk − φ̃ikφ̃jl} where φ2 = εid and,
gRijkl;n = εC(φ̃il;nφ̃jk + φ̃ilφ̃jk;n − φ̃ik;nφ̃jl − φ̃ikφ̃jl;n)

+C;n(φ̃ilφ̃jk − φ̃ikφ̃jl).

We use the second Bianchi identity:

0 = gRijkl;n + gRijln;k + gRijnk;l.

Fix distinct indices i, j, and k. As q ≥ 5, we may choose an index l which is
distinct from i, j, and k. We have φ̃ij = 0 for i 6= j. Since C 6= 0, we may prove
assertion (2) by computing:

0 = gRillj;k + gRiljk;l + gRilkl;j = εCε`φ̃ij;k + 0− εCε`φ̃ik;j .

If i, j, and k are distinct, then φ̃ij;k = φ̃ik;j = φ̃jk;i. Since at least two of the
indices must index elements of F− or F+, φ̃ij;k = 0 by assertion (1). Thus (i, j, k)
is a permutation of (a, a, α) or (a, α, α). Assertion (3) follows as

φ̃aa;α = φ̃αα;a = 0 and φ̃aα;i = φ̃αa;i

. ut

We continue our study of ∇φ̃.

Lemma 4.2. Let (M, g) be a connected pseudo-Riemannian manifold of signature
(p, q) with q ≥ 5 so that gRP = C(P )Rφ(P ) where φ(P )2 = ±id and C(P ) 6= 0.
Assume that ν+ ≥ 1 and ν− ≥ 1.

(1) If ν− ≥ 2, then C;a = Cφ̃αa;α and Γαaα = − 1
2

C;a
C .

(2) If ν− ≥ 3, then C;a = 0, C;α = −2Cφ̃aα;a, and Γaaα = C;α
C .

(3) If ν+ ≥ 2, then C;α = −Cφ̃aα;a and Γaaα = 1
2

C;α
C .

(4) If ν+ ≥ 3, then C;α = 0, C;a = +2Cφ̃aα;α, and Γαaα = −C;a
C .
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Proof. If ν− ≥ 2, then we may choose a 6= b and use Lemma 4.1 and the second
Bianchi identity to prove assertion (1) by computing:

0 = gRaααa;b + gRaαab;α + gRaαbα;a = −εC;b + εCφ̃αb;α + 0.

If ν− ≥ 3, then we may choose distinct indices a, b, and c and use Lemma 4.1
and the second Bianchi identity to compute

0 = gRcbbc;a + gRcbca;b + gRcbab;c = εC;a + 0 + 0 and

0 = gRcbbc;α + gRcbcα;b + gRcbαb;c = εC;α + εCφ̃bα;b + εCφ̃cα;c.

Thus C;a = 0 and C;α = −C(φbα;b + φcα;c). Similarly C;α = −C(φaα;a + φcα;c).
Thus φbα;b = φaα;a = φcα;c and assertion (2) follows.

We use the same argument to prove assertions (3) and (4) with appropriate
changes of sign. If ν+ ≥ 2, then we may choose α 6= β to compute:

0 = gRαaaα;β + gRαaαβ;a + gRαaβa;α = −εC;β − εCφ̃aβ;a + 0.

If ν+ ≥ 3, then we may choose distinct indices α, β, and γ to compute

0 = gRγβββγ;α + gRγβγα;β + gRγβαβ;γ = εC;α + 0 + 0 and

0 = gRγββγ;a + gRγβγa;β + gRγβaβ;γ = εC;a − εCφ̃βa;β − εCφ̃γa;γc.

ut

We can now show that φ2 = id if C 6= 0.

Lemma 4.3. Let (M, g) be a connected pseudo-Riemannian manifold of signature
(p, q) with q ≥ 5 so that gRP = C(P )Rφ(P ) where φ(P )2 = ±id and C(P ) 6= 0.
Assume that ν+ ≥ 1 and ν− ≥ 1.

(1) We do not have ∇φ̃ = 0. Furthermore either ν− ≤ 2 or ν+ ≤ 2.

(2) We have φ2 = id . Furthermore either ν− = 1 or ν+ = 1.

Proof. Assume that ∇φ̃ = 0. We use Lemma 4.1 to see that Γiaα = − 1
2 φ̃aα;i =

0. Thus ∇ea ∈ F− so gR(ea, eα)ea ∈ F−. This shows:

0 =g R(ea, eα, ea, eα) = εC.

This shows that C = 0 which is false. Thus ∇φ̃ 6= 0. Next suppose that ν− ≥ 3
and ν+ ≥ 3. We may then apply Lemma 4.2 to see that dC = 0 and ∇φ̃ = 0
which is false. This establishes assertion (1).

Suppose that φ2 = −id . Then (φv, φv) = (φ2v, v) = −(v, v) so φ interchanges
the roles of spacelike and timelike vectors. Thus p = q ≥ 5. Since φ̃ =

√
−1φ, φ̃

is purely imaginary. Thus conjugation interchanges the distributions F+ and F−
so ν+ = ν− = q ≥ 5. This contradicts assertion (1). Consequently φ2 = id .
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By replacing φ by −φ, we may assume ν− ≤ ν+. To establish the final asser-
tion, we must rule out the case ν− = 2. We may then use assertions (1), (3), and
(4) of Lemma 4.2 to see dC = ∇φ̃ = 0 which contradicts assertion (1). ut

Assertion (1) of Theorem 1.5 follows from Lemma 4.3 and from:

Lemma 4.4. Let (M, g) be a connected pseudo-Riemannian manifold of signature
(p, q) for q ≥ 5. Assume that (M, g) is rank 2 spacelike Jordan IP. Then either
gR is nilpotent for all points of M or gR is nilpotent at no point of M .

Proof. Let S1 be the set of all points of M where gR is nilpotent and let S2

be the complementary subset of all points of M where gR is not nilpotent. We
assume that both S1 and S2 are non-empty and argue for a contradiction. Since
S1 is closed, since S2 is open, and since M is connected, we may conclude that
S2 is not closed. Thus we may choose points Pi ∈ S2 so that Pi → P∞ ∈ S1. Let
Rn be the curvature tensor at Pn and let Vn be the tangent space at Pn.

Let B := {f−1 , ..., f−p , f+
1 , ..., f+

q } be a normalized local orthonormal frame for
the tangent bundle near P∞ and let V ± be the associated maximal spacelike and
timelike distributions. We set V ±

n := V ±(Pn). Since Pn ∈ S2, we can express
Rn = CnRφn . Since Tr{Rn(π)2} = −C2

n for any spacelike 2 plane π, we have
Cn → 0 since R∞ is nilpotent.

We apply Lemma 4.3 to see φ2
n = id and thus we do not need to complexify

to define the sub-bundles F±n of Vn. By replacing φn by −φn if necessary, we
may apply Lemma 4.3 to see dimF−n ≤ 1. Consequently dimF+ ≥ p + q − 1 so
dimF+ ∩ V +

n ≥ q − 1 ≥ 4. Choose elements vn, wn ∈ V +
n ∩ F+

n so that {vn, wn}
forms an orthonormal spacelike set. We choose a compact neighborhood of P∞
over which S(V +) is compact. By passing to a subsequence, we can suppose
that vn → v∞ and wn → w∞. Let πn := span {vn, wn). Then we have that
πn → π∞ := span {v∞, w∞}. The planes πn and π∞ are spacelike. Let z∞ ∈ V∞.
Choose elements zn ∈ Vn so zn → z∞. As φnvn = vn and φnwn = wn, we have:

R(π∞)z∞ = lim
n→∞

Rn(vn, wn)zn

= lim
n→∞

Cn{(φwn, zn)φvn − (φvn, zn)φwn}

= lim
n→∞

Cn{(wn, zn)vn − (vn, zn)wn}

= { lim
n→∞

Cn} · {(w∞, z∞)v∞ − (v∞, z∞)w∞} = 0.

This contradicts the assumption that R has spacelike rank 2. ut

Since φ2 = id so the distributions F± are real. By replacing φ by −φ if
necessary, we may suppose that ν− ≤ ν+ and thus ν− ≤ 1. If ν− = 0, then
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(M, g) has constant sectional curvature and assertion (2) of Lemma 1.5 holds. We
therefore suppose ν− = 1. The distributions F± are non-degenerate. Let {e1}
be a local orthonormal section to F− and let {e2, ..., em} be a local orthonormal
frame for F+; since we are working over R, we no longer impose the normalization
that (ei, ei) = +1. By replacing g by−g, we may assume without loss of generality
that e1 is spacelike. If α 6= β, then we may apply Lemma 4.1 to compute:

([eα, eβ ], e1) = Γαβ1 − Γβα1 = Γβ1α − Γα1β

= − 1
2 (φ̃1α;β − φ̃1β;α) = 0.

Thus the foliation F+ is integrable. Let y = (y1, ..., ym−1) be local coordinates on
a leaf of this foliation. We define geodesic tubular coordinates on M by setting:

T (t, y) := exp y(te1(y)).

Assertion (3) of Theorem 1.5 will follow from:

Lemma 4.5. Let (M, g) be a connected pseudo-Riemannian manifold of signature
(p, q) for q ≥ 5. Assume that gR = CRφ where φ2 = id and C 6= 0. Assume that
ν− = 1 and that F− is spacelike.

(1) For fixed y0, the curves t → T (t, y0) are unit speed geodesics in (M, g)
which are perpendicular to the leaves of the foliation F+.

(2) For fixed t0, the surfaces T (t0, y) are leaves of the foliation F+ and inherit
metrics of constant sectional curvature.

(3) Locally ds2 = dt2 + fds2
κ where f(t) is non-zero smooth function and ds2

κ

is a metric of constant sectional curvature κ.

(4) The warping function f(t) = κt2 + At + B where A2 − 4κB 6= 0.

Proof. We choose a local orthonormal frame {ei} for TM so e1 spans F− and
{e2, ..., em} spans F+. We set εi := (ei, ei) = ±1; by assumption ε1 = +1. We
have dim(F+) = m− 1 ≥ 3. Taking into account the fact that (eα, eα) = ±1, we
may apply Lemmas 4.1 and 4.2 to see that

C;α = 0, Γα1β = −(eα, eβ)C;1
C , and Γ11α = 1

2
C;α
C = 0.

Let γ(t, y0) be an integral curve for e1 starting at a point y0 on the leaf of the
foliation F+. Since e1 is a unit vector, Γ111 = 0. As Γ11α = 0, γ is a geodesic.
Thus γ(t, y0) = T (t, y0) so ∂t = e1. We compute

∂t(∂t, ∂
y
α) = (∂t,∇∂t∂

y
α) = (∂t,∇∂y

α
∂t) = 1

2∂y
α(∂t, ∂t) = 0.

This shows (∂t, ∂
y
α) = 0 so the ∂y

α span the perpendicular distribution F+ and the
manifolds T (t0, y) are leaves of the foliation F+. Since C;α = 0, C is constant on
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the leaves of F+. Let R̃ be the curvature of the induced metric on the leaves of
the foliation F+. We show that R̃ has constant sectional curvature by computing:

R̃(eα, eβ , eγ , eσ) = R(eα, eβ , eγ , eσ) + Γα1σΓβγ
1 − Γβ1σΓαγ

1

= {C(t) + (C;1
C )2}{(eβ , eγ)(eα, eσ)− (eα, eγ)(eβ , eσ)}.

Let ∂y
α = Σγaαγeγ . We show that the metric is a warped product by computing:

(∇∂t∂
y
α, ∂y

β) = (∇∂y
α
∂t, ∂

y
β) = Σγσaαγaβσ(∇eγ

∂t, eσ)

= Σγσaαγaβσ(eγ , eσ)C;1
C = C;1

C gαβ so

∂tgαβ = (∇∂t∂
y
α, ∂y

β) + (∂y
α,∇∂t

∂y
β) = 2C;1

C gαβ .

The argument used to prove Lemma 3.3 now shows the warping function is qua-
dratic. ut

5. Nilpotent spacelike Jordan IP pseudo-Riemannian manifolds

The rank 2 spacelike Jordan IP pseudo-Riemannian manifolds whose curvature
operators are not nilpotent for at least one point of M are classified in Theorem
1.5. In this section, we study the remaining case and present some preliminary
results. We focus our attention on the balanced setting p = q.

Lemma 5.1. Let (M, g) be a connected pseudoRiemannian manifold of signature
(p, p) for p ≥ 5. Assume that (M, g) is spacelike rank 2 nilpotent Jordan IP.

(1) We have gR = ±Rφ where φ is self-adjoint and where ker φ = rangeφ.

(2) range φ is an integrable distribution of the tangent bundle of M .

Proof. We apply Theorem 1.3 to write R = ±Rφ where we normalize φ by
requiring that C = ±1. The map P → φ can then be chosen to vary smoothly
with P , at least locally. Since φ contains no spacelike vectors, dim{ker(φ)} ≤ p.
Since φ is self-adjoint and φ2 = 0, we show range (φ) = ker(φ) and complete the
proof of the first assertion by computing:

range (φ) ⊂ ker(φ),

dim{range (φ)} ≤ dim{ker(φ)}, and

2p = dim{range (φ)}+ dim{ker(φ)} ≤ 2 dim{ker(φ)} ≤ 2p.

Let K := range φ and let S be a maximal local spacelike distribution. Since K
is totally isotropic, K ∩ S = {0}. Thus K = range φ = φS and TM = S ⊕ φS.
Let L(·, ·) := (φ·, ·) be the associated bilinear form. We have:

(φs, φs̃) = (s, φ2s̃) = 0.
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Thus if 0 6= s ∈ S, then there must exist s̃ ∈ S so that (φs, s̃) 6= 0. Thus L is a
non-degenerate bilinear form. We complexify and choose a frame {sa} for S so:

(φea, eb) = δab.

Let Roman indices a, b, etc. range from 1 to p and index this frame for S. Let
Greek indices α, β, etc. range from p+1 to 2p and index the frame eα := φ(eα−p)
for K. Let Roman indices i, j, etc. range from 1 to 2p and index the frame
{e1, ..., ep, φe1, ..., φep}. We have φab = δab, φaβ = 0, and φαβ = 0. Let α, β, and
i be indices which need not be distinct. Choose a 6= i and use the second Bianchi
identity to compute:

Rijkl;n = φil;nφjk + φilφjk;n − φik;nφjl − φikφjl;n,

0 = Raαβa;i + Raαiβ;a + Raαai;β = φαβ;i + 0− φαi;β , and

φαi;β = φαβ;i = (∇ei
φ(φea), φeb)− (φ∇ei

φea, φeb) = 0.

We clear the previous notation. Let α = a+p, β = b+p, and γ = c+p be indices
which are not necessarily distinct. We show that K is an integrable distribution
by showing that:

([eα, eβ ], eγ) = (∇eαφeb, φec)− (∇eβ
φea, φec)

= ((∇eαφ− φ∇eα)eb, φec)− ((∇eβ
φ− φ∇eα)ea, φec)

= φbγ;α − φaγ;β = 0 so [eα, eβ ] ∈ C∞(K⊥) = C∞(K).

ut

We now construct a nilpotent rank 2 Jordan IP pseudo-Riemannian manifold.

Lemma 5.2. Let {e1, ..., ep, ẽ1, ..., ẽp} be a basis for a vector space V and let
{x1, ..., xp, x̃1, ..., x̃p} be the corresponding dual basis for V ∗. Define an inner
product of signature (p, p) on V by (ei, ẽj) = δij and (ei, ej) = (ẽi, ẽj) = 0 for
all i, j. Give W := V ⊕ R the direct sum inner product which has signature
(p, p + 1). Let f(x̃1, ..., x̃p) be a real valued function so that df(0) = 0 and so
that det(∂x̃

i ∂x̃
j f)(0) 6= 0. The embedding F := id ⊕ f of V into W defines a

hypersurface (M, g) of W so that (M, g) is a spacelike and timelike rank 2 Jordan
IP nilpotent pseudo-Riemannian manifold of signature (p, p) close to the origin.

Proof. Since df(0) = 0, the natural identification of T0M with V is an isome-
try. Thus the metric is non-degenerate and has signature (p, p) sufficiently close
to the origin. Let LP and SP be the associated second fundamental form and
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shape operators at P . Then Lemma 3.1 shows that gR = RSP
. Since ∂x

i F = 0,
LP (∂x

i , ∗) = 0 for any point of the manifold. Thus SP (∂x
i ) = 0 so

span {∂x
i } ⊂ ker(SP ).

Since the Hessian of f is non-singular at 0, S0 is invertible on span {∂x̃
i }. Thus

dim ker(S0) = p and hence by shrinking the neighborhood O if necessary we may
suppose that dim ker(SP ) ≤ p for P ∈ O. It now follows that

ker(SP ) = span {∂x
i } for all P ∈ O.

Since F∗(∂x
i ) = ei, we have g(∂x

i , ∂x
j ) = 0 for all i, j and hence ker(SP ) is totally

isotropic and in particular ker(SP ) contains no spacelike or timelike vectors. Since
dim{ker(SP )} = p, ker(SP ) = ker(SP )⊥ = range (SP ) so S2

P = 0. Thus gR is
nilpotent. ut
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