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ALGEBRAIC CURVATURE TENSORS FOR INDEFINITE
METRICS WHOSE SKEW-SYMMETRIC CURVATURE
OPERATOR HAS CONSTANT JORDAN NORMAL FORM

PETER B. GILKEY AND TAN ZHANG

ABSTRACT. We classify the connected pseudo-Riemannian manifolds of sig-
nature (p,q) with ¢ > 5 so that at each point of M the skew-symmetric
curvature operator has constant rank 2 and constant Jordan normal form
on the set of spacelike 2 planes and so that the skew-symmetric curvature
operator is not nilpotent for at least one point of M.

1. INTRODUCTION

Let (M, g) be a smooth connected pseudo-Riemannian manifold of signature
(p,q). Let V be the Levi-Civita connection on TM. The Riemann curvature
operator and the associated curvature tensor are defined by:

IR(z,y) := VaVy =V Vo = Vi ) and
IR(z,y,z,w) := g("R(z,y)z, w).
We have the following symmetries
gR(x, Y, =, w) = gR(Zv w,x, y) = _gR(ya z,z, ’LU), and
gR(Z‘, y7 Z7 w) + gR(y7 Z7 x’ w) + gR(z’ Jj’ y’ w) = O'
Let V be a vector space with an inner product (-,-) of signature (p,q). We
say that a 4 tensor R € ®*V* is an algebraic curvature tensor if it satisfies the

symmetries given above; the associated curvature operator is then defined by
R(z,y, z,w) = (R(z,y)z,w). We say that (M, g) is a geometrical realization of an
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algebraic curvature tensor R at a point P of M if there exists an isometry © from
TpM to V so that R(z,y, z,w) = R(Oz,0y,O0z,Ow) for all z,y,z,w € TpM.
Every algebraic curvature tensor has such a geometrical realization. Conversely,
it is often useful to study problems in geometry by first passing to the purely
algebraic setting and then drawing geometrical conclusions from results obtained
algebraically.

Let R be an algebraic curvature tensor on a vector space V of signature (p, q).
Let {e1,e2} be an oriented basis for a non-degenerate oriented 2 plane 7 C V.
Let

R(m) :=|(e1, e1)(e2, e2) — (e1,€2)*| /?R(e1, e2)

be the associated skew-symmetric curvature operator; R(w) depends on the ori-
entation of 7 but is independent of the particular oriented basis chosen. In this
paper, we will examine the geometric consequences which follow from assuming
that the skew-symmetric curvature operator has certain algebraic properties.

We say that a vector v € V' is spacelike if (v,v) > 0, timelike if (v,v) < 0, and
null if (v,v) = 0. We say that a 2 plane 7 is spacelike if the induced metric on 7
has signature (0, 2), timelike if the induced metric has signature (2,0), and mized
if the induced metric has signature (1,1). Otherwise 7 is said to be degenerate.

The simplest invariant of a linear map is the rank. We say that an algebraic
curvature tensor R has spacelike rank r if rank (R(w)) = r for every oriented
spacelike 2 plane 7. The notions of timelike and mized rank r are defined similarly.
If rank (R(7)) is not constant on the set of oriented spacelike 2 planes, then we
say R does not have constant spacelike rank. In §2, we shall construct algebraic
curvature tensors which have spacelike rank 2 but which do not have constant
timelike or constant mixed rank.

The following result of Gilkey, Leahy and Sadofsky [5] and of Zhang [9] uses
results from Adams [1] and Borel [2] to bound the rank:

Theorem 1.1. Let R be an algebraic curvature tensor on a vector space V' of
signature (p,q) which has spacelike rank .

(1) Let p=0. Let ¢ > 5 and q # 7,8. Then r < 2.
(2) Letp=1. Letq=5 orq>9. Thenr < 2.

(3) Let p=2. Let ¢ > 10. Then r < 4. Furthermore, if neither ¢ nor q + 2
are powers of 2, then r < 2.
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Let V be a vector space of signature (p,q) and let ¢ be a self-adjoint linear
map of V. We define a 4 tensor and associated endomorphism:

Rd?(x’yvz,w) = (d)y,z)(d)w,w) - (¢x’z)(¢va) and
Ry(x,y)z = (¢y, z)dx — (9, 2)dy.

The tensor R4 is an algebraic curvature tensor and the set of tensors arising in
this fashion spans the space of all algebraic curvature tensors [4]. Such tensors
arise as the curvature tensors of hypersurfaces in flat space - see Lemma 3.1.

These tensors play a crucial role in the classification of the algebraic curvature
tensors of rank 2. We refer to [5, 6] for the proof of the following result:

Theorem 1.2. Let R be an algebraic curvature tensor on a vector space V of
signature (p, q) where ¢ > 5. Then R has spacelike rank 2 if and only if R = £Ry
where ¢ is a self-adjoint map of V whose kernel contains no spacelike vectors.

The spectrum (i.e. the eigenvalues counted with multiplicity) is also a useful
invariant of a linear map. We say that an algebraic curvature tensor is spacelike
IP if the eigenvalues of R(7) are the same for any two oriented spacelike 2 planes;
the notions of timelike and mized IP are defined similarly. (The notation ‘IP’ is
chosen as the fundamental classification results in dimension 4 are due to Ivanov
and Petrova [7] - see also related work in [8]). One can use analytic continuation
to see that the notions of spacelike, timelike, and mixed IP coincide so we shall
simply say that R is IP if any of these three equivalent conditions holds. Two
linear maps T and T of V are said to be Jordan equivalent if any of the following
three equivalent conditions are satisfied:

(1) There exist bases B = {e1, ..., e} and B = {é1, ..., &, } for V so that the
matrix representation of T' with respect to the basis B is equal to the
matrix representation of 7' with respect to the basis B.

(2) There exists an isomorphism © of V so T'= ©TO~ !, i.e. T and T are
conjugate.

(3) The real Jordan normal forms of 7' and T are equal.

In the positive definite setting, the spectrum of a skew-symmetric linear map
determines the conjugacy class of the map. This is not, however, the case in the
indefinite setting. We say that R is spacelike Jordan IP if the Jordan normal form
of R(+) is the same for any two oriented spacelike 2 planes; the notions of timelike
and mized Jordan IP are defined similarly. We note that if R is spacelike Jordan
IP, then R has spacelike rank r for some 7.



314 P. GILKEY AND T. ZHANG

The Jordan form of a linear map determines the spectrum. Thus if R is space-
like Jordan IP, then R is spacelike IP and hence IP. In §2, we construct algebraic
curvature tensors which are IP but which are not spacelike, timelike, or mixed
Jordan IP. We will also construct algebraic curvature tensors which are spacelike
Jordan IP but not timelike or mixed Jordan IP; thus these notions are distinct.

Let ¢ be a linear map of a vector space V of signature (p, q). If (¢v, pw) = (v, w)
for all v,w € V, then ¢ is an isometry. If (¢v, pw) = —(v,w) for all v,w € V,
then ¢ is a para-isometry; para-isometries exist if and only if p = ¢, i.e. if we are
in the balanced setting. Suppose that ¢ is self-adjoint. Then ¢ is an isometry if
and only if ¢? = id; ¢ is a para-isometry if and only if ¢? = —id.

We say that R is spacelike rank 2 Jordan IP if R has spacelike rank 2 and if R
is spacelike Jordan IP, the notions of timelike rank 2 Jordan IP and mized rank
2 Jordan IP are defined similarly. We have the following classification result for
such tensors [6]:

Theorem 1.3. Let R be an algebraic curvature tensor on a vector space of sig-
nature (p,q) where ¢ > 5. Then R is a spacelike rank 2 Jordan IP algebraic
curvature tensor if and only if exactly one of the following three conditions is
satisfied:

= where ¢ is a self-adjoint isometry, and where .
1) R=CRy where ¢ i lf-adjoint i d where C'# 0
(2) R = CRy where ¢ is a self-adjoint para-isometry, and where C' # 0.

(3) R = £Ry where ¢ is self-adjoint, where ¢*> = 0, and where ker ¢ contains
no spacelike vectors.

Remark 1.4. The map ¢ in Theorem 1.3 is uniquely defined up to sign; the
constant C' in assertions (1) and (2) is uniquely determined. The tensors CRy in
assertions (1) and (2) where ¢? = £id are also timelike and mixed rank 2 Jordan
IP. The tensor in assertion (3) is nilpotent; if ¢* = 0, then Ry(z,y)? = 0 for all
(z,y). This tensor is timelike rank 2 Jordan IP if and only if ker ¢ contains no
timelike vectors; it is not constant mixed rank.

We say that a pseudo-Riemannian manifold (M, g) is spacelike rank r Jordan IP
if 9 R is spacelike rank r Jordan IP at every point of M; the Jordan form is allowed
to vary with the point but the rank is assumed to be constant. The notions of
timelike rank r Jordan IP and mized rank r Jordan IP are defined similarly. In
83, we will construct two families of spacelike, timelike, and mixed rank 2 Jordan
IP pseudo-Riemannian manifolds. Lemma 3.2 deals with the pseudo-spheres and
Lemma 3.3 deals with warped products of a manifold with constant sectional
curvature with an interval I C R.
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The following is the main result of this paper; it generalizes previously known
results [3, 5, 7] from the Riemannian to the pseudo-Riemannian setting.

Theorem 1.5. Let (M, g) be a connected spacelike rank 2 Jordan IP pseudo-
Riemannian manifold of signature (p,q) where ¢ > 5. Assume that R is not
nilpotent for at least one point P of M.

(1) For each point P € M, we have IRp = C(P)Rypy where ¢(P) is self-
adjoint map of TpM so that ¢(P)? = id ; 9Rp is never nilpotent.

(2) If ¢ = £id, then (M,g) has constant sectional curvature and is locally
isometric to one of the manifolds constructed in Lemma 3.2.

(3) If ¢ # £id, then (M, g) is locally isometric to one of the warped product
manifolds constructed in Lemma 3.3.

We shall prove Theorem 1.5 in §4. The classification of spacelike rank 2 Jordan
IP pseudo-Riemannian manifolds with nilpotent algebraic curvature tensors is
incomplete and in §5, we present some preliminary results on this case.

2. EXAMPLES OF ALGEBRAIC CURVATURE TENSORS
We begin this section with a technical observation.

Lemma 2.1. Let V be a vector space with an inner product of signature (p,q).
Let {v1,...,vr} be a set of linearly independent elements of V.. Then there exist
elements {w1,...,wr} of V so that (v;,w;) = ;.

PROOF. We use the inner product to define a linear map ¥ : V. — V* by the
identity ¥ (w)(v) = (v,w). If w # 0, then there exists v so (w,v) # 0 and thus
1 is injective. Since dim V' = dim V*, ¢ is a linear isomorphism. Let {vy,...,vx}
be a set of linearly independent elements of V. We extend this set to a basis
{v1, .., Upgq} for V to assume without loss of generality that k = p + ¢. Let
{vl,...,vPT9} be the associated dual basis for V*; this means if v € V, then
v =13, v"(v)v;. The desired elements w; of V are then defined by w; = ¢~ (v7)
since Ui (’Uj) = 51] O

Let V be a vector space of signature (p,q). We can choose a normalized or-
thonormal basis B for V of the form:

B:= {el_,...,ep_,ef, ...,e;'} SO
(1) V™ :=span{ey,..,e, } and
(2) VT :=span{e],.., ey
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are maximal orthogonal timelike and spacelike subspaces. Let R = Ry where ¢
is a self-adjoint linear map. Let m be a non-degenerate 2 plane. By Lemma 2.1:
rank (Rg(m)) = 2 if ker¢ N = {0} and
rank (Ry(m)) = 0 if ker ¢ N # {0}.
We use this observation to show that the notions of constant spacelike, timelike,
and mixed rank are distinct notions.

Lemma 2.2. Let V have signature (p,q) where p > 2 and q > 2.

(1) There exists an algebraic curvature tensor R on V' which has spacelike
rank 2 but which does not have constant timelike or mized rank.

(2) There exists an algebraic curvature tensor R on'V which has timelike rank
2 but which does not have constant spacelike or mixed rank.

(3) There exists an algebraic curvature tensor R on V. which has spacelike
and timelike rank 2 but which does not have constant mixed rank.

PROOF. Let B be a normalized basis for V. Let ¢ be orthogonal projection on
VT

¢e;) =0 and ¢(ef) = ;.
As ker ¢ = V™ is timelike, ker ¢ contains no spacelike vectors and rank Ry (7) = 2
for any spacelike 2 plane. Thus R has spacelike rank 2. We define:

7 = span {2e] +e],2e; +eg}, 71 :=span{e;,e; },

7y := span {2e; + e, el }, 7ty := span {e] , eg }.
The planes 71 and 71 are timelike and the planes 7o and 75 are mixed. We show
that R does not have constant timelike or mixed rank by noting:

ker ¢ Nm; # {0} and kerd N7; = {0} for i =1,2.
Assertion (1) now follows; we interchange the roles of + and — to prove assertion

(2) similarly.
To prove assertion (3), we define a self-adjoint linear map ¢ of V' by setting:

(e7) =€y +ef, (z;(ei_):ei_ fori>1
(e
Then ker ¢ = span {e; + e }. Since ker ¢ is totally isotropic, ker ¢ contains no

spacelike vectors and no timelike vectors so R, 3 has constant spacelike and timelike
rank 2. We define mixed 2 planes

+

¢
¢

)= —e; —ef, qg(ej) = ej‘ for j > 1.

m1 = span {e7 , e } and m := span {e; , e] }.
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Since ker ¢ N # {0} and ker ¢ N my = {0}, R does not have constant mixed
rank. Assertion (3) now follows. O

Let R be an algebraic curvature tensor of constant spacelike rank r on a vector
space of signature (p,q). In Theorem 1.1, we noted that » = 2 in many cases if
p=0,p=1, or p=2. There are, however, examples where r =4 if p > ¢.

Lemma 2.3. Let V be a vector space of signature (p,q) where p > q > 2.

(1) If p = q, then there exists an algebraic curvature tensor R on'V which has
constant spacelike and timelike rank 4, and which does not have constant
mixed rank.

(2) If p > q, then there exists an algebraic curvature tensor R on V' which
has constant spacelike rank 4, and which does not have constant timelike
or mized rank 4.

PRrROOF. Let B be a normalized basis for V. We suppose that p > ¢ and define a
linear self-adjoint map ¢ of V' by setting:

dle;) = —ef for 1 <i<gq,

¢le; )= Oforg<i<p, and

¢(e;') = e for1<j<gq

Expand any vector v € V' in the form v =3, cie; +3_; djej'. Then
(v,v) =—=3, ; + Zj d? and (¢v, pv) = Zigq ;- Zj d?

Thus if v is spacelike, ¢v is timelike. Furthermore, if p = ¢, then ¢ is a para-
isometry. Let R := Rjq + Ry. Then

R(z,y)z = (y,2)7 — (z,2)y + (9y, 2) ¢z — (¢, 2)Py.

If {x,y} spans a spacelike 2 plane 7, then {¢x, ¢y} spans a timelike 2 plane ¢m.
Thus {z,y, ¢z, ¢y} is a linearly independent set and we may use Lemma 2.1 to see
that R has spacelike rank 4. If p = ¢, then the roles of + and — are symmetric so
R also has timelike rank 4. If p > ¢, then ker ¢ contains a timelike vector and the
same argument used to prove Lemma 2.2 shows R does not have constant timelike
rank. Let 71 := span{e;, e} and 7 := span{e;,e5 } be mixed 2 planes. We
show that R does not have mixed rank 4 by noting that:

rank Ry(m) < 2 and rank Ry(ms) = 4.

We omit the proof of the following result as the proof is straightforward.
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Lemma 2.4. Let V' be a vector space of signature (p, q).
(1) If T is a linear map of V with T? =0, 0 is the only eigenvalue of T.

(2) If Ty and Ty are linear maps of V with T? = Ty = 0, then Ty is Jordan
equivalent to Ty if and only if rank (T7) = rank (T5).

We use Lemma 2.4 to show that the concepts IP, spacelike Jordan IP, and
timelike Jordan IP are inequivalent.

Lemma 2.5. Let V' have signature (p,q) where p > 3 and q > 3.

(1) There exists an algebraic curvature tensor R on' V' which is IP, not space-
like Jordan IP, not timelike Jordan IP, and not mized Jordan IP.

(2) If p = q, then there exists an algebraic curvature tensor R on V' which is
spacelike Jordan IP, timelike Jordan IP, and not mized Jordan IP.

(3) If p > q, then there exists an algebraic curvature tensor R on V which is
spacelike Jordan IP, not timelike Jordan IP, and not mixed Jordan IP.

PRrROOF. Let B be a normalized basis for V. For k < ¢, we define:

drle;) = e +ef fori<k, ¢ple;) =0 fori>k,

K3

dr(ef) = —e; —ef, fori <k, ¢r(e]) =0 fori> k.

2

Then ¢y, is self-adjoint and range ¢y, is totally isotropic, i.e. the metric is trivial
on range ¢. Since (¢xu, ¢rv) = 0 for all u,v € V, we have Ry, (z,y)? = 0 for any
x,y € V. Since Ry, (7) is nilpotent, we apply Lemma 2.4 to see that 0 is the only
eigenvalue of Ry, and hence R is IP. We set k = 2 to prove assertion (1). Let

7 :=span {ej ,e; }, my :=span{el, e}, w3 :=span{e;,e]},
71 :=span{ey,e5 }, 72 :=span{el, el }, 73 :=span{e;,ef}.
We have {m,71} are timelike, {mo, T2} are spacelike, and {m3, 73} are mixed 2
planes. For 1 < i < 3, we apply Lemma 2.1 to prove assertion (1) by observing:
m; Nker ¢pg = {0} so rank Ry, (m;) = 2
7; Nker ¢ # {0} so rank R, (7;) < 2.

Suppose p > ¢q. We set k = ¢ to prove assertions (2) and (3). Since ker ¢,
contains no spacelike vectors, rank Ry (7) = 2 for any spacelike 2 plane so by
Lemma 2.4, Ry, is spacelike Jordan IP. Since ker ¢, contains no timelike vectors
if and only if p = ¢, Ry, is timelike Jordan IP if and only if p = q. We study

m = span{e;,ej } and 7 := span{ej,ej} to see Ry, is never mixed Jordan
IP. a
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3. IP MANIFOLDS

Let V be a vector space of signature (r, s), let M be a simply connected smooth
manifold of dimension m = r +s— 1, and let F : M — R("*) be an immersion of
M. We assume the induced metric g on M is non-degenerate; (M, g) is said to be
a non-degenerate hypersurface. Let v be a unit normal along M. If (v,v) = +1,
then (M, g) has signature (r,s — 1). If (v,v) = —1, then (M,g) has signature
(r —1,s). We define the second fundamental form L and shape operator S by:

Liw,y) == (wyF,v) and (Sz,y) == L(z,y).
The following is well known so we omit the proof in the interests of brevity.

Lemma 3.1. Let V be a vector space of signature (r,s), let (M,g) be a non-
degenerate hypersurface in V, let v be a unit normal along M, and let S be the
associated shape operator. Then IR = (v,v)Rg.

We say that a pseudo-Riemannian manifold (M, g) has constant sectional cur-
vature k if YR = kRiq. Let V be a vector space of signature (r,s). For ¢ > 0,
let S*(r,s; 0) be the pseudo-spheres of spacelike and timelike vectors of length
+o 1

SE(r,s;0) :={v €V : (v,v) =0 %}

The following result is well known so we omit the proof in the interests of brevity.

Lemma 3.2. Let o > 0. Then Si(r,s; 0) has constant sectional curvature +p
and is a rank 2 spacelike, timelike, and mized Jordan IP pseudo-Riemannian
manifold. Any pseudo-Riemannian manifold of constant sectional curvature is
either flat or is locally isometric to one of these manifolds.

It is also possible to construct examples of rank 2 spacelike Jordan IP pseudo-
Riemannian manifolds by taking twisted products. We introduce the following
notational conventions. Let ¢ > 0, let € = +1, and let § = 41 be given. Let

M =1 x 5%(r,s; 0), f(t) := ext® + At + B,
dsiy o= edt? + f()d%s (0, Ct) = f2{fr — Jef?},
¢ := —id on T'S°(r, s; o), @(0) := 0.

Choose {k, A, B} so fx—1ef? # 0 or equivalently so that A% —4exB # 0. Choose
the interval I so f(t) # 0 on I.

Lemma 3.3. We have that (M, gar) is a rank 2 spacelike, timelike, and mized
Jordan IP pseudo-Riemannian manifold with YR = CRgy.
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PROOF. Let m = r +s. Fix P € S := S%(r,s;0). Choose local coordinates
x = (x1,..., ®m—1) for S which are centered at P. We let xy = ¢ to define local
coordinates (zg, ..., Z;,—1) on M. We let indices a, b, ¢, and d range from 1 to
m — 1 and index the local coordinate frame for S. We let indices i, j, k, and ¢
range from 0 to m — 1 and index the full local coordinate frame for M. Let g;;
and g, denote the components of the metric tensors on M and S relative to this
local coordinate frame. We normalize the coordinates on S so that 9,gs.(P) = 0.
We have gop = fGabs Joa = 0, and goo = €. Let f; := O,f and fyy = 02f. Let T
and T be the Christoffel symbols:

Tijk = 3{0;9ik + 0i0ik — Okgij},  Tave = 3{0Fac + Oadbe — Ocdav},

Loab = Laob = 5 fiGas, Tabo = — 2 frdabs  Tave = fLabe,
Toa’ =Tao’ = 371 f13a", T’ = —1efifap, Tar® =Tap®
the Christoffel symbols where 0 appears twice or three times vanish. Thus:
Rip' = 0T = 0;Tu! + 3, Tan' Ty = 32, Tin'Ti™,
Rape® = {0uT0c" = 5T 0c} + TagToe — Tyo T’
= R’ = ef2F 73" Goc — Jacgp™} mod O(Jz]),
Rapea = (f&— 36f2){Gaadve = Jacva}

= f_2(f"i - igff) {gadgbc - gacgbd} mOd O(|£E|)

Since S is a symmetric space, there is an isometry of S fixing P which acts as
—1 on TpS. This extends to an isometry of S. Thus Ryup. = 0 for any a, b, and
c. Let a # b. The isotropy group of isometries of S fixing P acts on TpM as
O(p, q). Thus we can find an isometry of S which sends e, — e, and e, — —ey.
This implies Rgqp0 = 0. We compute the remaining curvature:

ROaaO = aOFaaO - 1_\abOFOOLb = 7%5ftt§aa =+ igf_lffgabgab
Roaao = f72€{*%fftt + iff}{gaagoo — 90aYa0}-
We wish to find C(t) and ¢ so that IR = CR,. If
(fr— ifff) = 5{—%fftt + iff}a

then we may take ¢ = id ; the resulting metric then has constant sectional curva-
ture. Since this does not give rise to a new family of metrics, we define instead:

¢(6t) = at, and ¢(8a) = —8a.
To ensure that R = CRy, we solve the equation:
(fe—Yef?) = —e{—3ffu+ 3/2} ie k= 3efu.
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This implies that the warping function is quadratic so f(t) = ext®> + At + B. O

4. THE PROOF OF THEOREM 1.5

Throughout this section, we will let (M, g) be a connected pseudo-Riemannian
manifold of signature (p,q) with ¢ > 5 and dimension m := p + ¢ which is rank 2
spacelike Jordan IP. We use Theorem 1.3 to express Y Rp = C(P)Rypy where ¢
is self-adjoint and C' # 0. We suppose for the moment that 9R is never nilpotent
so that we can normalize ¢ so ¢? = +id. The maps P — C(P) and P — ¢(P)
can then be chosen to be smooth, at least locally. To have a unified notation, we
complexify the tangent bundle and extend ¢, (-,-), and the curvature tensor R
to be complex multi-linear. Let:

- ¢ if¢?= id,
'{ﬁqs if ¢2 = —id.

Since 452 = id, the eigenvalues of ¢Z are +1 and q~5 is diagonalizable. Let

¢

FE={XeTM®C:¢X = +X} and v* := dim F*.

If v~ =0or v" = 0, then § = ¢ = +id and (M, g) has constant sectional
curvature and assertion (2) of Theorem 1.5 holds. Thus, we suppose ¥~ > 1 and
vt > 1. Let u¥ € FE£. As (ut,u™) = (put,u™) = (ut, gu™) = —(ut,u™), F~
and F are non-degenerate orthogonal complex distributions. As we are working
over C, we can find a local orthonormal frame B := {ey, ..., e;,} for TM ® C so

F~ =span{ei,...,e,~}, FT =span{e,- 1,....,em}, and (e;,€;) = &;;.

Let Roman indices a, b, etc. range from 1 to v~ and index the frame for F—, let
Greek indices a, 3, etc. range from v~ +1 to m and index the frame for F+, and
let Roman indices 4, j, etc. range from 1 to m and index the frame for TM ® C.
Let &ij;k be the components of V¢ relative to such a normalized basis.

Lemma 4.1. Let (M, g) be a connected pseudo-Riemannian manifold of signature
(p,q) with ¢ > 5 so that 9Rp = C(P)Ry(py where ¢(P)? = +id and C(P) # 0.
Assume that vt > 1 and v— > 1.
(1) We have (z;ij;k = Q;ji;k; anb;k = O; éaﬁ;k = 0; and ana;i = —2l0a-
(2) Ifi, j, and k are distinct indices, then qNSij;k = quSik;j.
(3) The only non-zero components of Vo are ana;a = éaa;a = —2T44a and
d)aa;a = ¢oza;oz = _QFaaa-
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PROOF. We adapt arguments from [5] to prove this result. As the frame is or-
thonormal, T'y;; = —T'kj;. Let ¢; := (¢e;,e;) = £1; 64 = —1 and e, = +1. We
prove assertion (1) by computing;:
bije = (Ve,gei — Ve e €5) = (Ve dei,e5) — (Ve €, dej)

= (&i —€;)(Ver€ir€5) = (€5 — ;) hsj-
Let 9 R;j1:n be the components of VY R. With our normalizations, we can express:

IRjm = C{Pudjr — dirdsi} where ¢ = eid and,

IRijkisn = €C(Pun®jk + Pit®jkn — Pikin®jt — PikPjizn)

+Con(Pidjx — Pirdj1)-
We use the second Bianchi identity:
0 =9Rijkin + 7 Rijinik +  Rijniy-

Fix distinct indices i, j, and k. As ¢ > 5, we may choose an index [ which is
distinct from 4, j, and k. We have ¢;; = 0 for ¢ # j. Since C # 0, we may prove
assertion (2) by computing:

0 = 9Ruj + I Ritjist + I Rinyy = €Ccedijr + 0 — Cepig-

If 4, j, and k are distinct, then (Z)ij;k = (;NSZ-;C;]- = éjk;z* Since at least two of the
indices must index elements of 7~ or F, ¢;;.x = 0 by assertion (1). Thus (4, j, k)
is a permutation of (a,a, ) or (a, a, «). Assertion (3) follows as

(baa;a = ¢aa;a =0 and ¢aa;i = ¢aa;i

We continue our study of V.

Lemma 4.2. Let (M, g) be a connected pseudo-Riemannian manifold of signature
(p,q) with ¢ > 5 so that YRp = C(P)Ry(py where ¢(P)* = +id and C(P) # 0.
Assume that vt > 1 and v~ > 1.
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PRrROOF. If v~ > 2, then we may choose a # b and use Lemma 4.1 and the second
Bianchi identity to prove assertion (1) by computing:
0= gRaaaa;b + gRaaab;a + gRaaba;a = _EC;b + Eoéab;a + 0.

If v~ > 3, then we may choose distinct indices a, b, and ¢ and use Lemma 4.1
and the second Bianchi identity to compute

0 = chbbc;a + chbca;b + chbab;c = EC;a +0+0 and
0 = chbbc;a + chbca;b + chbab;c = 50;@4 + ECéba;b + €C¢;ca;c~
Thus C,, = 0 and C.q, = —C(Ppasb + Peasc). Similarly C.p = —C(Paaia + Peasc)-
Thus Gpab = Pania = Pease and assertion (2) follows.
We use the same argument to prove assertions (3) and (4) with appropriate
changes of sign. If v > 2, then we may choose o # (3 to compute:
0= gRaaaa;ﬁ + gRaaa,@;a + gRaa,@a;a = _EC;ﬁ - Ecéa,@;a +0.
If vt > 3, then we may choose distinct indices a, 3, and ~ to compute
0 = Rysgpyia T I Rypyaip + I Rypapyy = €Cia + 0+ 0 and
= YRygpvia + I Rypyaip + I Rypapyy = €Cia — ECPpaip — €Chyapye-

We can now show that ¢? = id if C # 0.

Lemma 4.3. Let (M, g) be a connected pseudo-Riemannian manifold of signature
(p,q) with ¢ > 5 so that IRp = C(P)Ry(py where ¢(P)? = +id and C(P) # 0.
Assume that vt > 1 and v— > 1.

(1) We do not have Vé = 0. Furthermore either v~ < 2 or vt < 2.
(2) We have ¢? =id . Furthermore either v~ =1 or v+ = 1.

PROOF. Assume that V(fﬁ = 0. We use Lemma 4.1 to see that [';,o = —%éaa;i =
0. Thus Ve, € F~ 80 IR(eq, €q)eq € F~. This shows:

0 =7 R(eq, €as€asta) = eC.

This shows that C' = 0 which is false. Thus V¢ # 0. Next suppose that v~ > 3
and vT > 3. We may then apply Lemma 4.2 to see that dC' = 0 and V¢ = 0
which is false. This establishes assertion (1).

Suppose that ¢? = —id. Then (¢v, ¢pv) = (¢p?v,v) = —(v,v) so ¢ interchanges
the roles of spacelike and timelike vectors. Thus p = ¢ > 5. Since ¢ = v/—1¢, ¢
is purely imaginary. Thus conjugation interchanges the distributions F* and F~
so vT = v~ = ¢ > 5. This contradicts assertion (1). Consequently ¢? = id.
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By replacing ¢ by —¢, we may assume v~ < vT. To establish the final asser-
tion, we must rule out the case v~ = 2. We may then use assertions (1), (3), and
(4) of Lemma 4.2 to see dC' = V¢ = 0 which contradicts assertion (1). O

Assertion (1) of Theorem 1.5 follows from Lemma 4.3 and from:

Lemma 4.4. Let (M, g) be a connected pseudo-Riemannian manifold of signature
(p,q) for ¢ > 5. Assume that (M,g) is rank 2 spacelike Jordan IP. Then either
9R is nilpotent for all points of M or YR is nilpotent at no point of M.

PrROOF. Let S; be the set of all points of M where 9R is nilpotent and let S
be the complementary subset of all points of M where 9R is not nilpotent. We
assume that both S; and S are non-empty and argue for a contradiction. Since
S1 is closed, since S, is open, and since M is connected, we may conclude that
S5 is not closed. Thus we may choose points P; € S5 so that P; — P, € S7. Let
R,, be the curvature tensor at P, and let V,, be the tangent space at P,.

Let B :={f; .. Iy iy f;‘} be a normalized local orthonormal frame for
the tangent bundle near P, and let V* be the associated maximal spacelike and
timelike distributions. We set V.= := V*(P,). Since P, € S,, we can express
R, = CpRy,. Since Tr{R,(m)?} = —C? for any spacelike 2 plane 7, we have
C,, — 0 since R is nilpotent.

We apply Lemma 4.3 to see ¢2 = id and thus we do not need to complexify
to define the sub-bundles FF of V,,. By replacing ¢, by —¢, if necessary, we
may apply Lemma 4.3 to see dim F,, < 1. Consequently dim Ft > p+ ¢ —1 so
dimFt NV,;F > ¢—1> 4. Choose elements v, w, € V,F N F, so that {v,,w,}
forms an orthonormal spacelike set. We choose a compact neighborhood of P,
over which S(VT) is compact. By passing to a subsequence, we can suppose
that v, — v and w, — we. Let m, := span{v,,w,). Then we have that
T — Moo i= Span {Uso, Weo }. The planes 7, and 74, are spacelike. Let zo, € V.
Choose elements z, € V,, 80 2, — 2oo. As ¢pv, = v, and ¢,w, = w,, we have:

R(M)200 = nh_)rrgo R, (v, wp)zn
= lim Co{(6wn, 20)60n — (B0, 20)0w,}
= nli_)néo Cn{(wn, 2n)n — (Un, 2n)wp }
= {nh—{[;o Cn}  {(Woos Zoo ) Voo — (Voos Zoo )Weo } = 0.
This contradicts the assumption that R has spacelike rank 2. O

Since ¢? = id so the distributions F* are real. By replacing ¢ by —¢ if
necessary, we may suppose that v~ < v+ and thus v~ < 1. If v~ = 0, then
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(M, g) has constant sectional curvature and assertion (2) of Lemma 1.5 holds. We
therefore suppose v~ = 1. The distributions F* are non-degenerate. Let {e;}
be a local orthonormal section to F~ and let {es, ..., e, } be a local orthonormal
frame for FT; since we are working over R, we no longer impose the normalization
that (e;, e;) = +1. By replacing g by —g, we may assume without loss of generality
that e is spacelike. If « # 3, then we may apply Lemma 4.1 to compute:

([eav 6[3}7 61) = Faﬁl - Fﬁal = F,@la - Falﬁ
= 7%((725104;[3 - d)lﬁ;a) =0.
Thus the foliation F* is integrable. Let y = (3!, ...,4™~!) be local coordinates on
a leaf of this foliation. We define geodesic tubular coordinates on M by setting:

T'(t,y) == exp,(te1(y))-

Assertion (3) of Theorem 1.5 will follow from:

Lemma 4.5. Let (M, g) be a connected pseudo-Riemannian manifold of signature
(p,q) for ¢ > 5. Assume that IR = CR, where ¢* =id and C # 0. Assume that
v~ =1 and that F~ is spacelike.

(1) For fized yo, the curves t — T(t,yo) are unit speed geodesics in (M, g)
which are perpendicular to the leaves of the foliation FT.

(2) For fized to, the surfaces T'(to,y) are leaves of the foliation F* and inherit
metrics of constant sectional curvature.

(3) Locally ds* = dt* + fds? where f(t) is non-zero smooth function and ds?
is a metric of constant sectional curvature k.

(4) The warping function f(t) = kt*> + At + B where A2 — 4kB # 0.

PROOF. We choose a local orthonormal frame {e;} for TM so e; spans F~ and
{e2,...,em} spans FT. We set g; := (e;,¢;) = +1; by assumption 1 = +1. We
have dim(F*+) = m — 1 > 3. Taking into account the fact that (eq,eq) = 1, we
may apply Lemmas 4.1 and 4.2 to see that

C Cia
Cioa =0, Ta1p = —(€a,e5) 2, and T'11o = %7 =0.

Let v(t,yo) be an integral curve for e; starting at a point yo on the leaf of the
foliation FT. Since e; is a unit vector, I';1; = 0. As I'11, = 0, 7 is a geodesic.

Thus (¢, y0) = T(t,yo) so O; = e;. We compute
0401, 0%) = (0r, Vo,04) = (04, V oy 04) = 504(y, 0y) = 0.

This shows (9, 9%) = 0 so the 9¥ span the perpendicular distribution F* and the
manifolds T'(t,y) are leaves of the foliation F*. Since C,, = 0, C is constant on



326 P. GILKEY AND T. ZHANG

the leaves of Ft. Let R be the curvature of the induced metric on the leaves of
the foliation F+. We show that R has constant sectional curvature by computing:

R(eou €3, €, 60) = R(eaa €3, €, 60) + Falorﬁ'yl - Fﬁlara’yl

C,
{C(t) + () H (e, e9)(eas o) — (ear €4)(es, €0)}-
Let 04 = ¥ aq~e,. We show that the metric is a warped product by computing:

(VBt 810/47 a%) (VBZ O, ag) = E'yaaa'yaﬁo(ve.y O, 60)

c. ¢
= Z’Yoaa"/aﬁa(ewea)ﬁl = ﬁlgaﬁ S0
20,
Nhgap = (Vo,04,04) +(94,V0,05) = =5 gap-

The argument used to prove Lemma 3.3 now shows the warping function is qua-
dratic. a

5. NILPOTENT SPACELIKE JORDAN IP PSEUDO-RIEMANNIAN MANIFOLDS

The rank 2 spacelike Jordan IP pseudo-Riemannian manifolds whose curvature
operators are not nilpotent for at least one point of M are classified in Theorem
1.5. In this section, we study the remaining case and present some preliminary
results. We focus our attention on the balanced setting p = q.

Lemma 5.1. Let (M, g) be a connected pseudoRiemannian manifold of signature
(p,p) for p > 5. Assume that (M, g) is spacelike rank 2 nilpotent Jordan IP.
(1) We have IR = £Ry where ¢ is self-adjoint and where ker ¢ = range ¢.
(2) range ¢ is an integrable distribution of the tangent bundle of M.

Proor. We apply Theorem 1.3 to write R = R4 where we normalize ¢ by
requiring that C = £1. The map P — ¢ can then be chosen to vary smoothly
with P, at least locally. Since ¢ contains no spacelike vectors, dim{ker(¢)} < p.
Since ¢ is self-adjoint and ¢? = 0, we show range (¢) = ker(¢) and complete the
proof of the first assertion by computing:

range (¢) C ker(¢),
dim{range (¢)} < dim{ker(¢)}, and
2p = dim{range (¢)} + dim{ker(¢)} < 2dim{ker(¢)} < 2p.
Let I := range ¢ and let S be a maximal local spacelike distribution. Since K

is totally isotropic, X NS = {0}. Thus K = range¢ = ¢S and TM = S & ¢S.
Let L(-,-) := (¢-,-) be the associated bilinear form. We have:

(¢s, ¢3) = (s,¢°3) = 0.
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Thus if 0 # s € S, then there must exist § € S so that (¢s,3) # 0. Thus L is a
non-degenerate bilinear form. We complexify and choose a frame {s,} for S so:

(Peq, ep) = dap.

Let Roman indices a, b, etc. range from 1 to p and index this frame for S. Let
Greek indices «, 3, etc. range from p+1 to 2p and index the frame e, := ¢(eq—p)
for K. Let Roman indices ¢, j, etc. range from 1 to 2p and index the frame
{e1,...,ep, Pe1, ..., pep}. We have ¢up = dap, Pap =0, and ¢op = 0. Let a, 8, and
i be indices which need not be distinct. Choose a # i and use the second Bianchi
identity to compute:

Rijkin = Qum®Pik + Qil®jkin — PikinPit — PikPjtin,
0 = Raaﬂa;i + Raaiﬁ;a + Raaai;ﬁ = ¢aﬁ;i +0 - ¢ai;57 and
¢0¢i§5 = (baﬂ;i = (V€i¢(¢ea)? ¢8b) - (¢v51 ¢€a, (beb) = O
We clear the previous notation. Let « = a+p, 8 = b+ p, and v = ¢+ p be indices

which are not necessarily distinct. We show that K is an integrable distribution
by showing that:

([eou 6[3]’ 67) = (vea ¢6b7 ¢6c) - (Veg¢6m d)ec)
((vea(b - qj)vea)eh (]566) - ((Veﬁqb - ¢veq)eaa ¢€c)
¢b'y;a - ¢a'y;[3 =0so0 [60m eﬁ] € COO(’CJ—) =C~ (K:)

a

We now construct a nilpotent rank 2 Jordan IP pseudo-Riemannian manifold.

Lemma 5.2. Let {e1,...,ep,€1,...,6,} be a basis for a vector space V and let
{2t ..., 2P &', ..., &P} be the corresponding dual basis for V*. Define an inner
product of signature (p,p) on V by (e;,€;) = 0;; and (e;,e;) = (&,€;) = 0 for
all i,j. Gwe W := V @& R the direct sum inner product which has signature
(p,p+1). Let f(%1,...,%p) be a real valued function so that df (0) = 0 and so
that det(@f@ff)(O) # 0. The embedding F := id @& f of V into W defines a
hypersurface (M, g) of W so that (M, g) is a spacelike and timelike rank 2 Jordan
IP nilpotent pseudo-Riemannian manifold of signature (p,p) close to the origin.

PROOF. Since df(0) = 0, the natural identification of ToM with V is an isome-
try. Thus the metric is non-degenerate and has signature (p,p) sufficiently close
to the origin. Let Lp and Sp be the associated second fundamental form and
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shape operators at P. Then Lemma 3.1 shows that R = Rg,. Since 07 F = 0,
Lp(07,%) =0 for any point of the manifold. Thus Sp(97) = 0 so

span {07} C ker(Sp).
Since the Hessian of f is non-singular at 0, Sy is invertible on span {07 }. Thus

dim ker(Sp) = p and hence by shrinking the neighborhood O if necessary we may
suppose that dimker(Sp) < p for P € O. It now follows that

ker(Sp) = span{9F} for all P € O.

Since FL(0f) = e;, we have g(97,07) = 0 for all 7, j and hence ker(Sp) is totally
isotropic and in particular ker(Sp) contains no spacelike or timelike vectors. Since
dim{ker(Sp)} = p, ker(Sp) = ker(Sp)t = range(Sp) so S% = 0. Thus IR is
nilpotent. a
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