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ABEL’S DIFFERENTIAL EQUATIONS

MARK L. GREEN AND PHILLIP A. GRIFFITHS

This paper is the text of a talk given by the second author at the Chern
Conference. Intended for a general audience, it is based on joint work in progress
with Mark Green. The purposes of the talk were (i) to discuss Abel’s differential
equations (DE’s) for algebraic curves in both classical and modern form, (ii) to
explain in a special case the extension of Abel’s DE’s to general algebraic varieties
that Mark and I have developed, and (iii) to discuss the integration of Abel’s DE’s
in this special case. The emphasis throughout is on the geometric content of the
differential equations.

1. Historical perspective; Abel’s DE’s for algebraic curves
2. Abel’s DE’s for regular algebraic surfaces defined over Q; discussion of

the general case
3. Geometric meaning of Abel’s DE’s
4. Integration of Abel’s DE’s; caveat

1. Historical perspective; Abel’s DE’s for algebraic curves

Our story begins with the classical Abel’s theorem. From the earliest days of
the calculus mathematicians were interested in integrals

I =
∫

h(x)dx

where h(x) is an algebraic function of x. This means that there is an algebraic
curve defined by a polynomial equation

C = {f(x, y) = 0}

the roots of which for variable x give y = y(x) as a multi-valued algebraic function
of x, and

I =
∫

g(x, y(x))dx
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where g(x, y) is a rational function of (x, y). For example, we might have

C = {y2 = p(x)}

where p(x) is a polynomial in x, and

I =
∫

dx
√

p(x)
=

∫

dx

y

is called a hyperelliptic integral. In modern terms, we may picture C as a compact
Riemann surface

C = ......................................................................................................................................................
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On C we have a meromorphic differential

ω = g(x, y)dx
C

and

I =
∫ p

p0

ω mod periods,

the ambiguity arising from different choices of a path from p0 to p.
The functions obtained by “inverting” these integrals; i.e., by defining ϕ(u) by

u =
∫ ϕ(u)

h(x)dx

include some of the most interesting transcendental functions

u =
∫ sin u dx√

1− x2
(x2 + y2 = 1)

u =
∫ p(u) dx√

x3 + ax + b
(y2 = x3 + ax + b).

Although the ϕ(u) are transcendental, they satisfy functional equations or “ad-
dition theorems”, the general form of which was discovered by Abel. For this he
considered abelian sums, defined as follows: Let

Dt = {h(x, y, t) = 0}
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be a family of algebraic curves depending rationally on a parameter t. Write

C ·Dt =
∑

i

(xi(t), yi(t))

where the (xi(t), yi(t)) = pi(t) are the deg C · deg Dt points of intersection
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•

The abelian sum is then

I(t) =
∑

i

∫ pi(t)

g(x, y)dx.

Although the individual integrals are very complicated, Abel found that the
abelian sum is quite simple:

Theorem. I(t) = r(t) +
∑

α
Aα log(t − tα) where the rational function r(t) and

constants Aα, tα can in practice be determined.

Example. For the circle and a variable line
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∫ p1

ω +
∫ p2

ω =
{

known
quantity

}

, ω =
dx√

1− x2

gives the addition theorem for sin u.
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Example. For the cubic and a variable line
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p1

p2 p3

∫ p1

ω +
∫ p2

ω +
∫ p3

ω = constant , ω =
dx√

x3 + ax + b

gives the addition theorem for p(u).

Concerning the second example, classically one had the

Definition. ω is a differential of the 1st-kind if
∫

ω is locally bounded.

If f(x, y) = 0 defines a smooth plane curve of degree n, the differentials of the
1st kind are

ω =
p(x, y)dx

fy(x, y)
where p(x, y) is a polynomial of degree n− 3.

For differentials of the 1st kind, the Aα are zero and r(t) reduces to a constant.
Clearly, ω is a differential of the 1st-kind if, and only if, it has no poles on C.
This is in turn equivalent to

I(t) = constant

which is the same as
I ′(t) = 0.

Explicitly, this latter equation is

d

dt

(

∑

i

∫ pi(t)

ω

)

=
∑

i
ω(pi(t)) = 0

where
ω(pi(t)) = g(xi(t), yi(t))x′i(t)dt.

This equation is Abel’s DE in classical form; it may be thought of as an infinites-
imal functional equation or addition theorem.
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For the modern reformulation, we let X be a smooth algebraic curve and
ω ∈ H0(Ω1

X/C) a regular differential. We denote by

X(d) = X × · · · ×X
︸ ︷︷ ︸

d

/Σd , Σd = permutation group

the d-fold symmetric product, thought of as the set of configurations

z = p1 + · · ·+ pd

of d points on X
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It is well known that X(d) is a smooth algebraic variety. We also denote by

Trω(z) = ω(p1) + · · ·+ ω(pd)

the regular 1-form on X(d), called the trace of ω, induced from the diagonal 1-form
(ω, . . . , ω) on Xd, this being obviously invariant under Σd.

We will say that two configurations z1, z2 ∈ X(d) are rationally equivalent if
there is a rational function f ∈ C(X)∗ with divisor

(f) = z1 − z2.

This is equivalent to there being a regular map

F : P1 → X(d)

with F (0) = z1 and F (∞) = z2; in fact, we may take

F (t) = f−1(t) , t ∈ P1.

If Z ⊂ Z(d) is a subvariety such that any z1, z2 in Z are rationally equivalent,
then the restriction

Tr ω
Z

= 0.
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By definition, Abel’s differential equations are

(A) Tr ω = 0, ω ∈ H0(Ω1
X/C)

We think of (A) as the exterior differential system generated by the 1-forms Tr ω,
ω ∈ H0(Ω1

X/C).
An integral variety of (A) is by definition an algebraic subvariety Z such that

all Trω
Z

= 0; i.e., such that the equations (A) are satisfied by Z. The classical
theorems of Abel and Riemann-Roch may be formulated as stating that:

(A) is an involutive exterior differential system with maximal integral
variety |z| passing through z ∈ X(d) given by

|z| = {z′ ∈ X(d) : (f) = z − z′ for some f ∈ C(X)∗}.

Remark. Even though the 1-forms Tr ω are closed, it is by no means automatic
that (A) is involutive. The reason is that

δ(z) =: dim span{{Tr ω(z) : ω ∈ H0(Ω1
X/C)} ⊂ T ∗z X(d)}

varies with z; in fact, δ(z) is equal to g − i(z) where g is the genus of X and i(z)
is the index of speciality of z. If Ir is the ideal that defines the condition δ(z)≤ r,
then for involutivity to hold we must have that

dIr ⊆ Ir · Ω1
X(d)/C + {ideal generated by Tr ω’s}.

This is a non-trivial condition.

2. Abel’s DE’s for regular surfaces defined over Q

We were interested in the question: Is there an analogue of Abel’s DE’s for
general configurations of algebraic cycles on an algebraic variety? From the work
of Bloch and others (cf. [Bloch]), in some formal sense one expects a positive an-
swer. 1 But we were interested in an answer from which one could draw geometric
conclusions, at least at the infinitesimal level. For example a specific question is:

1Combining his earlier work connecting Chow groups to K-theory with van der Kallen’s

description of the formal tangent space to K2(R) for a ring R, Bloch gave an expression for

the formal tangent space to the Chow group of 0-cycles on an algebraic surface. Our work

identifies Bloch’s formal tangent space as the quotient of geometrically defined tangent space

to 0-cycles by the tangent space to rational equivalences. This section amounts to making that

identification explicit in the simplest special case.
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On an algebraic surface X when is

τ =
∑

i

(pi, vi) , vi ∈ TpiX

v
i


p

i


X


•


•


•


tangent to a rational motion of Σ
i

pi?

We let X(d) = X × · · · ×X
︸ ︷︷ ︸

d

/Σd be as before the set of configurations z =

p1 + · · · pd of d points on X; as will be of significance below is the fact that the
X(d) are singular along the diagonals pi = pj . From Chow we know that we
should consider the equivalence relation generated by: For z1, z2 ∈ X(d) we set

z1 ≡ z2

if there exists an algebraic curve Y ⊂ X and a rational function f ∈ C(Y )∗ with

(f) = z1 − z2

.............................................................................................................................................................................................................................................................................................
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z2
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Y
X

From Chow we also know that, in contrast to the case of curves (or divisors on a
general variety) we must allow for cancellations, such as
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q
i


Y


p

i


i

p


Y

.


.

.


(f) =
∑

i

pi −
∑

i

qi , f ∈ C(Y )∗

(f ′) =
∑

i

qi −
∑

p′i , f ′ ∈ C(Y ′)∗.

To move z =
∑

i

pi rationally to z′ =
∑

i

p′i we must add w =
∑

i

qi to each. Thus

rational equivalence in X(d) requires passing to X(d+d′), and consequently we
are effectively in X(∞). Now X(∞) is a semi-group and we should consider the
associated group

Z2(X) =
{

∑

i

nipi, ni ∈ Z and pi ∈ X

}

of 0-cycles on X.2 We then need to understand the tangent space TZ2(X) to the
space of 0-cycles and the subspace

TZ2
rat(X) ⊂ TZ2(X)

of tangents to the subgroup Z2
rat(X) of 0-cycles that are rationally equivalent to

zero. Our question then is:

How can we define TZ2(X) and the space Ω1
Z2(X) of 1-forms on Z2(X), and

what are the 1-forms α ∈ Ω1
Z2(X) such that the equations

α = 0

define TZ2
rat(X) ⊂ TZ2(X)?

The definition of TZp(X) turns out to have some interesting geometric and alge-
braic subtleties.

2Of course, using the group of divisors on an algebraic curve provides a neat formalism, but

its use is not essential in geometrically understanding rational equivalence in this case. For the

geometric understanding of configurations of points on algebraic surfaces it is unavoidable that

we pass to X(∞) and then to Z2(X).
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We will illustrate Abel’s DE’s in a concrete special case. Namely, let X ⊂ P3

be a smooth surface given by an affine equation

f(x, y, z) = 0 , deg f = n

where f ∈ Q̄[x, y, z]. There are no regular 1-forms on X, and in a similar way
as for 1-forms on algebraic curves above the regular 2-forms are spanned by the
restrictions to X of

ω =
g(x, y, z)dx∧dy

fz(x, y, z)
, deg g 5 n− 4

where g ∈ Q̄[x, y, z]. We consider the earlier question where
{

pi = (xi, yi, zi)

vi = λi∂/∂x + µi∂/∂y.

Setting h = g/fz

ω(pi)cvi = h(pi)(µidx− λidy) ∈ T ∗pi
X.

We then define
αω(pi, vi) = h(pi)(µidxi − λidyi) ∈ Ω1

C/Q

where xi, yi ∈ C and d = dC/Q. The condition that τ ∈ TZ2
rat(X) turns out to be

∑

i

αω(pi, vi) = 0 for all ω.

We write this as
(Trαω)(τ) = 0

where τ ∈ TZ2(X). By definition, Abel’s differential equations are

(A) Tr αω = 0 for ω as above

We will discuss later some geometric reasons why the quantities dxi, dyi ∈ Ω1
C/Q

appear. As for the definition, for rings R, S with S ⊂ R the Kähler differentials
are defined by

Ω1
R/S =















R-module linearly generated by expressions r′dr

where r, r′ ∈ R, and where the relations
d(rr′) = rdr′ + r′dr, d(r + r′) = dr + dr′

and ds = 0 for s ∈ S are imposed.














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If f(x) ∈ Q[x] and f(a) = 0 is a simple root, then

0 = f ′(a)da =⇒ da = 0.

Additively, if α1, α2, . . . is a transcendence basis for C over Q

Ω1
C/Q

∼= ⊕
i

Cαi,

so that differentials da, a ∈ C, reflect arithmetic properties of complex numbers.
For algebraic curves the rank of Abel’s DE at z =

∑

i

pi has to do with the

geometric properties of the pi. For algebraic surfaces it has to do with the arith-
metic and geometric properties of the pi. More precisely, denoting by Rank (A)z

the dimension of the subspace of T ∗z Zn(X) given by Abel’s DE’s for n = 1, 2, for
for d ½ 0 we have

• for algebraic curves, Rank(A)z = g

• for algebraic surfaces, Rank(A)z ∼ pg(tr deg z)
where tr deg z = tr deg Q(. . . , xi, yi, . . .). Here pg = h2,0(X) and the “∼ ” means
that a lower order correction term must be added if X is not regular and/or is
not defined over Q.

Corollary (Mumford). If pg 6= 0 then

dim CH2(X(C)) = ∞.

Roitman, Voisin and others have extended Mumford’s result to state, among
other things, that a generic z ∈ X(d) does not move in a rational equivalence; the
above gives a precise meaning to the word “generic”.

Corollary. On a general surface X ⊂ P3 of degree n≥ 5

(Trαω)(p, v) = 0

has no non-zero solutions for any point p ∈ X.

A corollary, again due to several people, is that X contains no rational curves.
The method of proof gives the further result that, for n≥ 6, a general X contains
no g1

2 ’s (and hence no rational or hyperelliptic curves) – we suspect that the
method may be extended further to show that for n≥n0(d) a general X of degree
n contains no g1

d’s. In fact, this would all be special cases of the following general
principal: On a general surface X in P3 every curve C is a complete intersection
C = X ∩ Y where Y is a surface of degree m. Varying Y gives a gr

mn on C which
is exceptional in the sense of Brill-Noether theory – i.e., a general curve of genus
g = g(C) does not contain a gr

mn. Then every curve C on X is general among
curves containing a gr

mn – i.e., C contains no other exceptional linear series.
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At the other extreme, we have the

Corollary. If X is regular and defined over Q and the pi ∈ X(Q̄), then for any
τ =

∑

i

(pi, vi) ∈ TZ2(X) we have

τ ∈ TZ2
rat(X).

This is actually a geometric existence theorem, albeit at the infinitesimal level;
namely, given τ there exist curves Yν and rational functions fν ∈ C(Yν)∗ all
defined on

X1 = X ×C Spec C[ε] , ε2 = 0

such that

τ =
∑

ν

d

dε
(div fν).

This is an infinitesimal version of the well-known conjecture of Bloch-Beilinson
(cf. [Ramakrishnan]).

3. The geometric meaning of Abel’s DE’s

Abel’s DE’s may be interpreted as expressing an isomorphism

TCH2(X) ∼= TZ2(X)/TZ2
rat(X).

Here the left hand side is the expression given by Bloch [Bloch] for the formal
tangent space to the Chow groups for 0-cycles on an algebraic surface. The terms
TZ2(X) and TZ2

rat(X) are geometric in character and are defined in the paper
[Green-Griffiths I]. The above isomorphism is established using an extension of
Grothendieck’s duality theory. We shall briefly discuss one definition of TZn(X)
for 0-cycles on an n-dimensional smooth variety when n = 1, 2, and then use this
to lead into a geometric interpretation of Abel’s DE’s. 3

For X an algebraic curve, TZ1(X) may be defined in several equivalent ways
(loc. cit.) and there turns out to be an isomorphism

TZ1(X) ∼= ⊕
p∈X

Homc(Ω1
X/C,p, C),

3The formal definition of the sheaf TZn(X) obtained by localization of TZn(X) is

TZn(X)
def
= ⊕

p∈X
lim

k→∞
ExtOX,p

(OX,p/mk
p , Ωn−1

X/Q,p
).

The justification of this definition on both formal and geometric grounds - especially as regards

the appearance of absolute differentials - is given in the paper referred to above. Below we shall

discuss some of the geometric motivation for it.
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where in the right-hand side only finitely many terms appear in any tangent vector
and Homc(Ω1

X/C,p, C) def= lim
k→∞

HomC(Ω1
X/C,p⊗OX/mk

p, C) and where Ω1
X/C,p is the

stalk at p of Ω1
X/C. The map goes as follows: Given an arc

z(t) =
∑

i

nipi(t), z(0) = z

in Z1(X) with
lim
t→0

{support z(t)} = p,

and given ϕ ∈ Ω1
X/C,p, the action of the tangent vector z′ ∈ TzZ

1(X) on ϕ is
given by

z′(ϕ) =
d

dt

(

∑

i

ni

∫ pi(t)

p

ϕ

)

t=0

.

Essentially we are taking the infinitesimal form of abelian sums. That the equa-
tions

z′(ϕ) = 0 for all ϕ ∈ H0(Ω1
X/C)

define the subspace
TZ1

rat(X) ⊂ TZ1(X)

is a consequence of the Riemann-Roch theorem together with duality on the curve.
Turning to an algebraic surface X, the tangent space TZ2(X) may be defined

(loc. cit.), and for the corresponding sheaf TZ2(X) it turns out that there is an
exact sequence

0 → A → TZ2(X) → B → 0

where

B ∼= ⊕
p∈X

Homc(Ω1
X/C,p, C)

and

A ∼= ⊕
p∈X

Homc(Ω2
X/C.p, Ω

1
C/Q).

The B-term is essentially the same as for curves; the new geometry comes in the
A-term, both as regards the appearance of 2-forms and (see below) of differentials
over Q. There are essentially three ingredients in understanding the A-term.

(i) The infinitesimal structure of X(∞) = lim
d→∞

X(d) is reflected by collections of

differential forms ϕd on X(d) with the hereditary property

(∗) ϕd+1
X(d)

= ϕd.
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Among such forms are those given by traces Tr ϕ for ϕ ∈ Ωq
X/C. Especially im-

portant is the structure of X(d) near the diagonals, which geometrically measures
the behavior of 0-cycles when points come together. An interesting fact, reflecting
the property that the X(d) are singular along the diagonals when dim X = n = 2,
is:

Fact. The forms satisfying (∗) are generated as an algebra over OX(d) by

Tr ϕ for ϕ ∈ Ωq
X/C, 1 5 q 5 n.

New generators are added for each q in the above range.

Thus, on an algebraic surface the 2-forms as well as the 1-forms should enter
into the definition of TZ2(X). From the above exact sequence we see that for
a tangent vector τ ∈ TZ2(X) the value τ(ω) on a 2-form ω is only well-defined
modulo the values of τ on 1-forms, the new information provided by Ω2

X/C,p should
only be considered modulo that provided by Ω1

X/C,p. (All of this is quite clear,
including what is meant by working modulo the information coming from the
1-forms, when things are computed out in local coordinates – cf. §§3-5 in the
paper by the authors referred to above.)

(ii) Formally, we proceed as follows: There is an evaluation map

Ω1
X/Q,p → Ω1

C/Q

defined for f, g ∈ OX,p by

fdg → f(p)dg(p) (d = dC/Q).

Using exterior algebra this map induces a pairing

Ω2
X/Q,p ⊗ TpX → Ω1

C/Q.

Working globally, for X regular and defined over Q, we have by base change

H0(Ω2
X(Q)/Q)⊗ C ∼= H0(Ω2

X(C)/C),

from which we infer a well-defined pairing

H0(Ω2
X/C)⊗ TZ2(X) → Ω1

C/Q.

Theorem. The right kernel of this pairing is

TZ2
rat(X) ⊂ TZ2(X).
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For X a smooth surface in P3 we recover Abel’s DE’s as stated above.
When X is not defined over Q and/or is not regular, there are correction terms

that must be added.

(iii) Now one may say: The above is fine formally, but geometrically why should
absolute differentials turn up in the definition of TZ2(X)? 4

There are a number of responses, at different levels, to this question.
Differentials over Q have among other things to do with whether complex

numbers are algebraic or not. Using the assumption that the tangent map
{

arcs in

Z2(X)

}

−→

{

complex vector

space TZ2(X)

}

should be a homomorphism forces arithmetic considerations to enter. For exam-
ple, in C2 for α 6= 0 let

zα(t) = 0-cycle with ideal (x2 + αy2, xy − t).

Then it can be shown that

z′α(0) = z′1(0) ⇔ α is algebraic.

As a special case, suppose αm = 1. Then mzα(t) is defined by the ideal

((x2 + αy2)m, xy − t).

In this ideal, x2y2 = t2 and using αm = 1 we have

(x2 + αy2)m ≡ x2m + y2mmod t2

≡ (x2 + y2)mmod t2

=⇒ mz′α(0) = mz′1(0)

=⇒ z′α(0) = z′1(0).

Similar considerations show that for any reasonable geometric definition of 1st-
order equivalence of arcs in Z2(X), the axioms for Der(C/Q) enter.

4By definition, for any sub-field k ⊂ C the differentials Ω1
X/k,p

are the Kähler differentials

of OX,p over k. For k = Q we obtain the absolute differentials. In the algebraic case, but not

in the analytic case, for k = C we have

Ω1
X/C,p

∼= OX,p(T ∗X).

In other words, only in algebraic geometry do absolute differentials have geometric meaning.
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From a different and perhaps more fundamental level we have the concept
of a spread, which we shall now describe informally. Let Z ⊂ PN be given by
homogeneous equations

Fλ(x) =
∑

I

aλIx
I = 0.

Let

Gα(. . , aλI , . .) = 0

generate the relations defined over Q satisfied by the coefficients of the Fλ, and
let S be the variety given by

Gα(. . , yλI , . .) = 0.

For each s ∈ S we define Zs by the equations

Fλ,s(x) =
∑

I

yλIx
I = 0

where s = (. . , yλI , . .). Then Zs0 = Z for the generic point s0 = (. . , aλI , . .) ∈ S.
The spread of Z is the family

Z




y
π

S

where π−1(s) = Zs. Spreads have the following properties:

(i) For a general s ∈ S the algebraic properties of the Zs are all “the same” as
those for Zs0 – in particular, the algebraic properties of the ideal of Z – such as
the character of its minimal free resolution, the ideals containing it and therefore
the configurations of its subvarieties – are “constant” in the family {Zs}.

(ii) Z and S are defined over Q and

Q(S) =: k ∼= Q(. . , aλI , . .)

is a field of definition of Z. If we think of Z as an abstract variety defined over
a field k, then speaking roughly the spread arises from the different embeddings
k ↪→ C.

(iii) Absolute differentials are interpreted geometrically via a natural isomor-
phism

Ω2
Z(k)/Q,z

∼= Ω2
Z(Q)/Q,z
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for z ∈ Z(k). Again roughly speaking, both sides are generated by the quantities
daλI , dxi subject to the relations

{

dFλ,s0(x) = 0

dGα(. . , aλI , . .) = 0

where dFλ,s0(x) =
∑

I

daλIx
I +

∑

I

aλIdxI .

(iv) Infinitesimally, spreads are characterized among all families Z → S by the
property that the Kodaira-Spencer class

ρ ∈ H1(Hom(Ω1
Z(k)/k, T ∗s0

S))

is identified with the extension class of

0 → Ω1
k/Q ⊗ OZ(k) → Ω1

Z(k)/Q → Ω1
Z(k)/k → 0

via the evaluation map

T ∗s0
S → Ω1

k/Q

given by daλI → dC/QaλI , where daλI is the usual differential of the function yλI

considered in T ∗s0
S0.

(v) The evaluation mappings

Ω1
Z(k)/Q,z → Ω1

k/Q

may, via the above identification Ω1
Z(k)/Q,z

∼= Ω1
Z(Q)/Q,z, be thought of as inducing

maps

T ∗z Z → T ∗s0
S

that give a k-linear, but not an OZ(k) linear, connection along Zs0 in the family
Z → S.

usual picture of a connection connection only along
central fiber as for spreads
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Now let X be a regular surface defined over Q, and let z ∈ Z2(X(k)) where
k ∼= Q(S). We may apply the spread construction to Z = (X, z) to obtain

Z ⊂ X × S




y





y

S = S

where Z · X × {s} = zs. Note that a k-rational equivalence has a spread over
S × P1. If

τ =
∑

i

(pi, vi) ∈ TzZ
2(X(k))

where the pi ∈ X(k) and vi ∈ TpiX(k), then for ω ∈ H0(Ω2
X(k)/Q) we may

consider

ωcτ ∈ T ∗z Z,

where in fact ωcτ ∈ T ∗s0
S ↪→ T ∗z Z is “horizontal” relative to the connection along

Zs0 described above. This gives the geometric interpretation of how (absolute)
2-forms may be evaluated on geometric tangent vectors to 0-cycles; in summary:

The value of ω ∈ H0(Ω2
X/Q) on τ ∈ TzZ

2(X(k)) is interpreted geometrically

as a 1-form on the spread Z at z.

4. Integration of Abel’s DE’s; caveat

By “integration” of Abel’s DE’s we mean constructing Hodge-theoretically a
space H and map

ψ : Zn(X) → H

such that the fibers of ψ have tangent spaces given by (A). Actually, what will be
meant is to have a sequence (Hi, ψi) for i = 0, 1, . . . , n such that ψi is defined on

Zn(X)i−1 =: ker ψi−1

where Zn(X)−1 = Zn(X) and the tangent spaces for ker ψi are given by

(Ai) = 0

where (Ai) is the ith level of Abel’s DE’s. We shall now illustrate this for curves
and surfaces.



346 MARK L. GREEN AND PHILLIP A. GRIFFITHS

For n = 1, we have

• H0 = Hom(H0(Ω0
X/C), C) and

ψ0 : Z2(X) → C

is given by

ψ0(z)(1) =
∫

z

1 = deg z, 1 ∈ H0(Ω0
X/C)

• H1 = Hom(H0(Ω1
X/C), C)/periods= Jac(X) and

ψ1 : Z2(X)0 → H1

is given by

ψ1(z)(ϕ) =
∫

γ

ϕ mod periods, ϕ ∈ H0(Ω1
X/C)

where γ is a 1-chain satisfying
∂γ = z,

which may be constructed using the assumption that ψ0(z) = 0. As has been
observed earlier, the fibers of ψ1 have tangent spaces defined by Abel’s DE’s in
the case of algebraic curves.

For n = 2 we may define (H0, ψ0) and (H1, ψ1) as in the curve case, where
now H1 = Alb(X). For the same reasons as in the curve case, the tangent spaces
to the fibers of ψ1 are given by

ϕ = 0, ϕ ∈ H0(Ω1
X/C).

The interesting question is to define ψ2. Thinking of ψ0 and ψ1 as given by
∫

z

1, 1 ∈ H0(Ω0
X/C)

∫

γ

ϕ, ϕ ∈ H0(Ω1
X/C)

one way of looking at the issue is the question of how to define
∫

Γ

ω, ω ∈ H0(Ω2
X/C).

Here, Γ is to be a 2-chain that may only be constructed using the assumption
ψ0(z) = ψ1(z) = 0.
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In fact, the summary at the end of the previous section suggests one way to
proceed. Namely, assume that X is defined over Q and let z ∈ Z2(X)1 satisfy

ψ0(z) = ψ1(z) = 0.

Based on the discussion above we should consider the field k over which z is
defined. Let then k ∼= Q(S) and {zs}x∈S be the spread of z. We observe that

ψ0(zs) = ψ1(zs) = 0

for all s ∈ S. According to the geometric interpretation of Abel’s DE’s, in the
picture

Z ⊂ X × S




y





y

S = S

at z ∈ Zs0 we should think of ω(z) ∈ Λ2T ∗z Z as having one “vertical” component
corresponding to a variation of z in Z2(X(k))1 and one “horizontal” component
corresponding to the variation of z in the spread directions. The vertical variation
of z is given by the tangent z′ ∈ TzZ

2(X(k)) at z. For the horizontal variation
we choose a closed curve γ ∈ S based at s0 and take the tangent γ′ to γ at s0.
Abel’s DE’s may then be expressed as

〈ω, z′ ∧ γ′〉 = 0.

Thus we are led to the following construction: By the assumption ψ1(zs) = 0,
we have that the induced map

Z∗ : H1(S, Q) → H1(X, Q)

is zero. Setting Zγ = π−1(γ) ∩ Z, we see that the cycle Zγ represents Z∗(γ) and
working modulo torsion we have that Zγ = ∂Γ for 2-chain Γ. For ω ∈ H0(Ω2

X/Q)
we define

(∗∗) ψ2(z)(ω) =
∫

Γ

ω mod periods

A different choice of Γ changes (∗∗) by a period. If γ = ∂∆ for some 2-chain
∆ ⊂ S, by Stokes’ theorem

ψ2(z)(ω) =
∫

∆

TrZω

where TrZω is induced by the trace map; specifically,

Z∗ : H0(Ω2
X/C) → H0(Ω2

S/C)
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is the map induced by the component

[Z](0,2),(2,0) ∈ H0,2(X)⊗H2,0(S) ∼= Hom(H0(Ω2
X/C), H0(Ω2

S/C))

of the fundamental class [Z]. Here we are writing

[Z] = [Z](2,0),(0,2) + [Z](1,1),(1,1) + [Z](0,2),(2,0)

under the Künneth-Hodge decomposition

H2,2(X × S) =
(

H(2,0)(X)⊗H0,2(S)
)

⊕
(

H1,1(X)⊗H1,1(S)
)

⊕
(

H(0,2)(X)⊗H(2,0)(S)
)

.

It follows that ψ2(z)(ω) is a differential character on S. 5

Moreover, it follows from the above discussion that

ψ2(z)(ω) ≡ 0 mod periods

if z is k-rationally equivalent to zero. Indeed, we first argue heuristically as
follows: Set

ψ2(z)(ω, γ) =
∫

Γ

ω

in (∗∗) above. Thinking of γ as parametrized by 0 5 s 5 2π and setting Γ ·Xs = λs

we may iterate the integral to have

ψ2(z)(ω, γ) =
∫ 2π

0

( ∫

λs

ωc∂/∂s

)

ds.

Now suppose we have a k-rational equivalence

z1 ≡rat z2.

This is given by
Z ⊂ X × S × P1

where
{

Z ·X × S × {0} = k-spread of z1

Z ·X × S × {∞} = k-spread of z2.

5Invariants associated to general families of 0-cycles have been constructed by Schoen in

[Schoen] (based in part on a suggestion by Nori) and Voisin in [Voisin]. For families arising

from spreads, the above construction differs in an interesting way from that of Voisin – c.f. the

appendix to section 9(iii) in [Green-Griffiths I] for a discussion of this point.
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Letting Zt = Z ·X × S × {t} be the k-spread of zt, and setting z = z0, and z′ =
tangent to zt at t = 0, we have

d

dt
(ψ2(zt)(ω, γ))t=0 =

∫ 2π

0

d

dt

( ∫

λs,t

ωc∂/∂s

)

t=0

ds

=
∫ 2π

0

〈ω, z′ ∧ γ′〉 ds

where γ′ = ∂/∂s. Then

(∗∗∗) 〈ω, z′ ∧ γ′〉 = 0

is exactly Abel’s DE as expressed above.
Similar heuristic reason gives that the fiber of ker ψ2 through z ∈ Z2(X(k))

has tangent space equal to TzZ
2
rat,z(X(k)), where Z2

rat,z(X(k)) are the cycles in
Z2(k) that are k-rationally equivalent to z. Indeed, if zt is an arc in Z2(X(k))
with z0 = z and tangent z′ at t = 0, then if

d

dt
(ψ2(zt)(ω, γ))t=0 = 0

for all ω and γ, we may reverse the above calculation and conclude that (∗∗∗)
holds for all ω and γ, which by the theorem stated above means that

z′ ∈ TzZ
2
rat,z(X(k)).

The reason that the above calculations are “heuristic” is this: The geometric
interpretation of Abel’s DE’s via spreads requires that we restrict our attention
to a field k that is finitely generated over Q – i.e., we consider X(k), Z2(X(k)),
Z2

rat(X(k)) etc. On the other hand the above calculations using loops in S and
paths in X as if we were in the setting of complex manifolds seems, at least on
the face of it, to require that we be working with X(C), Z2(X(C)), Z2

rat(X(C))
etc. However, the geometric situation

Z(C) ⊂ X(C)× S(C)




y





y

S(C) = S(C),

and the same situation crossed with P1(C), are the complex points of these same
situations with k replacing C. Moreover, Abel’s DE’s are algebraic and defined
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over k and are satisfied in the above situation over the field k. Therefore they
also hold in the above situation over the field C, thereby justifying the heuristic
calculations.6

Caveat. Although we have described how to integrate Abel’s DE’s in the sense
of differential equations, we have not asserted what would amount to integrating
Abel’s DE’s in the sense of geometry; namely, that modulo torsion

ker ψ2 = Z2
rat(X).

We do not know that the above Hodge-theoretic construction captures rational
equivalence.

One reason is that, due to the fact that Z2(X) and CH2(X) are not varieties
in anything like the usual sense, the rules of calculus “break down”. Thus, e.g.,
one has the phenomenon of null-curves, which are curves B in Z2(X) such that
the induced map

Jac B → CH2(X)

is non-constant but whose differential vanishes identically. For example, suppose
that X is a regular surface defined over Q and Y ⊂ X is an algebraic curve also
defined over Q. Then

J(Y ) → CH2(X)

is certainly non-constant in general, while since the spread of any 0-cycle contained
in Y is supported on Y and

ω
Y

= 0

for any ω ∈ H0(Ω2
X/Q), we infer that the differential of the above map vanishes

identically. One might say that in the world of Z2(X) and CH2(X) the usual
uniqueness theorems from DE’s fail. This failure does seem to occur for arithmetic
reasons – the above construction is conjecturally the only way null curves can
arise. We refer to [Green-Griffiths I] for further discussion of this, and the related
failure of the usual existence theorems in DE’s in the setting of algebraic cycles.

6The above is a special case of a general construction given in [Green-Griffiths II] of Hodge -

theoretic invariants of algebraic cycles. These invariants are constructed using the fundamental

class and Abel-Jacobi map applied to spreads; assuming the generalized Hodge conjecture and

conjecture of Bloch-Beilinson they give a complete set of invariants of the rational equivalence

class (modulo torsion) of algebraic cycles.
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