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CONTROL SYNTHESIS IN HYBRID SYSTEMS WITH FINSLER
DYNAMICS

WOLF KOHN, VLADIMIR BRAYMAN, AND ANIL NERODE

Abstract. This paper is concerned with a symbolic-based synthesis of feed-

back control policies for hybrid and continuous dynamic systems. A key step

in our synthesis procedure is a new method to solve the following dynamic

programming problem:

∂V

∂t
(z, t) = min

v

∂V

∂z
(z, t)ρv(z, v)v

ż = ρ(z, v), t ∈ [0, T ](1)

V (z, T ) = Ψ(z, T )(2)

Here V (z, t) is the cost-to-go function associated with a certain type of ho-

mogeneous calculus of variations problem on a Finsler manifold and (z, v)

is a positive homogeneous function of degree one in v. This optimization

problem is at the core of the control synthesis procedure for many hybrid

control problems [1], [2].

1. Dedication

We dedicate this paper to Professor Chern with gratitude, and for good reason.
Nerode learned his differential geometry from Chern’s classes at the University of
Chicago in 1951. As a lifelong mathematical logician, Nerode never expected to
use this knowledge, especially knowledge of Finsler Geometry, which he had later
acquired from his friend and fellow student of Chern’s, Louis Auslander. When
developing feedback policies for optimal control systems, we discovered that these
can be modeled as Finsler geodesic fields and connections. One never knows in
advance what mathematics one may need, and it is nice to be in a position to
recognize what is needed. A great virtue of the University of Chicago program,
of which Chern was one of its founders, was that general knowledge of broad
fields was an explicit aim. Kohn learned differential geometry at MIT and found
its tremendous potential in control applications. He has been an avid student
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of Professor Chern’s work. Vladimir Brayman who is completing his PhD in
Electrical Engineering is working on the application of the differential geometric
methods to enterprise control problems.

2. Introduction

The discipline of hybrid systems emerged in the decade 1990-2000 as an impor-
tant science at the interface of control theory, electrical engineering, and computer
science. Hybrid systems are systems that incorporate (discrete) logical control
programs that interact with continuous physical plants in a changing environ-
ment. In this context, a plant is thought of as an evolving vector field of plant
states. Before the Hybrid System approach, the standard models for such systems
tended to ignore either the continuous or the discrete aspects of the system. There
are many cases where non-hybrid approaches are not adequate to develop optimal
control laws. An enterprise control system is an example. The discipline of hybrid
systems attempts to build and analyze models in which both the continuous and
discrete aspects of the control problem are taken into account in a combined con-
tinuous field encoding both the discrete (event driven) and continuous dynamics
of the system, with a transformation to the discrete domain when needed. A
good place to see examples of these systems, is in the four volumes of hybrid
systems which have appeared in the Lecture Notes in Computer Science series by
Springer-Verlag, see references [1], [2]. There have been many conferences on this
subject worldwide since the publication of these seminal volumes.

We design logical control laws for hybrid systems to force the evolution of the
plant states to satisfy a performance specification, even when subjected to dis-
turbances in the environment, and in the presence of unmodeled plant dynamics.
A control law is implemented by a real time control architecture. The way a
control architecture module operates is as follows: when the plant enters a cer-
tain prescribed region of the state manifold, the event is sensed by the control
architecture, which triggers the control program to change the control parame-
ters for the plant actuators, thereby changing the plant evolution vector field to
a new vector field. The plant state trajectory is thus a piecewise differentiable
path. Therefore, the discontinuities in the direction of the trajectory take place
at the times of the control law intervention. In other words, the hybrid control
programs are event-driven finite automata, switching the plant from one vector
field evolution to another for the purpose of enforcing plant performance specifi-
cations. The use of hybrid control programs extends the range of applications of
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conventional continuous control theory to complex non-linear non-homogeneous
systems. The problem is, how does one develop such a program?

The fundamental problem of hybrid systems is to produce control algorithms
and control implementation architectures that enforce the performance specifica-
tion for the system, given the plant state models. In our approach, we introduce
a manifold on which evolution of plant state trajectory y(t) take place. The
manifold is determined by the constraints. The control policies are formulated as
functions γ(y(t), ẏ(t)) that determine the direction ẏ(t) = ρ(y(t), u(t)) at time t

when the plant state is y(t). In practice, the control effort should depend on the
current state y and rate ẏ, and not on the current time, because the unknown dis-
turbances and inaccuracies in the modelling parameters may lead to timing and
positional inaccuracies. We introduce a suitable non-negative Lagrangian L̃(y, u, t)
and a goal set G on the manifold. We rephrase the performance specification so
that the requirement on the control policy can be chosen such that the plant state
trajectory y(t) remains on the manifold. The trajectory y(t) leads from current
state to the goal set G, and minimizes

∫

L̃(y, γ(y, ẏ), t)dt among all trajectories
y(t) arising from admissible control policies.

The discussion is confined to the case when the goal is a single point. Therefore,
a control policy indicates, given the current state, the optimal direction to go
in order to end at the goal point. We allow the tangent field along the optimal
state trajectory to be measure-valued. This is done to ensure that mathematically
optimal trajectories exist. Furthermore, this implies that we allow control policies
that are generalized curves u(t) in the sense of L.C. Young [7]. Measure-valued
optimal control policies are generally not physically realizable, but there are close
approximations that are realizable. Given a positive ε, we can generate algorithms
that allow one to compute a piecewise constant approximation to γ(y, ẏ) to an
optimal control policy which brings

∫

L̃(y, γ(y, ẏ), t)dt within ε of its minimum
among all admissible trajectories. If the states y and the directions ẏ are then
discretized, the approximate control policy can be implemented as a logical control
program that is a hybrid control automaton [4]. Unlike the true optimal control
policy, this approximate control policy can be implemented in such a way as to
guarantee the ε-optimality. This automaton is easily realizable in a generic form
with Horn clauses [6], [5].

The Pontryagin School of optimal control was based on necessary, not sufficient,
conditions. In this approach, one solves the necessary conditions, and among
the feasible solutions to the plant equations one finds candidates to an optimal
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solution. In our Young-based sufficiency approach, we approximate to an optimal
weak solution already known to exist by the convexity properties of Finsler spaces.

Finsler manifolds enter through the Caratheodory-Cartan reformulation of a
Hamiltonian variational problem as a feedback control extraction problem. Fol-
lowing the example of Weierstrass for ordinary differential equations and vari-
ational calculus, time is introduced as an additional explicit variable, replacing
y by x = (y, t). With the transformed variables and Finsler Lagrangian, the
positive homogeneity condition that L(x, λẋ) = λL(x, ẋ) for positive λ is pro-
duced. An optimal control policy yields a path from the present position x to
the goal point minimizing the cost-to-go function

∫

L(x, ẋ)dt. When (gij(x, ẋ)) =
(

∂2(L2(x,ẋ)
∂ẋi∂ẋj

)

is positive definite, the Finsler interpretation of the cost-to-go func-

tion
∫

L(x, ẋ)dx measures the ”Finsler length” of the curve x(t). The Finsler
fundamental ground form Σijgij(x, ẋ)dxidxj represents infinitesimal length as a
function of position x and velocity ẋ. Integrating this quantity along curves gives
its Finsler length. Thus the optimal plant state trajectories are Finsler geodesics.
One may take as admissible control policies functions u(t) = γ(x, ẋ), giving the
velocity ẋ = ρ(x, γ(x, ẋ)) at each position x, with ρ a positive homogeneous func-
tion of degree one in the second argument. ρ is the Euler-Lagrange form of the
Lagrangian L. The generalized control policies γ(x, ẋ) may be interpreted as hav-
ing probability measures on sets of values of ẋ and x. These generalized control
policies yield a Lebesgue measurable plant state trajectory on which the expected
value of ẋ(t) is almost always the velocity of the actual plant state trajectory x(t).

When the apparently artificial homogeneity in ẋ is introduced, where no homo-
geneity was originally present, the Finsler manifold structure introduced allows
one to compute these control policies explicitly. But one only sees the control
policies as geodesic fields or connections when this transformation is carried out.
Reading the introduction to Cartan’s book and Finsler’s thesis, the transforma-
tion of variational problems to Finsler form seems to have been the inspiration
for developing Finsler geometry in the first place. It is fitting that this source of
Finsler spaces is now found to be very powerful for computing optimal control
policies. Another inspiration for Finsler’s thesis was undoubtedly Caratheodory’s
famous ”Golden Path” to the calculus of variations, which was an axiomatic
treatment of the relation between a geodesic field and its family of wave front hy-
persurfaces. Finsler’s work made this Caratheodory relation arise automatically
from Lagrangian problems recast in Finsler form. Now much of the structure of
control policies can be seen clearly through the duality between the finite dimen-
sional tangent space unit sphere and its cotangent space.
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The process for extracting digital programs to control continuous physical sys-
tems breaks into several stages. First, the control problem is reinterpreted as an
optimal control problem, by the inverse problem method of the calculus of varia-
tions, and then the optimal control problems are translated to the corresponding
Finsler Manifold. On the Finsler manifold, the control problem becomes one of
computing a geodesic field. This amounts to finding the connection matrix in
the Cartan sense. Connections or geodesic fields are the required control poli-
cies. They often exist only as weak limits of sectionally smooth geodesic fields
if one uses the sufficient conditions of the calculus of variations attributed to L.
C. Young. Weak limits are usually not physically realizable, but they can be ap-
proximated by digital control programs that are real-time finite automata. Thus
for any ε, a sectionally smooth trajectory that will produce a result within ε of
the minimum for the Lagrangian involved, and a discrete real time digital control
program that issues control orders to achieve such a trajectory can be generated.
The digital control program arises by decomposing the Finsler tangent manifold
into a finite number of regions, and when a new region is entered, the system
communicates this fact to the control automaton, which issues the appropriate
control to the actuators, usually a chattering control. Digital control programs
can achieve near optimal behavior when they arise from continuous models by
discretization. In this paper, we do not delve into the discretization process. It
is more appropriate for this volume to describe the classical differential geometry
tools used to compute the needed control policies. These are in the tradition of
Cartan, and we use his notation. At the Hynomics corporation, the needed algo-
rithms have been implemented in symbolic software. The first commercialization
of this software is for agent based supply chain programming. Included here are
some of the tools used.

3. An Approach to Control Synthesis

Our approach for designing adaptive feedback control laws is not the usual one.
We begin by describing the desired behavior of the intended closed-loop system.
This desired behavior is a trajectory on a suitable constructed manifold, called
the carrier manifold, generated by a variational formulation

(3) min
α

T
∫

0

L(α(t))dt, where L : TM → R,

with α(t) = ((x(t), ẋ(t)), α(0) = α0) given and α(T ) ∈ G. We shall call such an
L a closed-loop Lagrangian. L is constructed from the equations of motion of the
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system and isoperimetric constraints. The necessary conditions for the extremal
trajectory (Euler-Lagrange equations, Nöether invariants) represent the desired
dynamics of the closed-loop system.

We first construct a constraint manifold by incorporating the geometric and
logical constraints imposed on the system, and then embed the constraint mani-
fold into a ”carrier manifold”. Such an embedding is often not possible without
relaxing the problem. Physically reasonable changes in the model, the closed-
loop Lagrangian and the carrier manifold can be made to get this embedding.
In applications, such modifications are made iteratively on-line as an adaptive
mechanism for altering the controller to meet performance specifications.

Think of a large building as the result of two final blueprints which agree at
the end of the design process. One is the architect’s blueprint the other is the
structural engineer’s blueprint. Blueprints are handed from one to the other until
one gets a final common blueprint. This is a feedback loop. The conventional
synthesis procedure is that the architect presents his current blueprint to the
structural engineer, who dictates the modifications she thinks are required and
returns her blueprint to the architect, who then modifies his blueprint to conform
more closely, et al... The feedback proceeds till the blueprints agree.

But the feedback can be in the opposite direction. This is the paradigm we
follow. In this paradigm, the structural engineer hands her blueprint to the ar-
chitect, who makes an architecture blueprint which approximately matches the
structural engineer’s blueprint. This blueprint is then handed back to the struc-
tural engineer, and this continues till the blueprints agree. That is, the architect
formulates a blueprint containing the desired livability conditions, the construc-
tion industry analogue to our choice of constraints, manifold, and Lagrangian.
The structural engineer then attempts to design a physical system approximately
matching the architect’s blueprint. This is iterated until the blueprints corre-
spond. In the process, the architect may well have to relaxed constraints if they
cannot be met, including cost constraints.

In this paper we concentrate on the Euclidean connections of Cartan. Other
connections can be equally useful. A great variety of geodesic fields appear to be
useful when one is doing control by chattering between different geodesic fields in
the course of the evolution.

4. Cartan Absolute Differentiation

Let X be a vector field on a section of TM in a neighborhood of a given trajec-
tory α(t) = (x(t), ẋ(t)). The absolute Cartan differential of X measures the local
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change in X as we move along α(t) from point (x(t), ẋ(t)) to an infinitesimally
close point. The Cartan matrix [8] is the matrix of forms with (i, k)-th entry

(4) ωi
k =

n
∑

h=1

Ci
kh(x, ẋ)dẋh +

n
∑

h=1

Γi
kh(x, ẋ)dxh.

The Cartan absolute differential of X is

(5) DX = dX + ωX.

For a vector field X to be a Cartan geodesic field, it must satisfy the following
two conditions:

(i) DX = 0(6)

(ii) dL2(x, X) = 0,(7)

where L2(x, X) is

(8) L2(x, X) = XT g(x, ẋ)X.

Condition (i) and equation (5) imply

(9) dX = −ωX.

Substitute (8) into (7) and use (9) to get

0 = dL2(x, X) = XT g(x, ẋ)dX + dXT g(x, ẋ)X + XT dg(x, ẋ)X

= −XT g(x, ẋ)ωX −XT ωT g(x, ẋ)X + XT dg(x, ẋ)X

= XT (−g(x, ẋ)w − ωT g(x, ẋ) + dg(x, ẋ))X.(10)

Because X is arbitrary, (10) implies

(11) dg(x, ẋ) = g(x, ẋ)ω + ωT g(x, ẋ).

Thus for the (i, j)-th entry of g, the following holds

dgij =
n

∑

k=1

gikωk
j +

n
∑

k=1

gjkωk
i

=
n

∑

k=1

gik

(

n
∑

h=1

Ck
jhdẋh +

n
∑

h=1

Γk
jhdxh

)

=
n

∑

h=1

[

n
∑

k=1

(

gikCk
jh + gjkCk

ih

)

]

dẋh +
n

∑

h=1

[

n
∑

k=1

(

gikΓk
jh + gjkΓk

ih

)

]

dxh.

(12)
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At the same time,

(13) dgij =
n

∑

h=1

∂gij

∂ẋh
dẋh +

n
∑

h=1

∂gij

∂xh
dxh.

We deduce from (12) and (13) that

∂gij

∂ẋ
=

n
∑

k=1

gikCk
jh +

n
∑

k=1

gjkCk
ih(14)

∂gij

∂x
=

n
∑

k=1

gikΓk
jh +

n
∑

k=1

gjkΓk
ih(15)

These identities are useful for computing C and Γ.

Lemma 4.1. Let {e} = {e1, . . . , en} be a frame in TMα(0). Let U be a neighbor-
hood of α(0) defined by

(16)
de

dt
= e

ω

dt

with the initial conditions g(x(0), ẋ(0)) = eT (x(0), ẋ(0))e(x(0), ẋ(0)), where g is
defined in (8). Then

(17) eT (x(t), ẋ(t))e(x(t), ẋ(t)) = g(x(t), ẋ(t))

for t ∈ (0, t̄].

Proof. From (16),

(18)
d(eT e)

dt
=

deT

dt
e + eT de

dt
=

ωT

dt
eT e + eT e

ω

dt
.

By (16) e is Lipschitz continuous because w is absolutely continuous in t. Compare
equations (11) and (18). Since they share the same initial conditions and the same
equations, the result follows from the uniqueness theorem. £

Here is the relation between Cartan connection coefficients and Finsler geometry.

5. Finsler Connections

Connection coefficients are computed from a given metric ground form as fol-
lows. Assume the following conditions [8]:

A: If the direction of a vector X coincides with the direction of its element
of support (x, ẋ), then the length of X is L(x, ẋ).
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B: Let X and Y are two vectors with a common element of support. The
infinitesimal rotation of the element of support around its center (x, ẋ +
dẋ) leaves the components of X and Y fixed, and the following condition
holds:

(19) g(x, ẋ)XDY = g(x, ẋ)Y DX,

where DX and DY are the absolute Cartan differentials (see equation
(5)).

C: If the direction of a vector X coincides with direction of its element of
support and if the latter undergoes an infinitesimal rotation about its
center, then its absolute differential (5) vanishes.

D: If Γ∗kij are the connection coefficients when the displacement is such that
the element of support is transported parallel to itself, then these coeffi-
cients are symmetric in their lower indices i, j.

Condition A states that L2(x, ẋ) = ẋT g(x, ẋ)ẋ.

Condition B, together with the equation (14) leads to the identity

(20) Cijh =
1
2

∂gij

∂ẋh
,

where Cijh = gjkCk
ih.

Condition C implies that

(21)
n

∑

k=1

Ckihẋk = 0

The unit vector l in the direction of the element of support (x, ẋ) is

(22) l =
ẋ

L(x, ẋ)
.

The absolute differential of l is

Dli = dli +
n

∑

h=1

n
∑

k=1

Ci
kh(x, ẋ)lkdẋh +

n
∑

h=1

n
∑

k=1

Γi
kh(x, ẋ)lkdxh

= dli +
n

∑

h=1

n
∑

k=1

Γi
kh(x, ẋ)lkdxh,(23)

where the last equality is implied by the equations (21) and (22). Under parallel
transport of a vector, conditions (i) and (ii) are satisfied. Thus if l is displaced
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parallel to itself, we get from (23) the following expression for dẋ.

(24) dẋi = −
n

∑

h=1

n
∑

k=1

Γi
kh(x, ẋ)lkdxh.

Then along a geodesic, the Cartan matrix becomes

(25) ωi
j =

n
∑

h=1

(

Γj
ih −

n
∑

k=1

n
∑

r=1

ẋkΓr
khCi

kr(x, ẋ)

)

dxh =
n

∑

h=1

Γ∗jihdxh,

where

(26) Γ∗jih = Γj
ih −

n
∑

k=1

n
∑

r=1

ẋkΓr
khCi

kr(x, ẋ)

Condition D states that
Γ∗ikj = Γ∗ijk.

Then from (26)

(27) Γi
kj − Γi

jk =
n

∑

r=1

(

n
∑

h=1

Ci
khΓh

rj −
n

∑

h=1

Ci
jhΓh

rk

)

ẋr.

Using the identities Γijh = gjkΓk
ih and Cijh = gjkCk

ih, and interchanging the
indices, we rewrite (27) as follows:

(28) Γijh − Γhji =
n

∑

k=1

(

n
∑

r=1

CijrΓr
kh −

n
∑

r=1

ChjrΓr
ki

)

ẋk

These are n3 equations in n3 unknowns which we could solve for Γijh by computing
the coefficients Cijr from (20). But there is a better way to compute Γijh

5.1. Computing Connection Coefficients. Suppose we are given a function
G(x, ẋ) that is positive homogeneous in ẋ and such that the equation for the
desired geodesic curves α(t) is in the local coordinates

(29)
d2x

ds2
= −2G(x,

dx

ds
),

where s is an arc length (a curvilinear coordinate of a point moving along the
geodesic curve). Consider a unit vector l tangent to α assuming, of course, that
its element of support (x, ẋ) is also tangent to α [8]. In this case we can write
l = dx

ds . Define a differential form ω̄ such that

(30)
ω̄i

ds
=

d2xi

ds2
+ 2Gi(x, l) =

d2xi

ds2
+

2
L2(x, ẋ)

Gi(x, ẋ),
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where the second equality is the consequence of the homogeneity of G. Then
equation (29) can be viewed as the condition for ω̄i

ds to vanish along a geodesic
curve. From (30) we deduce that

(31) ω̄i = dli +
1
L

n
∑

h=1

∂Gi

∂ẋh
dxh.

Compare equations (31) and (23) to conclude that ω̄ is the absolute differential
of l and

(32)
n

∑

i=1

ẋiΓh
ij =

∂Gh

∂ẋj
.

Following Cartan [8], introduce Christoffel symbols γijh as solutions to the fol-
lowing equations

γijh = γhji

∂gij

∂xh
= γijh + γjih.(33)

These equations imply that

(34) γijh =
1
2

(

∂gij

∂xh
+

∂gjh

∂xi
− ∂gih

∂xj

)

.

Comparing equations (15) and (28) with (33), we deduce that

(35) Γijh = Sijh + γijh,

where Sijh are components of an antisymmetric tensor. The latter property im-
plies the following identity

(36) Sijh + Sjhi + Shij = 0.

From (35),

(37) Γijh − Γhji = Sijh − Shji = Sihj ,

where the first equality is implied by the symmetry of γ and the second equality
follows from (36) and the antisymmetry of S. Substitute (37) and (35) into
equation (28) to get

(38) Sihj =
n

∑

r=1

n
∑

k=1

CijrẋkΓr
kh −

n
∑

r=1

n
∑

k=1

ChjrẋkΓr
ki.
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Using (32) in (38), we get

(39) Sihj =
n

∑

r=1

n
∑

k=1

Cijr
∂Gr

∂ẋh
−

n
∑

r=1

n
∑

k=1

Chjr
∂Gr

∂ẋi
.

Equations (35) and (39) give the desired result

(40) Γihj = γihj +
n

∑

r=1

n
∑

k=1

Cijr
∂Gr

∂ẋh
−

n
∑

r=1

n
∑

k=1

Chjr
∂Gr

∂ẋi
,

where γihj can be found from (34) and Cijr can be found from (20).

6. Bellman’s Blueprint In Finsler Spaces

We now show how Bellman equation is a blueprint in the Finsler context for
the extraction of control policies and the implementation of control loops. A
second, subtler, use for the Bellman equation is to extract feedback correction to
revise control polices when additional information about the environment faced
and the inadequacies of the system model become available on line during the
operation of the system. This is a form of adaptation. The Bellman equation
here arises from a dynamic programming formulation of the variational problem
on the associated Finsler manifold. Solutions are implemented by a differential
inclusion procedure. Bellman’s equation plays a role here similar to the role of
Hamilton-Jacobi equations in classical mechanical systems.

Below are the necessary and sufficient conditions for optimal solutions of the
Finsler variational problem assuming that Bellman’s Principle of Optimality holds
for the problem [3].

Let L be a constrained Finsler Lagrangian over TM (see Section 4). We for-
mulate the desired behavior of the system as solution trajectories of the following
variational problem

Problem 1.

(41) minimize

T
∫

0

L(x(t), ẋ(t))dt,

over a family of curves α(t) on an open set U of a constraint manifold M , with the
prescribed boundary condition α(T ) ∈ G and subject to (α(t), α̇(t)) = (x(t), v(t)),
v(t) ∈ TMx(t).
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Define n + 1 dimensional vector function as follows

(42)
[

ẋ(t)
ẋn+1(t)

]

=
[

v(t)
L(x(t), v(t))

]

= ρ(x̃(t), v(t)),

where x̃ = (x1, . . . , xn+1) and ˙̃x(t) = ρ(x̃(t), v(t)).
We note that ρ(x̃, v) is positive homogeneous of degree 1 in v since by con-

struction, the first n entries of ρ are linear in v and the n+1-th entry is a positive
homogeneous Finsler Lagrangian.

Consider now the following problem

Problem 2.

(43) minimize {xn+1(T ; v) | x(T ) ∈ G}

over v and subject to

(44) ˙̃x(t) = ρ(x̃(t), v(t)), xn+1(0) = 0.

Under mild assumptions, we can prove the following.

Lemma 6.1. If L(x(t), ẋ(t)) is smooth, then Problem 2 is equivalent to Problem 1.

Lemma 6.2 (Bellman). For Problem 2, define a twice differentiable function
(cost-to-go function)as follows:
(45)
V (y, t) := inf

v(τ)
t≤τ≤T

{xn+1(τ, v)| x̃ satisfies (44), x̃(t) = y, x̃(T ) ∈ G×xn+1(T )}.

Then

(46) −∂V

∂t
(y, t) = min

v
{∂V

∂x̃
(y, t)

[

dX

dt
(y, v) +

ω

dt
(y, v)X(y, v)

]

},

where X(y, v) = ρ(y, v) is a vector field defining the direction of the infinitesimal
variation of V .

Proof. By the principle of optimality,

(47) V (y, t) ≤ 0 + V (y + dy, t + dt).

By the local version of the fundamental theorem of calculus on manifolds [9],

(48) V (y, t) ≤ V (y, t) + dV |y(dt) + O(dt2).

Thus for every y,

(49) dV |y(dt) + O(dt2) ≥ 0.
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Expanding dV , we get

(50) 0 ≤ ∂V

∂t
(y, t)dt +

∂V

∂x̃
(y, t)DX + O(dt2),

where DX is the absolute differential of X (see equation (5)). Then we can
rewrite (50) as follows

(51) 0 ≤ ∂V

∂t
(y, t)dt +

∂V

∂x̃
(y, t)

[

dX

dt
+

ω

dt
X

]

dt + O(dt2)

Dividing by dt and taking the limit as dt → 0,

(52) −∂V

∂t
(y, t) = min

v
{∂V

∂x̃
(y, t)

[

dX

dt
+

ω

dt
X

]

},

where X and ω depend on y and v. £

Equation (52) is a necessary condition for optimality in Problem 2 and hence
Problem 1. Let α(t) be an optimal solution of Problem 1.

Theorem 6.3. The Solution of Problem 2 is a Cartan geodesic field.

Proof. Observe that the only term in (52) that depends on v is
[

dX
dt (y, v) + ω

dt (y, v)X(y, v)
]

. Since V (·, ·) is constant along optimal solutions,

(53)
∂V

∂t
(y, t) = 0.

Since this is true along a Cartan geodesic field (see equation (9)), the result
follows. £

We showed that V (·, ·) is constant along optimal solutions and non-decreasing
along solutions of (44). These properties together with the final value V (·, T ) =
xn+1(T ) characterize this function [10].

Later on in Section 7, we will consider a mechanism that will construct a Cartan
geodesic using the mathematical machinery developed in the present section.

7. The Control Loop

7.1. Active Geometric Constraints. Consider a gradient of the constraint
vector KT

ż evaluated at a certain state (z, ż). Let (ṽ1, . . . , ṽm̃) be column vectors
of KT

ż . Then we define (v1, . . . , vm) to be an orthonormal basis obtained from
ṽ’s using the KVD procedure. Define also (e1, . . . , en) to be the canonical or-
thonormal basis of Rn. Introduce a transformation (e1, . . . , en) → (e′1, . . . , e

′
n) as
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follows

(54) e′j = ej −
∑ eT

j vi

vT
i vi

vi.

Let E′ = [e′1, . . . , e
′
n]. Orthogonalize E′ to get E. A projection map π : M →

N associated with the embedding of the constraint manifold N into the carrier
manifold M is computed as π = ET .

7.2. Feedback Control Law. We construct a control law for the process to be
controlled. The dynamics of the process under control is modeled locally by

(55) z̈ = P̃ (z, ż, u),

where z = (z1, . . . , zn) is a vector of local coordinates of the carrier manifold.
Embed the constraint manifold into the carrier manifold. A projection map

associated with this embedding is π : M → N , where M is the carrier manifold
and N is the constraint manifold. Then in local coordinates, y = π(z) and
z = π+y, where π+ is the generalized inverse of π. If π is linear, then applying π

to the both sides of (55) we get

πz̈ = πP̃ (π+y, π+ẏ, u),

ÿ = πP̃ (π+y, π+ẏ, u),

ÿ = P (y, ẏ, u),(56)

where y1, . . . , ym are the local coordinates of the points along a curve on the
constraint manifold and the definition of P is obvious.

The desired behavior of the system is described by certain trajectories gener-
ated by a variational formulation

(57) min
z

T
∫

0

L(1)(z, ż)dt, z(T ) ∈ G, ż(T ) ∈ Gz,

where L(1)(z, ż) =
√

L00(z, ż), where L00(z, ż) the effective Lagrangian of the
system. Terminal conditions are defined by an open set G.

Using the projection map π, we define a “constraint” Lagrangian as follows

(58) L(2)(y, ẏ) = L(1)(π+y, π+ẏ).

With terminal conditions given by

y(T ) = πG = G̃,

ẏ(T ) = πGy = G̃y.(59)
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the Euler-Lagrange necessary conditions associated with the minimization of
L(2)(y, ẏ) are given by

(60)
d

dt
L

(2)
ẏ (y, ẏ)− L(2)

y (y, ẏ) = 0,

together with (59). In the expanded form (60) is

(61) L
(2)
ẏy (y, ẏ)ẏ + L

(2)
ẏẏ (y, ẏ)ÿ − L(2)

y (y, ẏ) = 0.

Solving for ÿ, we get

(62) ÿ = −
(

L
(2)
ẏẏ (y, ẏ)

)−1 [

L
(2)
ẏy (y, ẏ)ẏ − L(2)

y (y, ẏ)
]

.

In order to find a vertical section of the constraint manifold, we need to

compute
...
y from (62). We first introduce notations. Let D :=

(

L
(2)
ẏẏ (y, ẏ)

)−1

,

e := L
(2)
ẏy (y, ẏ)ẏ, and d := L

(2)
y (y, ẏ). Then, for i, j = 1, . . . , m,

(63) Dij =

[

(

∂2L(2)

∂ẏ∂ẏ

)−1
]

ij

,

(64) ej =
m

∑

k=1

∂2L(2)

∂ẏj∂yk
ẏk,

(65) dj =
∂L(2)

∂yj
.

Writing (62) in terms of the constructs introduced above, we get

(66) ÿi =
m

∑

j=1

Dij (dj − ej) , i = 1, . . . , m.

Take derivatives w.r.t t in both sides of (66) to obtain

(67)
...
yi =

m
∑

j=1

[

Ḋij(dj − ej) + Dij(ḋj − ėj)
]

, i = 1, . . . , m,

where definitions for Ḋij , ḋj , and ėj are given below.

(68) Ḋij = −
m

∑

l=1

m
∑

k=1

Dik

(

d

dt

∂2L(2)

∂ẏk∂ẏl

)

Dlj ,
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where

d

dt

∂2L(2)

∂ẏk∂ẏl
=

m
∑

s=1

[

∂3L(2)

∂ẏk∂ẏl∂ys
ẏs +

∂3L(2)

∂ẏk∂ẏl∂ẏs
ÿs

]

=
m

∑

s=1

[

∂3L(2)

∂ẏk∂ẏl∂ys
ẏs +

∂3L(2)

∂ẏk∂ẏl∂ẏs

[

m
∑

r=1

Dsr(dr − er)

]]

.(69)

To find ḋj , we take derivative w.r.t t in both sides of (65):

ḋj =
m

∑

s=1

[

∂2L(2)

∂yj∂ys
ẏs +

∂2L(2)

∂yj∂ẏs
ÿs

]

=
m

∑

s=1

[

∂2L(2)

∂yj∂ys
ẏs +

∂2L(2)

∂yj∂ẏs

[

m
∑

r=1

Dsr(dr − er)

]]

.(70)

From (64),

ėj =
m

∑

s=1

m
∑

p=1

[

∂3L(2)

∂ẏj∂ys∂yp
ẏpẏs +

∂3L(2)

∂ẏj∂ys∂ẏp
ÿpẏs +

∂2L(2)

∂ẏj∂ys
ÿs

]

=
m

∑

s=1

m
∑

p=1

[

∂3L(2)

∂ẏj∂ys∂yp
ẏpẏs +

∂3L(2)

∂ẏj∂ys∂ẏp
ẏs

[

m
∑

r=1

Dpr(dr − er)

]

+
∂2L(2)

∂ẏj∂ys

[

m
∑

r=1

Dsr(dr − er)

] ]

.(71)

Equation (67) can be written in vector form as follows

(72)
...
y = F(y, ẏ),

where the i-th term of F is given by the RHS of (67).
At the same time, from (56),

...
y = Ṗ (y, ẏ, u) = Py(y, ẏ, u)ẏ + Pẏ(y, ẏ, u)ÿ + Pu(y, ẏ, u)u̇

= Py(y, ẏ, u)ẏ + Pẏ(y, ẏ, u)P (y, ẏ, u) + Pu(y, ẏ, u)u̇.(73)

Let ysol(t) denote a solution to (60) and let (ym(t), ẏm(t) denote a measured
state of the system at time t (we assume that all states are observed). By mini-
mizing the distance between the vector

...
y sol(t) and the vector

...
ym(t), we force the

process to adopt the vertical sector behavior of the geodesic field. This approach
is similar to the ones described in [11] and [12].
Fact: (i) If the system is moving along a geodesic α(t) in the embedding of the
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constraint manifold in the carrier manifold, no correction control is needed. Thus
γ∗(α(t)) = 0, where γ∗(y(t)) := u̇(t) is the differential of the map γ(y(t)) := u(t)

(ii) If the invariant condition is not satisfied but the quasi-geodesic condition
[13] is satisfied, then the process is following a curve β(t) (quasi-geodesic) satis-
fying the following condition.

(74) |α(t)− β(τ)| ≤ κ|t− τ |,

where κ, a Lipschitz-like constant, defines the range of curves close enough to
the geodesic pipe so that the control law proposed below maintains a bounded
distance between α and β. The control law, u(t) = γ(y(t)) must be applied to
the process to achieve this condition. Then we formulate a control problem as
follows. Find u̇ such that the distance between ysol(t) and ym(t) is minimal in
curvature, i.e.

(75) min
u̇

{

(F − Ṗ )T (F − Ṗ )
}

.

Theorem 7.1. If P (y, ẏ, u) and F(y, ẏ) satisfy sufficient smoothness conditions
and there exists a differentiable optimal feedback control law, then the rate of this
control law is given by

u̇(t) = γ∗(ysol(t), ẏsol(t), ym(t), ẏm(t))

=
(

PT
u (ym(t), ẏm(t), u(t))Pu(ym(t), ẏm(t), u(t))

)−1
PT

u (ym(t), ẏm(t), u(t))
(

F(ysol(t), ẏsol(t))− Py(ym(t), ẏm(t), u(t))ẏm

− Pẏ(ym(t), ẏm(t), u(t))P (ym(t), ẏm(t), u(t))
)

(76)

Proof. The existence of the optimal u̇ is assured by the convexity of the objective
function in (75). Necessary condition for optimality (without constraints) can be
written as

(77)
d

du̇

(

FTF − FT Ṗ − ṖTF + ṖT Ṗ

)

= 0.
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Substitute for Ṗ from (73) and simplify to get

F(ysol(t), ẏsol(t))− Py(ym(t), ẏm(t), u(t))ẏm

− Pẏ(ym(t), ẏm(t), u(t))P (ym(t), ẏm(t), u(t))

= Pu(ym(t), ẏm(t), u(t))u̇(t).(78)

Using the right pseudo-inverse of Pu, the result follows immediately. £

Note that, according to Theorem 7.1, if two curvatures match exactly, u̇(t) = 0
and thus no change in control is needed.

7.3. The Inverse Variational Problem. This subsection is devoted to the
construction of a non-negative Lagrangian L on the carrier manifold of the system,
the traditional ”inverse variational problem” when the problem starts without
a Lagrangian. Given a second order differential equation, we construct a non-
negative Lagrangian such that the extremals which minimize this Lagrangian are
the solutions of the original differential equation. These extremals might or might
not be physically realizable. We use approximation techniques to find a physically
realizable approximations to them.

Consider a vector second order differential equation

(79) ẍ = F (x, ẋ, t)

Consider also the Euler-Lagrange equations

(80)
d

dt
Lẋi(x, ẋ)− Lxi(x, ẋ) = 0, i = 1, . . . , n

Write (80) as

(81) ∂Lẋ(x, ẋ)





ẋ

ẍ

1



− Lx(x, ẋ) = 0,

where ∂Lẋ =
[

(Lẋixj ) (Lẋiẋj ) Lẋt

]

, i, j = 1, . . . , n.
Substitute for ẍ from the equation (79):

(82) ∂Lẋ(x, ẋ)





ẋ

F

1



− Lx(x, ẋ) = 0,
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Take the derivative with respect to ẋ from the both sides of this equation:

[

∂Lẋẋ1(x, ẋ) ∂Lẋẋ2(x, ẋ) . . . ∂Lẋẋn(x, ẋ)
]





ẋ

F

1



 + ∂Lẋ(x, ẋ)





I

Fẋ

0





−Lxẋ(x, ẋ) = 0.

(83)

where I is the identity matrix and Fẋ =
[

∂F
∂ẋ1

∂F
∂ẋ2

. . . ∂F
∂ẋn

]

. With the

assumptions that L is in C3 and the mixed partials are continuous, the following
relations hold: Lẋxẋ = Lẋẋx, and Lẋtẋ = Lẋẋt. Thus the equation (83) can be
rewritten as

(84)
d

dt
Lẋẋ(x, ẋ) + Lẋx(x, ẋ) + Lẋẋ(x, ẋ)Fẋ(x, ẋ, t)− Lxẋ(x, ẋ) = 0.

Take the transpose of (84) using the fact that
(

d
dtLẋẋ

)T
= d

dtLẋẋ

(85)
d

dt
Lẋẋ(x, ẋ) + Lxẋ(x, ẋ) + (Fẋ)T (x, ẋ, t)Lẋẋ(x, ẋ)− Lẋx(x, ẋ) = 0.

Add (84) and (85) and divide by 2 to get the Lyapunov equation

(86) − d

dt
Ψ =

1
2
FT

ẋ Ψ +
1
2
ΨFẋ

where Ψ(x, ẋ) = Lẋẋ. The solution of this equation will give the desired Lẋẋ.

7.4. Bellman’s Inverse Problem. Here is the Bellman inverse problem [3].
Given a local control law ẋ = v(y, t) that determines V (y, t), we would like to
find a function L(x, ẋ) such that

(87) V (y, t) = min
x

T
∫

t

L(x, ẋ)dt, x(t) = y.

Note that the cost-to-go function V (y, t) is constant along a geodesic line given
by v(y, t) and the boundary condition is V (y, T ) = 0. Under the conditions for
Bellman’s principle of optimality,

(88) V (y, t) = min
v

[L(y, v)∆ + V (exp(∆v)y, t + ∆)] + O(∆2).
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Expand V (exp(∆v)y, t + ∆) in the Lie-Taylor series [14], page 31.

V (exp(∆v)y, t + ∆) = V (y, t) + ∆v(V )(y, t) + ∆
∂V

∂t
(y, t) + O(∆2)

= V (y, t) + ∆
n

∑

i=1

ξi(y, t)
∂V

∂yi
(y, t) + ∆

∂V

∂t
(y, t) + O(∆2),

(89)

where (y1, . . . , yn) are local coordinates of the point y and v(y, t) =
n
∑

i=1

ξi(y, t) ∂
∂yi

.

If we denote v(y, t) = [ξ1(y, t), . . . , ξn(y, t)]T and ∂V
∂y = [ ∂V

∂y1
, . . . , ∂V

∂yn
], then (89)

can be rewritten in a vector form as

(90) V (exp(∆v)y, t + ∆) = V (y, t) + ∆
∂V

∂y
(y, t)v(y, t) + ∆

∂V

∂t
(y, t) + O(∆2).

Substitute (90) into (88) and simplify, to get

(91) −∆
∂V

∂t
(y, t) = min

v

[

L(y, v)∆ + ∆
∂V

∂y
(y, t)v(y, t)

]

+ O(∆2).

Divide by ∆ and let ∆ → 0, to get the Hamilton-Jacobi-Bellman equation:

(92) −∂V

∂t
(y, t) = min

v

[

L(y, v) +
∂V

∂y
(y, t)v(y, t)

]

, V (y, T ) = 0.

Now assume that L is twice differentiable and convex in ẋ. Then for the given
(optimal) v, Lẋ(y, v) + ∂V

∂y (y, t) = 0. Then (92) can be rewritten as

∂V

∂t
(y, t) = Lẋ(y, v)v(y, t)− L(y, v)(93)

∂V

∂y
(y, t) = −Lẋ(y, v).(94)

The differential of V (y, t) is given by

dV =
∂V

∂y
(y, t)dy +

∂V

∂t
(y, t)dt(95)

= −Lẋ(y, v)dy + (Lẋ(y, v)v(y, t)− L(y, v)) dt.(96)

Along a geodesic, V is constant and thus dV = 0. Then

(97) Lẋ(y, v)v = L(y, v),

(98) Lẋ = 0.

Equation (97) shows that L(y, v) is positive homogeneous of degree one in ẋ.
We also can show that the optimal control can be written in the form [15]
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(99) γ(y) = exp(γy ẏ)εγ(0).

8. Conclusion

This paper illustrated some tools from Finsler geometry used to extract control
policies, mostly by symbolic computation. These have all been implemented.

There are many other areas of science in which the Caratheodory-Finsler-
Cartan translation of variational problems, and these same tools, may prove to
be of equal value. The strategy that physicists have used for 25 years in designing
connections, gauge fields, for a given problem is valuable here too. We are cur-
rently investigating algorithms for constructing connections to meet given system
goals without using an explicit variational formulation or the inverse variational
method. Much of the algebra of linear connections and gauge fields has already
been used in particle physics for similar purposes. We believe this algebra is
equally useful here for boutique control program design. We see useful Finsler
spaces now all around us.
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